A construction of a class of codes correcting probable errors

Sosina S. Martirosyan

Institute for Informatics and Automation Problems of NAS RA and YSU

Abstract

In this article a new class of error correcting codes are considered. A construction method for a parameter class for QAM is obtained, which gives codes with the cardinality bigger then the known codes for other modulations.

Let $X \in \{0, 1, ..., q - 1\}^n$.

As a result of an error in a communication channel vector X may turn into vector X' $(X' \in \{0, 1, \dots, q-1\}^n)$ whose at most t components differ from the corresponding components of X either by +1 or -1. Let we are also given the vector T(X') $(T(X') \in \{0, 1, -1\}^n)$ together with the vector X'. Besides we also know that the residue of the ith components of X' and X is equal to the ith component of T(X') or 0 $(i = \overline{1, n})$.

Here the signs ⊕ and ⊖ denote the following operations:

 $i\ominus j=(i-j) \mod q-1$ for $\forall i,j$, except the case when $i=0, \quad j=1$ and $0\ominus 1=0$; $i\odot j=(i+j) \mod q-1$ for $\forall i,j$ except the case when $i=q-1, \quad j=1$ and $q-1\ominus 1=q-1$.

We'll call the vector T(X') to be the probable error vector of the vector X.

Definition 1. We'll call code L of length n over the q alphabet that corrects no more than $(\pm 1)t$ errors, when for each received vector its probable error vector is known, as the code correcting $(\pm 1)t$ probable errors.

We'll denote the cardinality of code L by M(n,q,t).

In this paper we'll give a method to construct codes correcting $(\pm 1)t$ most probable errors, using t error-correcting binary codes.

Let $X \in \{0, 1, \dots, q-1\}^n$.

Definition 2. We call the vector r(X) to be the vector of evenness and oddness of X, if its ith component $\left(i = \overline{1,n}\right)$ is 0 when the ith component of X is even and is 1 when it is odd.

Let L be a code correcting $(\pm 1)t$ probable errors.

Lemma. From the vectors X' and r(X) $(X \in L)$ we can obtain the vector X.

Proof. It follows from the definition of the code L that the vector T(X') is also known to us.

Let l denote that vector whose ith component $(i = \overline{1,n})$ is equal to the absolute value /modulus? of the residue of the ith components of r(X') and r(X). Note that the ith component $(i = \overline{1,n})$ of l is equal to 0 if no error has occurred and to 1 if an error has occurred in the channel.

And let m denote that vector whose ith component $(i = \overline{1,n})$ is equal to the product of

the ith components of l and T(X').

By definition of T(X') we have

$$X = X' - m$$
.

Let C be a binary code of length n and minimum Hamming distance d. Let A_2 $(n_1 d)$ denote cardinality of the code.

Now we'll construct the following code (denote it by Γ).

Code construction. For any X $(X \in \{0, 1, ..., q-1\}^n)$, $X \in \Gamma$, if $\tau(X) \in C$.

Note that the cardinality of the code is $A_2(n, d) \cdot \left(\frac{q}{2}\right)^n$ for even q.

Let's t denote d-1.

Theorem. Code Γ is a code correcting $(\pm 1)t$ probable errors.

Proof. Suppose as a result of an error in the communication channel vector X $(X \in \Gamma)$ has turned into vector X'. Since C is a code correcting at most t errors and by the construction of Γ we have that $r(X) \in C$, then we can obtain the vector r(X) from the vector r'(X). Hence, using the Lemma we may obtain the vector X from the vectors X', r(X) and T(X').

Codes given by this method could be represented in a systematic form. And since the general case depends on the choice of C we'll illustrate this representation method by an

example. It could also be generalized to all cases.

Example. Let n = 16, q = 32.

We'll take the code obtained by adding over-all parity check to Hamming code of length 15 as the binary code. Let C_0 denote this code and A_2 (16, 4) = 2^{11} denote cardinality of the code. Using the method mentioned above we'll construct code Γ_0 with the cardinality

$$M(16, 32, 3) = \left(\frac{32}{2}\right)^{16} \cdot 2^{11} = 32^{15}.$$

It follows from the Theorem that this is a code correcting (± 1) 3 probable errors.

Further we'll represent this code in a systematical form.

We'll establish a one-to-one correspondence between 32^{15} vectors of code Γ_0 and vectors of the set $\{0, 1, \dots, 31\}^{15}$ of the same number.

