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Abstract .
Amﬂﬁlwdpmmdiﬁmwﬁ:rmuﬁmaﬁdnginamd-mdexﬁnﬂeelmmtap-
jon of elliptic boundary value problems is proposed. Multilevel subdivision
gmwmmmwmmmmmmummmmm
sterations form the basis of the approach. The multilevel preconditioner constructed is
pwwedtobespwmﬂyaqnivalmtmtheiniﬁalaﬁﬁnmmm:mdiundthmuucm
iapmporﬁonlltothedhnamionoftheﬂnm—gﬂdalsahaicpmblem.

Key words: multilevel preconditioning, finite element method, hierarchical grids, con-
dition number.

1 Introduction

A considerable progress has recently been achieved in constructing optimal preconditioners
for matrices arising in finite element approximation of elliptic boundary value problems.
Most interesting and comprehensive results have been obtained by making use of multilevel
procedures (see [5,6,10,12-14]).

Algebraic preconditioning methods occupy an important place among multilevel methods.
In [5,6] an approach to constructing algebraic multilevel preconditioners of optimal order of
computational complexity has been proposed. It is based on a nested sequence of grids and
a special two-level ordering the nodes on each level. The preconditioner for correspondingly
partitioned stiffness matrix is constructed by replacing the inverse of the Schur complement
by certain matrix polynomial involving the inverse of the preconditioner on the previous
(coarser) level and stiffness matrix on the current level. An another approach, closely related
to the mentioned one, has been presented in [12-14]. Its main idea consists in partitioning
the set; of sides of the grid cells into substructures and using the inner Chebyshev iterations.

In [5,6,12-14] the recursive method of constructing the preconditioners is based upon the
nmhflseqummofﬁnitedﬂnmtspmwithmdnlpimwisaﬁnmbaﬁsfunnﬁm Using
thehe.amhiealbaaiaﬁmcﬁonaintwn%welmdlmduhasbemwmidmedh [1,3,8,9,15].

As is well-known, for second—order linear elliptic equations with solutions belonging to
the Sobolev space H?, finite element method on the base of piecewise linear approximation

*The work was supported by INTAS Association (93-377ex).
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Wdu:hgoptxmﬂwdudm(mllﬁi for instance). However, using the piecewise

silinear approximation does not allow to obtain the greater rate of convergence for the problems
r‘.uhmmmaothmluuonl Increasing the rate of convergence can be achieved by using on
triangles the second—order polynomial approximation (see [11,16,20]).

Constructing two-level preconditioners for second and third order finite element approx-
iimations has been considered in [3]. In present paper & multilevel preconditioner for the
smatrices which arise in finite element appraximation of the self-adjoint elliptic boundary
Jyalue problems on the base of piecewise quadratic basis functions is proposed. At first, using
dihe technique of partitioning the domain into small substructures (see [12-14]), a two-stage
mwgdiﬁonerfortheiniﬁalsﬁﬁnmmatﬂxism Then, as it turned out, the
“8chur complement. of the two-stage preconditioner only by a numerical factor differs from
.mwmmmmmmmammd

of the finest triangulation. This circumstance allows to construct multilevel pre-
md,mmfarthammdmﬂnmmMusingmulﬁlawlprmdiﬁmfmnhe l.mmr"
sease, i.e. for the linear finite element approximation. Note, that the similar idea but in
samother approach to constructing the preconditioners has been discussed in [4].

The remainder of the paper is organized as follows. In Section 2 the variational formu-
slation of & second-order elliptic boundary value problem is posed and the matrix, spectrally
sequivalent to the initial finite element matrix, is constructed. In Section 3 a two-stage liner-
“izing preconditioner is presented. The multilevel preconditioner and the associated condition
ynumber are analyzed in Section 4.
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9 Preliminaries
2.1 Setting the problem
Let N be a simply-connected polygonal domain with the boundary 6Q in the plane of
variables z = (%),%3) which is a union of some number ! > 1 of triangles An,m =
11,2,...,1. Any two triangles are supposed either not to intersect or to have only one common
wvertex or side. Define Iy as a closed subset of ) consisting of the edges of triangles A,,.
‘Denote by H}(S1) the subspace of the Sobolev space H'(f1) that consists of the functions
\wanishing on I'g.

