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Abstract

Let G be a k—connected (k > 2) graph with minimum degree § and let C be a
longsst cycle in G. If G—C has a cycle of length h with h > k then |C| > f2D% (5 4+ 2).

' 1 Introduction

| In this paper we present a lower bound for the length c of a longest cycle C in k—connected
\ (k = 2) graph G in terms of the minimum degree §, vertex-connectivity k and the length h
» of any cyclein G — C.

We consider only finite undirected graphs without loops and multiple edges. For unex-
- plained terminology see [1]. The vertex set of a graph G is denoted by V(G) or just V; the
. set, of edges by E(C) or just E. We use |G| as a symbol of the cardinality |V|. For a subset
S of V, G — S denotes the subgraph <V — S> induced by V — S. If H is a subgraph of G,
" we also use the symbol G — H for G — V(H).

Paths and cycles in a graph G are considered as subgraphs of G, they are connected and
have maximum degree 0,1 or 2. The length of path P is |P| — 1 and the length of cycle Q
is |Q|.

We need the following extension of a notion for cycles: every edge (respectively, vertex)
' will be interpreted as a cycle of length 2 (respectively, 1). For Q a cycle in G the following
equalities |Q| = 0 and V(Q) = 0 are equivalent. A graph is said to be hamiltonian if its
longest cycle passes through all of its vertices.

By the definition, G is hamiltonian iff h = 0. If h =1 then V — V/(C) is an independent
' get of vertices or, in other words, C is a dominating cycle.

Let ¢ (the circumference) denote the length of a longest cycle in G.

In view of the main purpose the following results can be considered as starting points:

(A) k2>2=>c>26or h=0 (1952, Dirac [3]),

(B) k>3=¢>3(6—1)orh<1 (1977, Voss [12)).

Since 1952, we know more about the impact of 2 - connectivity and 3 - connectivity on
cireumfergnee and cycle structures in graphs. But a very little was known for k—connected
graphs in general. The following three results give some understanding how k—connectivity,
minimum degree and independence number a effect long cycles in graphs:

(C) k=Za=>h=0 (1972, Chvatal and Erdos [2]),

(D) k>8=¢>36—korh=0 (1982, Nikoghosyan [8])
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130 Cycle-Extensions and Long Cycles in k-connected Graphs

(E) k> 4= c>45—2kor h <1 (1985, Nikoghosyan [5]).

mlm&amﬂmofpath-mmmwinhodmed[loj,wuchaﬂmwuupuhm
qmmde-Gm&mm-quwmdamﬁpﬂth—c
the following lower bound for the circumference is obtained:

(F) > (g+2)(6— q) (1998, Nikoghosyan [10]).

Some progress on circumference has been made for 7-tough graphs. A graph G is t-tough
if |S] > tw(G — S) for every subset § C V/(G) with w(G — S) > 1, where w(G) denote the
number of components of G. The toughness of G, denoted 7(G), is the minimum value of ¢
t-houghpsphs,JunsandWittmwnwmablatopmve:

(G) k22=c>(r+1)(6+1)—1lorh=0 (1999, Jung and Wittmann [5]).

Returning to the vertex connectivity k, we find in [6] some bounds of the type ¢ >
k(a—k+2)forh-ounnactedg:aphswithk$6.In[4]aaimﬂarmﬂtwaaobtainedfmb-
mmadedgmphﬂwithamthﬂandiﬁonwithmpecth—C{formymmm
vertices z, y in some component of G — C, there is a path of length at least k — 2 with
endvertices z and y).

Applying so called "cycle-extensions technique” for k-connected graphs, the following
result was obtained in 1999:

(H) h2k=c> &% (5+1+7). (1999, Nikoghosyan [11]).

In this paper, improving (H) we have obtained its complete and final verssion:

Theorem. Let G be a k—connected (k > 2) graph with minimum degree § and let ¢
be a longest cycle in G. If G—C has a cycle of length h with h > k then |C] > {31k (5 4. 9),

For h the length of longest cycle in G — C, the result is sharp, as can be'seen from the
following family of graphs. Take k + 1 disjoint copies of the complete graph K;_,,; and
johadlvmmthﬁrmmmmmmofadhjdntmplmmxg.mm
(k+1)K5.H;+Kgiscleutlynnthmiltonim. Mm,c=k(6—k+2)mdh=§_k+l'
implying that ¢ = S30% (5+2).

The next section is devoted to standard terminology. In section 3 we introduce some
special definitions and convenient notations, where the notion of HC—extensions plays a
central role in the sequel. In section 4 we investigate the main properties of HC'—extensions
and in the last section we prove our main result.

2 Terminology

An (z,y)-path is a path with endvertices z and y. Given an (z,y)-path L of G we denote
by L the path L with an orientation from z to y. If u,v € V(L) then u L v denotes the
wmequﬁvevu‘ﬂceaonL&omt:_touinth_g.di:ectLonspeciﬁedbyf. The same vertices,
in reverse order, are given by vLu. For L = zLy and u € V(Z), let w*(Z) (or just
u*) denotes the successor of u (u # y) on L and u~ denotes its predecessor (u # z). If
AC V(L) then A* = {v* |[v€EA-y}and A~ ={v- |veAd—-z}. fQisa inG
snd A C V(Q) then G, A* and A~ are analogously defined. For v € V(Q), v Qv will be
interpreted as a vertex v.