First, we'll split the set of 2^{15} binary vectors of length n=15 into 16 non-intersecting /disjoint?? classes of vectors in the following form $((N[0], N[1], \dots N[15])$ denotes these classes of vectors):

Let $l = (l_1, l_2, ..., l_{15})$ be an arbitrary binary vector.

 $l \in N[0]$ if $l' = (l_1, l_2, ..., l_{15}, \varepsilon) \in C_0$, $\varepsilon = 0$ or 1;

 $l \in N[0]$ and $l_6 \in N[i]$, $i = \overline{1, 15}$, if $l' = (l_1, l_2, \dots, l_{i-1}, \overline{l_i}, l_{i+1}, \dots, l_{15}, \varepsilon) \in C_0$, $\varepsilon = 0$ or 1.

There will be 2^{11} vectors (since there are 2^{11} vectors in C_0) in each class.

Further we'll show that these classes of vectors are non-intersecting.

Now suppose the contrary that there exists an $l^0(l_1, l_2, ..., l_{15})$ binary vector such that

Case 1. $l^0 \in N[0]$ and $l^0 \in N[k]$ for any k, $k = \overline{1, 15}$. This implies that the vectors $l'(l_1, l_2, \ldots, l_{15}, \varepsilon_1)$ and $l''(l_1, l_2, \ldots, \overline{l_k}, \ldots, l_{15}, \varepsilon_2)$ ($\varepsilon_1; \varepsilon_2 = 0$ or 1) belong to code C_0 , which is a contradiction, since the minimal Hamming distance of code C_0 is 4(d = 4).

Case 2. $l^0 \in N[i]$ and $l^0 \in N[j]$ for any i and j, $i \neq j$, $(i, j = \overline{1, 15})$. This implies that the vectors $l' = (l_1, l_2, \dots, l_{i-1}, \overline{l_i}, l_{i+1}, \dots, l_{15}, \varepsilon_1)$ and

 $l'' = (l_1, l_2, \dots, l_{j-1}, \overline{l_j}, l_{j+1}, \dots, l_{15}, \varepsilon_1)$ $(\varepsilon_1; \varepsilon_2 = 0 \text{ or } 1)$ belong to code C_0 , which is a contradiction since the minimal Hamming distance of code C_0 is 4(d = 4).

This contradiction proves our assertion that these classes of vectors are non-intersecting.

Let X be an arbitrary vector $X \in \{0, 1, ..., 31\}^{15}$ $(X = (X_1, ...x_{15}))$. Now we'll consider the vector r(X) $(r(X) = (r_1, ..., r_{15}))$.

Case 1. $r(X) \in N[0]$. This implies that the vector $r'(X) = (r_1, r_2, \dots, r_{15}, \varepsilon) \in C_0$ $(\varepsilon = 0 \text{ or } 1)$. For this case let vector

$$Y=(X_1,X_2,\ldots,X_{15},\varepsilon)$$

correspond to vector X. Vector Y belongs to code Γ_0 by the construction of Γ_0 .

Case 2. $r(x) \in N[i]$ for any i, $i = \overline{1,15}$. This implies that the vector $r'(X) = (r_1, r_2, \ldots, r_{i-1}, \overline{r_i}, r_{i+1}, \ldots r_{15}, \varepsilon) \in C_0$ $(\varepsilon = 0 \text{ or } 1)$. For this case let vector

$$Y = (X_1, X_2, \dots, X_{i-1}, X_i \oplus 1, X_{i+1}, \dots X_{15}, 2i + \varepsilon)$$

correspond to vector X. Vector Y belongs to code Γ_0 by the construction of Γ_0 .

Now let $Y = (Y_1, Y_2, \dots, Y_{15}, Y_{16})$.

If $Y_{16} = 2i + \varepsilon$ ($\varepsilon = 0$ or 1), then we may bring the vector

 $X = (Y_1, Y_2, \dots, Y_{i-1}, Y_i \ominus 1, Y_{i+1}, \dots, Y_{15})$ $X \in \{0, 1, \dots, 31\}^{15}$ in correspondence with vector Y.

Remark. Here the signs ⊕ and ⊖ denote the following operations:

 $i \oplus 1 = i + 1 \qquad \qquad i = \overline{0,30}$

 $31 \oplus 1 = 0$

 $i \ominus 1 = i - 1$ $i = \overline{0,31}$

 $0 \ominus 1 = 31$