Consider the variational formulation of model second-order elliptic boundary value prob-
lhﬂ. for a given function f € L3(Q) find the function u € H}(Q2) such that

b(“: ”) [!1 U}D.ﬂ Ywe Htll(n)v (21}

- where
bu,v) = L aVuVvdz (2.2)

is & bilinear functional and (:,-)o,q is the inner product in L;(f2). As regards the coefficient
‘@, we suppose that it is a positive function constant in each triangle A,,. Namely,

a(z) = an, z€A, (m=12,...,0).

2.2 Hierarchical sequence of triangular grids

]mnmﬂledomain 1 is composed of triangles A,,, we have a well-defined coarsest trian-
‘gulation 7 of the domain. By a refining procedure we obtain a sequence of triangulations



Mpbmnnmuhwdfsuhuunturh;hmdim ‘
L
Esa 0l aaPs memmmpmwwmmmwﬁm -
T o into four congruent ones. Let us agree that triangulation 7, corresponds ¢
thekthkgdcfthereﬁnelnmi. With any triangulation n-wemomatetlfegﬂd Wi, W
nodesarethemﬁ‘ﬂ"fw (triangular elements) whldlﬁm?nthotnangulaﬁnn. :
For all values k=0,1,...,P we introduce the following notation:
N, is the set of riodes of the grid ws that belong to 0\ To;
Nk is the number of nodes in the set Ni;
G.hmwnfyidﬁmﬁmmmth'@m :Nl; A )
p;i,mgpaoaoﬁuncﬁmmnﬁmlmmmﬂ,hnearmmchmmgleoftha i
and vanishing on T'o- :
ﬁg::nawmmnhaﬂmnsidﬂtheopuaﬁmdpmwcﬁmofgddﬁmcﬁomhdﬁumg
function spaces. Let us denote this operation by symbol prol having the following structure

prol (< a >:< b >),
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where .
<a> is s prolonged grid function,
< b> is a function space the prolongation belongs to.

3

(a) (b)
Fig.1. (a) An element e € 7,—; and (b) corresponding superelement E € T}.

By construction we have Ny D Ni—1,k = 1,2,...,p. Therefore, at the kth level the
partitioning
Ni=NPuN? (23)
of the nodes in N, can be used, where

NP =N\ Neey , NP =N,y

If the mumber of nodes in the set N{” is denoted by n{’ (i = 1,2), then n® = n, —
N1, M) = gy The following ordering of the nodes will be used: the nodes from N
are numbered first in some order, then the nodes from Nf}.

Let G be the space of grid functions defined on the set N{” (i = 1,2).

Consider a triangular element e € 74— (1 < k < p). At the next level of refining the grid
the element e is subdivided into four elements of the kth level. As a result, the element
e turns into a superelement E (Fig.1). For all values k= 1,2,...,p let T: be thie set of
superelements at the kth level.

As hes been said in Section 1, for solving the elliptic boundary value problem (2.1),
(2.2) we intend to apply the second-order piecewise polynomial approximation (see [17,19]).
To this end let us insert additional nodes at the midpoints of the edges of the triangular
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lgells of trisngulation 7,. Thereby, the linear triangular elements of pth level turn into
tthe quadratic triangular elements (see Fig.2). The triangulation 7,, correspondingly, turns

\amto triangulation T which is formed by quadratic triangular elements. In consequence of
munsmeaddlumalnodesweobtmnthemmd w.

._.\\\
\\ 3 2
1 \ 2 5 T 6

(a)

Fig.2. Inserting the additional nodes: (2) a linear triangular element of pth level
and (b) corresponding quadratic triangular element.

Let us introduce the following notation:
N is the set of nodes of the grid w which belong to {2\ Ig;
n is the number of nodes in the set N;
G is the space of grid functions defined on the set N;
V is the space of functions continuous in () and vanishing on [y, which are second-order
polynomials of two variables on each quadratic triangular element.
The partitioning
N=NUyN® ; (24)
of the nodes in N can be used, where

NY=N\N, , N®=

Let n® be the number of nodes in the set N (i = 1,2). We have n® =n—n,, n® =n,.
The following ordering of the nodes will be used: the nodes from N are numbered first in
some order, then the nodes from N®) .
Let G be the space of grid functions defined on the set N (i =1,2).