For v € V, put N(v) = {u € V | uv € E}, d(v) = |N(v)| and

6 =min{d(u) |ue V}.
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3 Special Definitions

~ We begin introducing some special definitions and convenient notations. For the remainder
- of this section let a longest cycle C' in graph G and a longest cycle H = u; ...upu; m G—C
fixed.
B Definition 3.1. T is an HC—extension; T(u); %; .

Let T(w),...,T(us) axe vertex-disjoint (u;,%)-paths in G — C for i = 1,..., h respec-
tively. The union T' = Ul T'(w) is called HC—extension if N(i) € V(T) U V(C) for
each i € T,h. An HC-extension T is called maximal if it is chosen so as to maximize
|{u € V(H) |u# @}|. If u# i for some u € V(H) then we use  to denote u*(T (u)).

Definition 3.2. (A, B)—path.

Let A,B CV and ANB =0. Apath E of G with all its inner vertices in V — (A| B)
is called (A, B)-path if E starts at any vertex in A end terminates at any vertex in B. For
subgraphs H; and Hj of G, en (H,, H;)-path is analogously defined.

Definition 3.3.0(F, Vaewt, Vyin) = (B, P.); B =y, Pz (i =0,...,7).

Let V' CV. A with endvertices in V — V' and all internal vertices in V" is called
& V'—path. Let P = uov;...u, be a path in G of length n > 1 and let Vpeus, Vjin be
vertex-disjoint subsets in V — V(P). We define ©(F, Vaeut, Vyin) 85 & sequence of paths
Py,..., Py 83 follows: For i =0, put Py = jz and X = V/(vg Po), where g = vy and
2= ;. Now let Py =ty P4_1%-; and X;_, are defined for some integer i > 1. In order
to define F; and X; we distinguish three cases.

(i)Ifevu’yVm~path,starﬂnginX(_l—z‘4,taminatmmX.-ﬂlthenX¢=0and
P, = P.y (80 P, is undefined). i

(i4) If there is 8 Vew—path P' = o' P'v” with o/ € Xi—y — 2, and v € Vjip then X; =0
mdP,gﬂ:m?z‘whmmzv'md =",

(i) There is & Voew—path P’ = w/P'u with w' € Xy — 2., and " € V(zF, Pva)
but there is no Viau—path satisfying (ii).

Choose P" 50 as to maximize | v P1” |. Then putting

Pi= “lel Xi= V(uﬂ?zl)s

where y; = w' and z = w", we complete the definition of P; and X;. Since X, c X; C ---,
there must be some integer j (j > 1) with P; = P,, which, in fact, completes the definition

of O( P, Vaeut) Vyin)-
Definition 3.4. ®;@.; Uy .
Let T be a maximal HC-extension. For each u € V/(H), put

O, =N@)NV(T), @u =8,

Wu = N(“‘JQV{G)‘ V"u - i‘l’ul .

Definition 3.5. Up; Uy, Uy; Up; U..
For T' a maximal HC—extension, put

Vo={ueV(H)ju=a}, Up=V(H)-Uy Up={ueU|dZV(T(w)}
Let u € V(H) — (UgUUy) and let ©('T (u), Vaeut, Viin) = (P, ..., P), where
Vaew =V = (V(T)UV(C)), Viin = V(T) - V(T(u)).
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A vertex u is called to be special if Py starts and terminates in V(T'(u)). The set of all
nonspecial vertices in V(H) — (UgUU)) is denoted by Uz and the set of all special vertices

U
% Definition 3.6. B,; BZ; by; b5

Let T be a maximal HC-extension. For each u € V(H), put B, = {v € Uj | v i E}.
B, = 0 if u € Up. Furthermore, for each u € Uy, put B = {v € V(H) | u ¥ E.
Clearly B; C Up. Let b, = |B,| and b} = |Bj|.
Definition 8.7. Au(v); pu(v); Pu(v); Aui Au(v, w).
Let T be a maximal HC-extension. For each u,v € V(H), put
Au(v) = (®.UB.) NV (T(v)).

Let pu(v) denote the vertex in A,(v) maximizing | vT (v)pu(v) |. In particular, Pults) =i,
Put (1) = 6 if pulv) € B and 7,() =4 if () € B, Clearly B,(u) = . Pus
Ay ={v € V(H)|Au(v) #0}. For each v,w € Ay (v w), put -
Au(v, w) = vT(v)pu(v)P, (v)T'(u)B, (w) pu (W) T (w)w.
Definition 8.8.  ¢); 7u; Bu; p(7T).
For T' a maximal HC—extension, put !
_J e if ueV(H)-U, = etb if uel,
%_ 0 if IIEU., Te p'_b: if “eUn,

=002 ey, wun-1y g
weV(H)

Definition 3.9. T—transformation; Ti,(E, ..., Ep); Ter (01, ..., t).