. Comdaatnmgle Am,1 <m < [. Due to the rule of generating the sequence of
triangulations, each triangulation 7, (or 7) of the domain 0 defines the triangulation
7' (or 7™) of the triangle A,,. In other words, 7" (or 7™) is the restriction of the
triangulation 7, (or 7) onto triangle A,. Relstimtothatletusintrodumthefnﬂowing

wy' (or w™) is the restriction of the grid w; (or w) onto triangle A, (the nodes of
the grid wf* (or w™) are those of the grid w; (or w) belonging to A,,);

Ni* (or N™) is the restriction of the set Ny (or N) onto triangle An;

nf (or n™ ) is the number of nodes in the set N* (or N™ );

GI' (or G™) is the space of grid functions defined on the set N* (or N™ );

Vi (or V™) is the space of restrictions of functions from Vi (or V') omto triangle

T is the restriction of the set of superelements T} onto triangle A, .
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2.3 Spectrally equivalent matrix |
Let us formulate the finite element problem corresponding to the problem (2.1), (2.2) : find

the function # € V' such that

b(@,3) = (f,0)on VIEV. (2.5),
'Ihapmblmnaodeﬁnedlendstothesyatmnnfgrideqmﬁom

Qu=4g, (2.6)

where the symmetric positive definite matrix Q of order n is such that the following relation

oTQu = b(B,7) Vw,w€G @7)

holds and the grid function g € G is determined by the relation
Vg = (fiiJa WEG (2.8)

in (2. 2.8) we have @ = prol(v : V), = prol(w : V))..

(m.gznzgenemﬂymd( )known,anarbit:aryﬁnitaalemm:natnx‘ fors‘amedomainmbaobt,hﬂd’

byusingtheopemﬁunofmmbﬁngthematﬁmformbdmm (see [2,19], for instance),

From now on let us denote this operation by symbol assem. )
Define for each triangle Am,m=1,2,...,l a matrix Qm of order n™ with the help of

the relation
VT Qi = O f&. V@Vidz Vo,weG™ : (2.9)

(1?=pro|(ﬂ:V'"),|.r'J=prol(w:V“‘)]. Then |
Q = assem{Qm : m=1,2,...,1}. {2'10)5

For constructing & matrix spectrally equivalent to the stiffness matrix Q and subse-
quent constructing the multilevel preconditioner we shall use an approach already applied:
in [12,13].

[[,etigtahaatﬂangle A, and perform an isoparametric linear mapping £, which
transforms it into an equilateral unit triangle A in the plane of variables £ = (£1,£). Under
this mapping the triangulation 7{* (or 7™) is transformed into a uniform triangulation
7™(4) (or 7™(A)) of the triangle A. The elements forming the tnnngulanon ™(A) (or
7™(A) ) are equilateral triangles with edge of length

hk=2—k‘ k=0,1,...,p (hFEh}' (2.11)

The grid w* (or w™) is transformed into & grid w(A) (or w™(A)). Further, the linear
mapping L, transfers the set of nodes Nf* (or N™) of the grid w* (or w™ ) into the set of
nodes NP*(A) (or N™(A)) of the grid wi*(A) (or w™(A)). Note, that the numbering of
nodes remains unchanged under the mapping, i.e. the nodes of the set N*(A) (or N™(A))
have the same numbers as their preimages from NJ* (or N™). Therefore, the space of
grid functions G7* (or G™) defined on the set N* (or N™) can be considered as the one
defined on the set Nj*(A) (or N™(A)). Finally, let V{™(A) (or V™(A)) be the space!
of piecewise linear (or piecewise quadratic) functions vanishing on the image of A, NIy
under the mapping L., . -
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For all values m = 1,2,...,l define the matrices K,, of order n™ with the help of the
relations

T s s
VT Kot = 0 }; VaVidE  o,weG™ (2.12)

(5 = prol(v : V™(4)), 1 = prol(w : V™(4))).
Let us teke some set of parameters

Km >0, m=12.., (2.13)
and then, using the operation of assembling construct n x n matrix
K =assem{xpnKpn : m=1,2,...,1}. (2.14)

The matrix K is spectrally equivalent to the matrix Q from (2.6). The spectral condition
number of the matrix X-1Q depmdsonthepmetamm,.imolmdinthedeﬂniﬁon(zu)
. of the matrix K. It has been shown in [12,13] how this parameters should be chosen to
minimize the estimate of cond(K Q). Namely, for each triangle A,, there exist positive
constants (Y and 6% such that the equivalence relation

SNV Ky < VT Qv < 690 K v

holds for all v € G™. The constants 6 and 6% depend only on geometrical parameters
of the triangle A, but do not depend on the number of refinement levels. For example, the
constants can be taken as follows:

5 — Mi 5,("2 — ﬁ(ge\_ﬂ_m = m:’n.mh)
” mizn,ma: * 208,

(here sy, is the area of triangle Ap ,lmmin 80 Ly mes 8re the lengths of its shortest and
longest edges, respectively). Then the condition number of the matrix K-'Q is estimated
as follows:
d(K~'Q) < max é-g,’ min i
o T 1EmEl Ky, ' 1SmSl Ky,
‘I'heri;hl.—hmduideofthelnstinequalitytakesihslaastvnlueifwacﬁmthepanmm

K in the following way

K= VEV6D, m=12,...,1. (2.15)
Under this choice 50
cond(K~'Q) < max - (2.16)

Further we shall construct & multilevel preconditioner for the matrix K which will then
be used for the initial stifiness matrix Q.

3 Two-stage linearizing preconditioner

3.1 Two-level preconditioners on the sequence of grids
For an arbitrary triangle e with vertices numbered 1,2 and 3 (see Fig.1a) define the bilinear
functional

Pe(uyv) = (uz — w1)(va — 1) + (us — ug) (03 — va) + (y —ws) (v, —vs),  (3.1)
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thnvﬂumofthsﬁmcﬁmsumdﬂ.mpecﬁvely,utheithm
wwur:ﬁnmmﬂwal k.OSkﬁthuIlwlum m=12...,1 let us define
m;}:)ufmder np with the help of relations
TLOw = am L VHVhdE  Vv,we Gy (32)

= proll V() = prol(w : V(). T (1213] it has ben shown that mati
L® go defined also satisfy the following

TLOw = ﬁ% ¥ (10, D) Vv, w € G}
6 " vera)

It is obvious that s 2 i
# we(,9) = @e(,9),

where ¢ € 7" is the preimage of the equilateral element ¢ € (A) under the mapping
La andsﬂ;w(u:v,:"),:ﬁspoi(w:v,}“).Itmbereaddysamfmmthadsﬁniﬁle)
of the functional. Thereby, the matrices from (3.2) satisfy the relations

o= Lo, T pu(@9)  WueGt. (33)
e

muﬁngthaoperaﬁonofnmemhﬁng,letuuconmuct Ny X N, matrix
L(*}=355311{5|-L7(§):m=1u2v-'-|l}t = {3:‘)

where the constants #,, are those of (2.14) . As follows from definition (3.4) and relations
(3.3), the matrix L®) gatisfies the relation

1
T =3 kon T 0,8)  Vo,ueG (3.5)
6 m=1 e
(.g:wu[(ﬂ;u}“a:pml(w:ﬂ)). In accordance with the rule of ordering the nodes, the
matrix L® for k> 1 can be partitioned in two by two block form

® r®
- ] (39)
with n{? x n{ submatrices L (5,5 =1,2).
Further, with each superelement E € T; (Fig.1b) we shall associate the bilinear func-
tional
Bp(u,v) = (uw —us)(vn —v5) + (w1 — ug)(vy — vg) + (uz — ug)(v2 — ve)+ 2
(ua — ug)(va — va) + (us — ua)(vs — vg) + (us — ug)(vs —vs), @7
where u; and v; are the values of the functions u and v, respectively, at the. ith node.
Let us return to the relation (3.5) for 1 < k < p. If we group the elements of the kth
level to form superelements, then the matrix L will satisfy the relation