Let T be 8 maximal HC—extension and let Ej, ..., B, are vertex-disjoint (H, C')—paths
with By = v, B (i = 1,...,n). Assume that the union of Ey, ..., B, intersect T(z) for
some z € V(H) — {1, ...,us}. Cleatly z € T, walkm;alongT(z}fmmztonastopnt:he
first vertex w € UL, V(E;). Assume w.lo.g. that w € V(E,). Replacing the segment v, B,
of & path B, by 2T(z)w we get a new path E{ instead of Ey. If the union of £, E,, .., &
intersect T'(z') for some z' € V/(H) — {, 3, ..., v} then continue this procedure, In a finite
number of steps we obtain

|[{vevE| (g VE) NVTW) #0} |=n

for some vertex-disjoint (H, C)-paths E, .., E,. Let E, = vy (i=1,..,n). “hhns
T (B, vy Bp) = (E;i --'!E:!)! Tir (ulr !”n) - ("';s ---:”:l) )
we say that E, ..., E, is a T— transformation of E;, «usy Bn. By the definition,

"{’ € {ui} Uuﬂ {i =1, ‘-'lﬂ') y T (wll '"!wll} - (wis sary wn) .

Definition 3.10.0(z, y); Os (2, 4); Oy, £); O(=, 2); 0, (z,); 0(z, §); O(y, v).
Let T be a maximal HC—extension. Forenchpairofdistinctvarticeaz,er(HJ, put

M= U VIO U, %=W%ug).
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- Let O(z,y) (resp. O.(,4),0(y,%),0(z,2)) be the longest (z,y)—path (resp. (z,y)-
path, (y,z)—path, (z,z)—path) in <V;> (resp. <V;>,<V;>,<V2>). The paths O,(z,y),
Olz,¥), and Oy, V) sre analogously defined.

Definition 3.11. Q(z,y);%(z,y,E, F);0(v,w,z,y,E, F).

Let T be a maximal HC—extension and let E, F be & pair of vertex disjoint T—trans-
formed (H,C)—paths with E = zEv and F = yFuw. If [T(z)| — 1 # 1 then we denote
f]l'{zl l\‘s E!F} - O(:nyj‘ Othm

IO.(z,v) if Z¢ V(E)UV(F),
O (z,y,E,F)=1{ O(zy) if Ze V(E),
O(z,z) if ze V(F).

Defining 0, (z,y, E, F) analogously, we denote by Q(z,y, E, F) the longest path among
O(z,y),5% (z,y, E, F) and Q, (z,y, E, F) . Let Q(z,y) be the shortest path Q(z,y, E, F)
for fixed z, y and all possible E, F. By definition 3.9, vEuQl (z,y, E, F) vFw is a simple path
for appropriste u, v € {z,y,%,J} and will be denoted by 0 (v, w,z,y, E, F).

Definition 8.12. (v,L) € A.

Let L be a path of G with L = vy...u3; (t 2 1) and let v € V — V(L). We will write
(v,L)e Aifvugy € E (i=1,...,t). If w € V(L) then we will write (w,L) € Aifwue E
for each u € V(L) — w.

Remarks. If no ambiguity can arise, any notation of the type R, in definitions 2.4 and
2.6-2.8, having index v (say ®,,), we abbreviate R,, = R;.

4 Preliminaries
Throughout in this section we let C' be & longest cycle of a graph G and H = u;...uzu; a
longest cycle of G — C with a maximal HC—extension T.

Lemma 1. Let G be a graph.

(al) Let E,F be a pair of vertex-disjoint (H, C)—paths with E = zEv and F = yFuw.
If Ty, (B, F) = (E', F') and T}, (z,y) = (¢, 1/) then

|vCw | -1 2 Qv w, 7,1/, B, F)| - 12 o) +ay) + [, )] - 1,

where a(z) = 1 if z ¢ U, and a(z) = p, + 1 if z € UL for each z € {, ¥/} .
(a2) Let u € V(H) and O(T (u), Vast, Vyin) = (P, Px), where P = 4, Pozi (i =

0,...,m) and
Vaew =V = (V(T)UV(C)), Vjm =V(T) = V(T(u)).

If u € Uy then there is an (u,z;)—path L of length at least ¢, + 1 with V(L) C
V(T(u)) U V*, where V* = Uiy V(P). If u € U, then for each vertex

z€ (VAT (Wz)UV') - z

there is an (u, z) —path L of length at least @, + 1 with V (L) € V (7' (u))UV".
Lemma 2. For each u € V(H),
(b1) u € Uy, i #t=> ®,N B, =0.
(b2) ME%b- =..§u. b""-e?im = T ¢,|®UB| =-ef?m |Au (v)] .

ueV(H)
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Lemma 3. Let C be a longest cycle of a graph G,Q be a path in G — C and P, =
wBw (i =0,..,q) are vertex-disjoint paths in G — C having only v, ..., v, in common
with Q. Then : 4

=0 =0

where Z; = N(w;)NV(C) (i=0,...,9)-
Lemma 4. For each u € V(H),
(d) [T@)|-122 = h>2y.
(d2) [T(w)|-1=1 = h22g,>7+1
(d3) h>7u+1
ImmmaS.LetA.gV{:?y)fnrsomau,z.er(HJ.
(e1) [T@)-122 = |zHy|-12mn.
(2) [T(w)|-1=1 = |zHy|-12%n-1 _
(e3) |T(u)|-1=1,|zHy|-1=m%—-1 = (&,zHy)€A, B, =A,
~u C Up, T —1 = 2(pu — 1).
Lemmnﬂ.mechuEUzUUsletzlfm md:,ﬁmbamtac—diqjoimmm
H with {z1,Z3,31, 1} € Au € V(z1Hy) UV (22 Hys) and let v € {2,130} .
(£1) I BuU{u} C V(z1 B n) and Ay — (BuU{u}) C V(22 H ) then

|z Hy | =1+ | 22H v | =1+ |Ay ()] + |Au (0)] 2 7 - 1.
Otherwise,
|28y | =1+ | 22 By | —1+ |Au (0)] + [Au (0)] 2 %= 24+ |4 ()] > 7 — 1.
(83) X |z B | =1+ | 22 Hyn | =1+ |Au ()] + |Au (0)] =% — 1 then

(BzHu) €A (=12, Bu=Ai—uCUly %-1=2(p,—1).