3 1
LWy = % Y kmom 3 [0p,0) + 200, (0,3)]  Vo,w€Gi,  (38)
ma=l Eeip



!

|
‘wwhere eg € 7" is the triangular element whmeverticesarethemidpoﬁmoftheedgesof
sguperelement E (Fig.1b).
Define 2 matrix B of order n, by means of the relation
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X i
TBEy = Y3 Y Kmom Y. ®5(,5) Vo,weGs. (3.9)
6 m=1 EeT™

IThe matrix B'® has the following block representation
B{*] (k)
o= % )
wwhere By is & diagonal matrix and blocks LY | L% | L) are identical with those of block
srepresentation (3.6) of the matrix L™,
~ From now on let us denote by sp(A) the spectrum of a matrix A.
The following statement takes place (sce [12,13]).
iTheorem 1 For all values k = 1,2,...,p, regardless of the values of the coefficient a in
wubdomains A, ,
sp(BBTL®) c [1,5]. (3.11)

We shall consider the matrix B*) as & preconditioner for the matrix L® . As regards
the Schur complement

(3.10)

=
5% =Ly — Ly BY ™ L (3.12)
of the matrix B}, then
55 = % L&y (3.13)

(pee [12,13]). For this reason the matrix B is called a two-level preconditioner. The block
cepresentation (3.10) of the matrix B*) can be rewritten in the following form:

B® ®
B = tlllr} 1 7(k-1) :f) =10 | - (3.14)
Ly 3L +Ly'Byy Ly

3.2 Two-stage preconditioner for the matrix K

I'he matrix K spectrally equivalent to the matrix Q has been constructed in Section 2 (see
2.12)-(2.14)). According to the rule of ordering the nodes of set N, the matrix K admits
the block representation

K= [ ﬁ;: g: ] (3.15)

with n¥ x nt) submatrices Ki;(i,j =1,2).
Consider a quadratic triangular element e whose nodes are numbered as shown in Fig.2b.
et us insert the bilinear functionals

Ve(u,v) = 4f(u1 — ug)(v1 — vg) + (ur — ug)(v1 — vg) + (up — wg)(va — vg)+
(ua — ug) (va — vg) + (un — uq) (s — va) + (us — us)(vs — vs)]— (3.16)
[(us — uq) (5 — vg) + (ug — us)(vs — vs) + (124 — ug)(vg — vg)]
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wd :

(o) = 3[(u.,—ux}(‘h—ﬂ1)+("e'—"a](”s—'-‘l)"'(“l—“!){”l—”a)] (3.17)
o i i .Dn:whmmmd“m:hevﬂumofthafmcﬁmumdu,mwl

make sure that
Vo(u,u) 20 , Yelthu) 20 (3.18)

at the ith node. It may easily

defined at the nodes of the element e.

for any function u
which form the base of the further considerations. It may

Let us formulate & statement
bep,medbydirectcslwhﬁon.
Lemma 2 If e amequﬂamﬂquadrnﬁcmngulm‘emm,mn

! VuVvdz = Q[w.(u, v) + Ya(u,v)] (3.19)

for any functions u and v which are second—order polynomials of two variables in e.

Pmceedingﬁnmtheremion{zm)nndusingLemma.&l.weobtaintha:farmK
the following equality "
\/‘3. = = R

Yoom 3 [We(@,9) +¢e(5,0)] VYo,weGm

v Kmw =
18 " emmia)

holds. It is obvious that

'I‘d'{'fﬂ':’) — Wl(ﬁ!ﬁ) ) ’ﬁl'(‘-ala) =¢¢('I’| ‘-") 3
where e € T™ isthepmi.mageoftheequﬂatemlqmdmticelemmt ¢ e ™A
mﬁm and @ = prol(v : V™), = prol(w : V™). Thus, the matrix Ifa,)samﬁ
V3
18
Then, as follows from (2.14) and (3.20), the matrix K satisfies the relation

V' K = amlgj_[‘l'-(tﬁ.ﬁ) +%(3,7)] Vo,weG™. (3.20)

V3 & e
vTK =-i-§£nm%.€g“lwc(w.v)+¢-(ﬁ.ﬁ}] Yo,weG. (321)
Define a matrix B of order n by the relation
\/§ 1
ST By I—B-mgm,am;'ﬁ.{ﬁ,ﬁ) Yo, w€eG. : (3.22)

The matrix B can be represented in the block form

B= Bll Klﬂ
Kgl Km 3 (3‘23)
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Ywhere By, is a diagonal matrix and blocks Kiyj, Kz, K2, are identical with those of the
dolock representation (3.15) of the matrix K.

The matrix B constructed will be considered as a preconditioner for the matrix K. Let
2us now determine the bounds of spectrum of the matrix B~1K . Consider the generalized

ysigenvalue problem

Ku= )Bu. (3.24)
{The smallest and the largest eigenvalues of the problem (3.24) are denoted by A and Ames ,
“espectively.
The inequality
u Ku>u'Bu

solds for all u € G. It follows directly from relations (3.21), (3.22) and the second of the
tmequalities (3.18). This implies that for the eigenvalues of the problem (3.24) the inequality
A = 1 holds. Moreover, as it follows from block representations (3.15) and (3.23), A=1 is
un eigenvalue of the problem (3.24) . Hence,

e = 1. (3.25)

The largest eigenvalue Ayq, can be evaluated by means of passing onto the element Jevel.
vt K* and B® be the restrictions of the matrices K and B, respectively, on the element
¢ € 7 in the following sense:

K =assem{K® : e€ 7}, B=assem{B* : e € 7}.

Purther, let w, be the restriction of an arbitrary grid function w € G onto an element

1ET.
For & non-zero grid function w € G we have

T
w' Kw E w, K, w; K*w, vTK®
wTBw Ew"B‘w s emeaxrl wTBw, STex 35 vTBey
w, & kerB®

‘here we take into account that kerK® = kerB® for all e € 7). It is readily seen that the
naximum over e € 7 in the right-hand side of the last inequality is achieved on any element
t{whwhnl]thcnodesbelongtothesetN Let e € 7 be such an element. So, we arrive at

s conclusion that
Amas < Ao, (3.26)
where A, is the largest eigenvalue of the problem
K'v=MAB°%, uv¢kerB®, A#1. (3.27)

Let us represent. the matrices K and B*® in the block form

K§, Kj. Bf, Kj
Kt = 11 12 ] , B*= [ 11 12 ]
[ = K3 K5
iccording to the rule of ordering the nodes. The problem (3.27) is equivalent to the eigenvalue

sroblem
Sgv1 = ASpu1, v ¢ kerSp, (3.28)
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wm&msiuewesmwmﬂmgnwdmemmmdg‘mpﬁw
SR’ = K;‘I PE KﬁK;;K'gl ' S; S B;l = K;QK.BT'K;I = {3-29}
Taking advantage of the relations (3.21) and (3.22), let us write down the matrices K* and
B usinsthenodemnnheﬁnsgiminm.%:
o4 —8 —8| 0 —4 —4]
8 24 -8[-4 0 -4
V3 -8 -8 24|/-4 -4 0
K'=-ghmm |~ —4 —a| 6 1 1|’
Ll g0 15 80
DR TRRT O TR W
B 0 0| 0 -4 —4]
0 8 0|/-4 0 —4
._V3 0 0 8|-4 -4 0
B'=-ghmim |5 4 4| 6 1 1
-4 0 -4 1 6 1
—4 —4 0] L 1 6

T'hm,thsmatrioms}and.?;&om(a.m)m
g2 -1 -1 e e
44/3
S&=§1‘/?§nmam -1 2 -1 .55=-Efﬂmam -1 2 -1|.
-1 -1 2 -1 -1 2
From here we find that the unique eigenvalue of the problem (3.28) is A =6 . Hence, taking
into account (3.26) we obtain the estimate
Amoz < 6. (330)
Having at our disposal (3.25) and (3.30), we arrive at the following statement.
Theorem 3 Regurdless of the values of the coefficient a in subdomains Am,

sp(B~'K)c1,6]. (3.31)
Consider the Schur complement of the matrix B represented in the block form (3.23):
Sy = Kz — KnBi'Knp. - (3.32)

For matrix Sp; the following statement takes place. It can be proved by direct calculation.