Lemma 7. Let z,y be a pair of distinct vertices of H. For each u € V(H),
(gl) vel, = |[O(z,p)|—-12y+1.
82) ITW)-122 = [O(z,y)|-12.
(83) IT(W)-1=1 = |[Ou(z,y)|-1>%n—1.
, (84) Let |T'(u)| -1 =1 and [Ou(,y)| = 1 = % — 1. I either A, C V(zHy) and
(% H) ¢ A or Ay € V(yHz) and (&, H) ¢ A (say A, C V(zHy) and (& H) ¢ A) then
(41) (hzHy) €A,
(g4.2) B.=A.—ugUn.IO.(z.yJI-1=|=Ti'y—1|=-]g—1=2(¢,,_1)‘
(24.3) zEV(sﬁy)—A.gaitherzEU.orzEUo,A,gA,.U{z},
NS pu=(1+1)/2
(844) zeV(zHy) - {z,9} = A, C V(s Hy).
Otherwise

(€45) (& H) e,
(g4.8) Bu=MAu—uCUp|Ou(z,9)l ~1=h—2=1, —1=2(p, — 1),
(’ru+[1§?‘:22h;2f§ V(#) ~ Ay = either z € Ui or z € Up, As € MuU{z}, % < 0 =
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. (88) IT(z)-1=1==min(|0(Z,2)|~-1,[0(,y)|-1) > .

(g6) uve{z*,z7, 0"y} = [0(z,p)| - 12 %

(87) Ifue{z*,z",y*,y7} (ssyu=2z")and |O(z,y)|—1=7, then|T(u)|-1<1
. and (it,v Hy) € A for some v € A, with A, C V(vHy).

(g8) If|T(z)|—1=1and |Os(z,y)| - 1=|0:(z,w)| — 1 =1 — 1 for some

w € V(H) — {z,y} then for each z € {z*,z7},

min(|0:(z, )| — 1,|0=(z,w)| = 1) 2 7= + 1.
Lemma 8. Let z,y be a pair of distinct vertices of H and let

a= min{los(=m]l o o(fly) ‘nl o(%s‘) D =2
b= m.in(]O,(z,y}I ] I O(yl 3) Il | O(Eﬂ) D -1

Then [Q(z,y)| — 1 2 max(|0(z,y)| — 1,a,b).
Lemma 9. Let z,y be a pair of distinct vertices of H.
(i1) {uw,wn}n{z,y} =0 (€ TR) = [Qz,y)| - 12 (% +%41)/2=F0
(i2) |T(z)|-122 z€{z",z7} = [Qz,y)|-12 (1= +%)/2
(i3) zelU,ze€{z*,z"} = |Az,)|-12 (1= +7%+1)/2.
(i4) If |T(z)| —1=1 then for each w € V (H) — {z,y} and z € {z*,27},

max(|Qz,y)| = 1, |2 (z,w)| = 1) 2 (7= +7.)/2.

(i5) ze€{z*,z7},w eV (H)—z=>max(|Qz,y)| - 1, [2(z,w)| —1) 2 (1= +%)/2.
(i6) If z € Uy and h # 4 then [Q(z,y)| — 1 > (7= + 7:)/2 for some z € {z+,z"}.

(i7) zayEUU= In{zav)[_lszxﬂi-

@8) |zHy|-1=1= [Q(z,y)| -1 2max .

(19) |zHy|-1=2, htd=>[Az,y)| - 12 (% +7%+)/2

5 Proofs

Proof of lemma 1. (al) Following definition 3.11, we distinguish three cases.
Case 1. z,y ¢ U..
Clearly,

|vCw | -12| v, w,z,y, B, F) | =1 > 2+ | Qz,y, E, F) | -1 >| (=, y) | +1.

Case 2. z,y € U..

If [T (z)] = 1 = 1 then Z¢ V (Q(z,y)) , since otherwise the segment of 0 (z,y) between
Z and y , contradict the fact that z € U,. Therefore, Q(z,y, E,F) = O(z,y). On the
other hand, ; (z,y, B, F) = O (=,y) if |T (z)| — 1 > 2. Also by the symmetric arguments,
Qy (,y,E,F) = O(z,y) . Thus Q(z,y, B, F) = Q(z,y) and

| vCuw | =12 |9(v,w,z,y,E, F)| -1
2 (Bl =1)+(IF| = 1) +|2(z, )| =1 2 g + 0 + |2 (z, 1) + 1.