Theorem 4 The equalily 3
S =5 L% (239

where L® is the matriz defined in (8.4), holds.

The matrix B will be referred to as two-stage linearizing preconditioner for the matrix
K . Using (3.32) and (3.33), the block representation (3.23) of the preconditioner B can be
written in the following form:

_ | Bu Kz
B=|Kn 39+ KnBiKy |- (3.34)
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‘&1 Constructing the preconditioner
i Section 2 and Section 3 we have constructed the sequence of finite element matrices

L9, 1M ..., I9 K (4.1)
#md corresponding sequence of preconditioners
BY ..., B" B, (4.2)

slecall that the matrices L™ and B have been computed by the piecewise linear basis
munctions while the matrices K and B by the piecewise quadratic ones. Let us now turn
1 the construction of a multilevel preconditioner for the matrix K (and, thereby, for the
matrix () ) using the inner Chebyshev iterations.

At first, let us describe briefly the construction of the multilevel preconditioner for the
matrix LY, proposed in [12,13]. For all values k = 1,2,...,p successively define the

o B“’} L(*}
M m=[ ® 1pe-1) 4 1B RO 1M ]- (43)
Ly ;R‘ )+ Ly'Byy Lig
ithere
RO = 1) (4.4)

3 -1
R*-1 = [e-1) [! s H (I - o;*"JM‘*"""L“‘"}] 1 k=238,....0 (4.5)

j=1

aere | is the identity mairix). The parameters 8}"“” are chosen as follows

2
6 = y i=1,28,
] Br-1+ oy + (Beq — ﬁb-l)‘,' ’

‘here z}‘” are the roots of the Chebyshev polynomial of the first kind of degree 3 and
%417 Br-1] is the interval containing sp(M®*~")~"L*-D) . The bounds [ay; 8] of spectra
£ the matrices M®)'L® (k=1,2,...,p) are determined by the following formulae:

for k=1 : oy=1,p =5;
for 2S’=SP . nl'=l_7t—l|ﬁk=5(1+7&-—l):
_ 2, _voa=1 _ B
Te-1 1+q:_1|4k-1 m-}'lu‘»’t—l' _ﬂh-f

1&12,13]thema.trix M) has been considered as a multilevel preconditioner for the matrix
{») | 1t is nlso proved there that regardless of the number of levels

c,=§":5c.'_=.3+2\/5. (45)

lote, that the estimate does not depend on the values of coefficient a in subdomains A,, .
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il o the block representations (3.14) and (4.3) of the matrices B® anq
M®, respectively. We see, that the matrix L*-Y in (3.14) has been replaced by specially
chosen matrix R (see (4.4),(4.5)). The similar replacement is performed in the block
ion (3.34) of matrix B to obtain the multilevel preconditioner for the matrix K.

¥ v > 1 and define a matrix

Let us choose an integer
Bn Kﬂ
= [ Kan %Rb} + KnBii'Kua ] ; (e
where i e
R® =L® [} -TIu- 8?’},{‘-’)'1[,(?)}] ; (4.8)
J=1
Here 2
9?’= jll’)l i=12pv,

By +ap+ (B — 25)2

e, z}"’ mmmmofthgcmbyahevpohmomialoftheﬁmmdofdeyee v.

We have the block representations (3.34) and (4.7) of the matrices B and M, respec-
tively. As follows from the theory of Chebyshev methods (see [18], for instance), due to
definition (4.8) of the matrix R®) we obtain

sp(M'B)c[1-7,1+1], (4.9)
where 5 2" = :c,—l .
'T'—1+q9, ] q"“/c—P-I_l' [410)

Then, proceeding from the equality
MK = (M~'B)(B'K)
and using (3.31) and (4.9), we find the bounds of spectrum of the matrix M—1K :
sp(M'K) C [a, 8], (4.11)

where
a=1-—7,8=6(1+7). (4.12)