Case 3. Eit.h&'.‘tﬁU"UEU.m:l:EUnllgU..
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Applyf,hga:pmenuincaselandmzp_
(.z)suppoaeﬁmﬁthatue Us. By definition 3.3, z; € V (T'(u)) and 2, € Viin. Let

z.EV{T(w)]ﬁ!rmewEV{H}—u.ChooaezmeV(u?(g)ﬁ)mMmﬁeEm
|m?{u)m|isminimnn. Then we get the desired result putting together the followi

paths
Py ooy Pey 200, 6T (W) 9,20 T ()93, 201 T (W5 T (W) pisa (i =2,...,w—2).

A similar proof holds for u € U,.0
Proof of lemma 2. (bl) Case 1. u € Uj.
Suppose, to the contrary, that ®, M By # @ and let z € ®, ) By. Then, by definitions 3.4

and 3.1, the collection
{T (1), T (ua) e th 28} —{T (), T ()}
another HC—extension, contradicting the maximality of 7.

Case 2. u € hUU,.
By definition 3.5, &, C V (T (u)) and the result follows.O

(b2) Immediately from definitions 3.6-3.8.0
Proof of lemma 3. Assume first that v = w; (i =0,..,,g). The result is immediate if

UloZ = 0. Let Ulg Z: # 0 and let &, ..., {m (m 2 1) be the elements of UL, Z; occuring
onaincnnsequﬁvaorder.ﬁet U

Fi=N(&)N{wo, ., wg} (i=1,..,m).
Suppose that m = 1. If |Fj| = 1 then ¢ = 0 and Z = Z, = {£} implying that

q
czz=§|z‘|+|§uz(;.
If | Fy| > 2 then choosing u,v € Fy (u  v) such that | Qv | is maximum,
s q
e 2| &uQué 2Y° |Zi|+l==z': 1Z1+10 2.
i=0 i=0 i=0

Thus, we may assume m > 2. It means, in particular, that ¢ > 3. Fori=1,..,m, put
f(&) =] &C41 | ~1 (indices mod m). It is easy to see that

c=§l.f{fiJn glﬂ]=g[2.-|, m=I£JoziI' )
For every i € T,m choose z;, s € F;U Fis: such that | 2, Qy, | is maximum (indices mod

m).
Claim 8.1 f(&) 2 (IF| + |Fa| +2) /2 (i=1,...,m).
Proof of claim 3.1. Case 1. Either z; € F, UGEForz € Fyy, y€F,
Ifz; € i, % € Fi then £ (&) > | €@ Qi | —1 and hence

f(&) 2 max (|F], |Fea) + 1 2 (|E| + |Figa| + 2) /2.
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JOtherwise, the result holds from f (£) 2| £ @ Ziis1 | —1 in the same way.

Case 2. Either z;, y; € F, or z;, 1 € Fi.p.

First suppose z;, % € F;. We can assume also z;, i € Fy;,, since otherwise we could
surgue as in case 1. Choose z;, | € Fisysuch that | 2, Qy, | is maximum. If | z, Gz, | 1>
J(IFi] — |Fisa]) /2 then

(&) 2| 6z Qyiisr | =1 2 (|F) = |Fesal) /24 | Fisa| + 1 2 (|1F] + |[Fina| + 2) /2.
IOtherwise,

&) 2 Eh Qzbisr | -1 =| 2 Qui | +1 =| 2 Qw | — | =@z, | +22
> 1Bl = (1Rl = |Fsa] = 1) /2+2 > (1Bl + | Fesa| +3) /2.

By symmetry, the case z;, y € F4; requires the same arguments.0
By claim 3.1,

> f(&) 23 (IR +|Fiual +2) /2= |Fi| +m,
=1 =1 i=1
which by (1) gives the desired result. Finally, if v # w for some i € 0, ¢ then we could argue
exactly as in case vy =w; (i=0,..,q).0

Proof of lemma 4. (dl) Casel. u€ U;.

Let Ay = {£1,...,€r} . Assume w.Lo.g that u = §; and &, ..., £y occurs on H in consequtive
order. For each integeri (1<i< f) let

M =§HEi, wi=|Au(6)|+|Au(€is1)| (indices mod f) .
Since H is extreme,
IMi| > Ay (€bin)l (=1, f). )
Let & H £, be the longest segment on H with

& €VEHE), {&Estrnbs} CBuU{u}.

- QF = {M; € {My, ..., M1} |p, (&) # Pu (Gir1) }
Q= {M € {MI'MI} Ipu(Ei) # pu [Ei+1)}|
Q0 = {My, .., My} — (@ UQ-).

Observe that [0~ < 2 and [M;| — 1 > [Ay (&, &is1)| — 1 for each i € 1, . Then clearly

M e = |M|-12wi+|Au(u)| -1, ®)
Mer = |Mi|-12w—|Au(u)l+1, 4
Me® = |M|-1>uw. (5)

Claim 4.1. If |2| =0 then |M| -1 2 w; (i=1,..., f).

Proof of claim 4.1. Immediate from (3), (4) and (5).0

Claim 4.2. (k1) If |Q°| =1, say Q" = {M,}, then M, € QF.
(k2) IfQ ={M} and Q+ = {M,} then

BuU{u} CV(EHE), Au—(B.U{u}) S V(e ).
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Proof of claim 43. (i) Let 1~ = (M} By the definitian, {(5,...,6,} C By and
€11 € Au — (BuU{u}), implying that M, € 2.0

. +y€s} € BulU{u} and the proof is complete.
), (e e oot = {0, M oo M, L 5

(]2) I = {M,Mf} and OF = {MllMF—l} then fl-fr-f- are pairwise different and

B.U{u} SV(&HE), Av—(BuU{u}) SV (1 HE ).

Proof of claim 4.3. {u) B)' the daﬁmm {&:ﬁl:&ner} c B‘I and €J+1:€r—1 €

e BIIU “})sﬂiﬂhhﬂpﬂﬁ MIDM—] € m-n
e {12() Itf(;.[um that {Mﬁl..--,M—,}nm = { and hence

{&-ﬂ: anny 6‘—1} c Aﬂ -y (B‘ U{u}) "

On the other hand (by the definition) {£,.,&} C BuU{u} , which completes the proof of

claim 4.3.0
The following three results can be obtained easely from (3), (4), (5) and claims 4.1, 4.2

and 4.3.
Claim 4.4. L, (IMi|—1) > TL;w.
Claim 4.5. t€{l,...[} = Tuu (IMi] — 1) > Ty — | Ay (u)] + 1.
Claim 4.6. g, € {1,.... f} (9#1) = Tigos) (IMil = 1) 2 Tigpp i —2| Ay (u)|+2.
Using (52) and claim 4.4,

h=g (M1 -1) 2F o =F (14 6)]+ A Er))
=2 £ |4, (€| =2/2.UB.I.

BY(bl)s IQUUBUE='PI+5I=7I! lmplymgthnthah.

Case 2. uelh. 3

Let O(7 (u), Vaeut; Vyin) = (P, - Pr), where Py = Pz (i=0,...,). By (a2), there
hm(“:’-}—ﬂﬂlftﬂﬂmﬁm'ﬁ+lwﬂhV(L) QV(T(u)}UV"Letz' € V(T(m))
for some w € V(H). Denoting By U {u, w} = {&1, ..., &} we can argue exactly as in case 1.

Case 3. uel,.

Clearly h > 2 (by + 1) = 2(p,, + by + 1) > 27,.0 :

(d2) Since |T'(u)| — 1 = 1, we have u € UyUU..If u € U, then b, =0eand h'>2=
2(py +bu+1) =2(%+1) 2 %+ 1. Let u € U. Define

&, M, & HE, Q07,00 (6)

& in proof of (d1). It is easy to see that O = 0~ = 0. By dlaim 4.1, T, (M| —1) >
2{-1%andasinproofd(dl).hzﬂ%uB‘.l=2%-Noﬁﬂxthaw-25u+l{u}l=bu-)|-1.
weobtain A > @y + b, + 1=, +1.0 -

(d8) It is easely checked that h > «, + 1 if u € Up. If u € Uy then by (d1) and
(d2),h > min (27, 7% + 1) > %, + 1.0

Proof of lemma 5. Assume w.l.o.g. that z,y € A,.

(el) Cesel uelh.



’ Zh. G. Nikoghosyan 139

Following (6) we let, in addition, yHz = M, for some t (1<t < f). By claim 4.5 we
" can distingush the following two cases:

Case 1.1. |zHy|—12 Tipwr.

By (b1), |« Bu| = |®u| + |Bu| = u, and using (52),

|28y | -12 Sy =5 vk~ =2 £ 14 (6] = 140 (6)] ~ lAu (&)
£ A+ T 1A (6] 2L 140 ()] = . UB = .
= ig{tis1} =1

Case 1.2. Tipwi — Au ()| +1 < [eHy - 1| < Topean.

If & = 0 then by claim 4.1, | zHy | -1 > Ty w, & contradition. Let 2~ # 0.

Case 1.2.1. || =1.

Assume w.Lo.g = = {M} . By claim 4.2, M, € @*. If |1*| > 2 then by (3), (4) and (5),
| 2Hy | =1 2 Tipwi,a contradiction. Thus we can assume QF = {M,}. If M; # M, then
again | zHy | —1 > Tigewk, & contradiction. Finally, if M; = M, then Ay (&), Au (6u41) and
A, (u) are pairwise different and hence

| Hy | ~122 £ 44 (6)] — 1Au (6]~ 140 (6r2)] - 14 ()] +1 =
£ Au €01+ Sigrasens Ma €1 +12 5 1AL (€] + (£ = 3)+1
2§ 144 (6)] = [8.UB = .

Case 1.2.2. || =2.

By claim 4.3, M,, M,_, € *. If |2*| > 3 then by (3), (4) and (5), | zHy | =12 Tepewi,
a contradiction. Let O = {M,, M,_}. If M, ¢ 0" then again | zHy | -1 > Tuuw, &
contradiction. Filmlly, ifMl e“T'-l say M, = Mu MA(&),&(&*]],A‘(‘E) mpm
different and we could argue exactly as in case 1.2.1.

Case 2. ue U;UU..

Apply the arguments used in the proof of (d1) (case 2 and case 3).