Thus, from (4.10)-(4.12) we obtain the inequality

Coﬂd(M'_lK} {Ezs[(ﬁ'f' 1)"+{Vfc_P_l)v 2
¥ (J07+1)”—(Jc—,~1)v] ‘

a
From here, taking into account estimate (4.6) , we arrive at the following statement.
Theorem 5 Regardless of the values of the coefficient a in subdomains A, ,the estimate

cond(M™'K) < &, (a13)
where -
. _ o [(E+ 1Y+ (ya -1
E=6 (ﬁ+1),_(ﬁ_l),] , c=3+2V5, (4.14)

holds.
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. Below we give in Table 1 the values of the quantity ¢ for some values of parameter » .
Table 1.
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V= =
6(3+2/5)/5 =807
54(2+/5— 3)/11 = 7.23

3(5/5 —9) ~ 6.55

3(3651 + 3127+/5)/5120 ~ 6.24

- Finally, let us obtain the estimate of the spectral condition number of the matrix M-Q.
IWe have

L= KU N

d
il
||

cond(M~'Q) < cond(M~K) cond(K Q).

{'The condition numbers entering the right-hand side of the last inequality have already been
sestimated in (2.16) and (4.13). Thus, we obtain the following statement.

[Theorem 6 Regardless of the values of the coefficient @ in subdomains L the estimate

o . 52
cond(M~'Q) < & 1?-%!@' (4.15)

where the quantity & is calculated from the formula (4.14), holds.

4.2 Implementational details

Inmitemtivamethodwithmatrh:Masamulﬁ]evelpremndiﬁomweneedtomlinw
systems with matrices M and M™ (k=1,2,...,p).

At first let us describe the process of solving a system with matrix M . For certainty, we
sonsider the system

Muy=g, (4.16)
where
=[::] . g=[g;] HE 'Y EG('},i=1,2.
Algorithm (M)
o the grid function
2 =3(g2 - K2 By}'g1) (4.17)
is calculated ;
» the system
: RPlyy = 7 (4.18)

is solved; finding the solution of system (4.18) is equivalent to performing v steps of
the Chebyshev iterative process

vy — uf ™V G-1
M['PJ_G(’T—"—=_L£’)”2 )"!'zﬁl j=1!2!"'|yl ')sn).:o; ("19}
3

v =0,
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o the grid function u1=Bﬁl{§1—KnVs) [431)
is calculated ;
grdther,consida'amt«amwithmhixmﬂ{lgkgp);
M=o, (4.21)
where
o | % - : G‘".i=1,2.
u_[“;] s [m] HESIE
Algorithm (M®)
o the grid function = ;
=2~ 1080 '0) e
is calculated ;
the system
° REVyy =z (423)
is solved;

inthecase 2< k < p: ﬁndingthewluﬁonofsystem{4.23)isequivnlmtopm
3 steps of the Chebyshev iterative process

) _ -1 = ;
M(k—’}__(r-i—‘h 7 :); =—L(k-.1’ﬂ? 1]+z!t J=1:2|3| "ﬁm=0; (4'24)
3
—r
in the case k = 1: the system
LO% =2 (4.25)
is solved ;
o the grid function ¥ 3
v =B (g - LiJw) " (429)
is calculated ;
end

Let us give some comments to Algorithm (M) and Algorithm (M®). The matrices
By and B® (1 < k < p) are diagonal. Thereby, calculations by formulae (4.17) , (4.20) and
(4.22), (4.26) present no difficulties. Then, the system of grid equations (4.25) at the coarsest
level is assumed to be solved by a direct method spending O(1) arithmetic operations.

In conclusion, a few words about the computational complexity of a preconditioning step.
Let Acps be the number of arithmetic operations required for solving a system with matrix
M . By means of direct calculation we find

Agpe 4 +1)n 416V [y +3npy + -+ 3 '] + v F1AY,
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i

swhere A, is the number of arithmetic operations required for solving & system with matrix

1L . Then, using the inequalities from [7], we obtain the arithmetic cost of a preconditioning

|m
Aps £Cun

wwhere C is a positive constant independent of n and v,

Thus, the preconditioner M constructed may be considered to belong to the class of
noptimal preconditioners, since it is spectrally equivalent to the original stiffness matrix Q
qand its arithmetic cost is proportional to the dimension of the finest-grid problem.
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