(e2) Clearly u € Uj. Following (6) we see that 2+ = O~ = (. By claim 4.1, | M| -1 >
wy (‘.=1l"’lf)‘ Mmmfzbn'f'l;

| 2By | -1 =3, (Ml - 1) 25, s =5, 14u (€)1 + Begiorn 14u 6]
2|PuUBu+[-2=pu+[-2=putb—1=7-1

(e3) Itmahownin(eﬂ)that|zﬂy|—12!p.+f—-2 21.—1.51nee!:?y|—1 =1,
we have | zHy | =1 = @y + f — 2 = 7, — 1. This implies |B,| = b, = f — 1 and therefore
B, = Ay —u C Up. But then @, = b, +1 and | zHy | =1 =7, — 1 = 2p, — 2 implying that
(8,zHy) €D

Proof of lemma 6. (f1) Casel. u€U;.

By symmetry, we can assume v = z3. Following (6) we let, in addition, M,:mﬁx,
and Mg=mﬂzlfmsomeintegmg,te{l,...,f}. This means that

lh“{n =2={,+1, m=~fl. Zy = £y ”==!=E.+1» A«(EHI}=A~:(")-
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Putting 8 =| z1Hy | =1+ | z2Hys | —1 and using claim 4.6, we can distingush the
following four cases.
Case 1.1. ﬂ>}:(‘{,,|}wu'+lﬂu(ﬂ)] =
Clearly
A2 3_51iA.f&Jl—IA.(e.)l-lA.(wl—|Au{e.n—m. ()l 5

. +|Au ()] - 1.
Observe that |Ay (u)] 2 1 and f > by + 1. If z; # y; then A, (&), Au (&), Ay (§41) are
pairwise different and by (7),

B+ e ()] = B+ Au )| 2 1A, @+ 2 462
!A.(&)IH 3>I¢-UB.I+f 3>
Id*-l+f 82 Qutbu—22 7% —1—|A(u).
OtharwiBB@l"ﬂ‘z}: Al(&'l‘l) Auf“)smde(n.
B+ 1Au )] = B+ [Au ()] 2 2 £ 140 (6)] ~ 1A (6)] - 14u (6)] 1

2 £ 144 €]+ Sigton 140 (€]~ 12 [0.UBI + =32 o+ b, —2>
Yu—1—[Ay(u)].

Case 1.2. E“(’J}W( < ﬁ < Eu“l.}w( - lAg (‘B)I -1
Clearly

J
B+ |Au (v)] = B + |Au (42)] = 2 Z [Au (€)1 = |Au ()] = |Au (€)] — | Au (642))-

I z; # y1 then we obtain the desired result as in case 1.1. Let z; = th, ie. M, = M,
M= Myand &y =6 =6 = u. Ifﬂ*#ﬂthEHﬁ>E¢¢{u}M+lAu(“)l—lﬂ
contradiction. Let 0" = @. This implies M, = M; and M,_; = M; and we deduce that

ByU{u} = {u} =V(n: ), Au—uCV(zHp).
Recalling that f > b, +1,

B+ |Au (u)] + |Au (v)] = B+ |Au (u)] + |Au (E41)] > 2 2 4w (€] - 1A (6)]
= |Au (§e41)| 2 [®uU Byl + f - 2>-p..+b..—1>7. 1

Case 1.8. Tiquwi— | Au(u)|+1<8<
Case 1.3.1. &{a}{n n}. iyt
a.,-:tlmm that A, (u), Au (&), Au (&) and Ay (€41) are pairwise different. Since f >

B+ A @) =B+ 1A Eora)] 2 2 £ 14u (6] - 1Au (4)] - 1A (&) — |4u 60)
—la4..(:.=.+1)l+12‘)§1 [Au (@) +f—82 put b =22 7 —1- |4, (u)].
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Case 1.3.2. & € {z1, 1}

Assume wlog that § = z;, ie My =M, I M; € Q" then § > Tigtes @i
s contradiction. Let My € €. This implies £ € B, end M, € 7. If M, # M, then
B 2 Ligigswi> & contradiction. So, assume M, = M,. Analogously, M,_; = M;.
. M; € 1" for some j € {1,..., f} — {g} then again § > T, wi, & contradiction. Let

ie{l,...f}1—-{g} = M, e’uq .

It follows that B, U{u} € V(z)Hy) and A, — (BuU{u}) € V(2 H ). Furthermore,
 noting that Ay () , Au (&) , Ax (€441) are pairwise different and f > &, + 1,
B+ 1Aa ()] + A ()] = B+ A )]+ 1A (6] 22 £ 140 601 -
a (60)] -~ 1A (6]~ 1Au (6 +1 2 £ JAu (6] + £~ 22
Putb—127%—-1.
Case 1.4. Tigpnwi — 2|Au (u)| +2 < B < Tiggp g i — |Au (u)| + 1.
If |2-| < 1 then clearly B > Figqp i — |Au(u)] + 1, & contradiction. Let || = 2.

This implies M, My € 0~ and M,, M,_, € I*. If [2*| > 3 then again § > T, g wi —
|Ay (u)| + 1, & contradiction. Let "] =2, i.e. @+ = {M,, M,;}. By claim 4.3,

BuU{u} S V(@ Hy), A (Bul{u}) S V(e Hum).
Recalling that f > b, + 1,
B+ |Au (u)| + |Au (v)] = B+ |Au (u)] + |Au (€542)]
22 £ 140 (6]~ [Au ()]~ A4u )] A (6] [Au i) +2

SE M@+ 5 A€ +23 [0.UB+(f -4 +2> %~ 1.
i=1 ig{latt+1}

Case 2. u€ U,

Apply the arguments used in the proof of (d1) (see case 2 and case 3).
(f2) Casel. u€el.

As shown in the proof of (f1),

B+ |Au(u)| + |Au ()| 2 [BUBu| + f =22 |®u|+ f —2 > pu+ by — 1.
Since f + | Ay (u)| + |Au (¥)] = @u + by — 1 = 7 — 1, we have equations
ﬂ+|AI(“)|+IAI{”)I=1¢UUBn|+f_2=|¢Ill+.f_2=’|°u+bu"l

hﬂplmﬁmfﬂb.+l. HIT(“”"lszmAu-fB-U{u})#Bmdhmfg
|Bul + |[{u}| + 1 = by +2, & contradiction. Otherwise (| (u)| —1=1),

AI=BIU{1‘}I |A‘|l (u)lﬂ |A‘I ("')i‘ll
Pu=bitl, f=pu+b—3=2p,-4

and we deduce that (@,z; Hy) € A (i =1,2) and 7, — 1 = 2 (py — 1).
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Case 2. u€ls
Ammmmumdlnthepmufof.(dlj.ﬂ ;
Proof of lemma 7. (g1) Clearly h > 2(bu+1) = 2(p, + by +1) = 2(7,+1) and

therefore, IO(&#J! -12 hfg 2%t 1.0
(82) By (dl),h > 27, which implies |O(z,y)| =12 h/2 2 7.0
(23),(g5) If |Au| = 1 then 7, = 1 and there is nothing to prove. Let |A.| > 2, i.e.

u e Uh.

Case 1. u¢ {z,y}.
Assume w.lo.g. that u € V(s*?y'}. We can assume also that A, & V(zfj'w, since

otherwise the result holds by (e2). Let z; Hyx be the longest segment in z By~ with zy,y, €
Aw 80d 73 H 2 be the longest segmnet in y H 2~ with 25,3 € A,. Putting § =| 3,'§'m!_1+
]x,?m[-—lwasee(bylﬁ) that

B2 %—1~—|Au(v)] = |Au ()] = 1 — 2 — | Au (1)

and therefore

0u(z, )l — 1 2| z B tahu (. 10) 12 Hy | =12 B+ |Au (1) + | Au ()]
2%—2+Au()| Z—1.

Case 2. u€ {z,y}.
Assume w.lo.g. thatu =z. Letslﬁyl bathelangeatsagmem:inz"ﬁywithzh €A

nndzg?mbathelongutnepnnetiny"‘ﬁzwithm € A,. Putting § =| 2, Hy | +
|=:g?y|-—2msee(bylemmaﬁ)that 3

B2%=1=|4:(2)| - |4z (21)] = 92 — 2 = |As (z)],

and therefore

[0x(2,9)| = 1 2] 2B z3A (z2,21) 2, Hy | =1 >
i e s il -yzlgﬁ-ﬂf e (@01 % e (2)

Also, by (e1) and (¢2), | 21 Hz | =12 % —1,| 22Hy [ —1 > 7, — 1 and hence

| O(%.z) | -12|2 p. (1) T (z1) 21 Hz | -1 >| 21 Bz 2 %,
| O, y) | -1 2|2 ps (2) T (@2) 22 By | ~1 >| 2, By [> 7..00

(g4) We can suppose u ¢ {z,y}, since otherwise the arguments are the same. Assume
wlog. thatu € V(z*Hy"). Clearly |0u(2,y)| = |O(z, y)|. In order to prove (94.1)—(g4.4),
we recall (by the hypothesis) that A, C V(zHy) and (&, H) ¢ A.

z,y)|—1=| z -1 =r,~1 Usi it i (71
-r..—1y=-2(ga.—ll) m‘ﬁlsﬁn.'r_uéulim (e3), it is easy to see that (&,zHy) € A,

(g4.3) Casel. zeUl,.

Case 1.1. A, ¢ V(zyy).

Choose w € A,nV(y"'ﬁz‘J. fz=2z* then

0(z.9)| - 1 2| yHzA, (2, ) wHz | -1 3| 2 Hy |,
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' a contradiction. Otherwise we reach a contradiction by the following way
|O(z,y) -1 2| y.ﬂ_z*az"‘*?m. (z,w) whHz | —12] :yy I

Case 1.2. A, V(zHy).
Choose w € A, — 2. Assume w.log that w € V{:?:'}. Since z € Uy, we have
|Az (z,w)| = 1 > 2 and hence

0(z,y)| -1 2| y.ﬁzA, (zw)wHz 4w Hz | -1>|zHy |

for some w' € {w™,w "}, & contradiction.

Case 2. ze€ UpUUa.

If z € U, then apply the arguments used in the proof of (d1) (see case 2 and 3). Let
z € Uy. If there exists a vertex w € (A; — z) — A, then we can reach a contradiction as in
case 1. Otherwise, A, C A, U{z} and 7, < pu = (1 +1)/2.

(g4.4) Suppose, to the contrary, that A, € V(zHy). If | yHz | —1 = 2 then clearly
(%, H) € A, & contradiction. Let | yHz | —1 > 3. Choose w € A,N\V(y* Hz~). Assume
wlog. that |[wHz | -1 2. If z ¢ A, then by (g4.3), we are done. Otherwise,

0(z,y)| — 1 =| y‘ﬁz""" %zt HzA, (2, w) whz | =12| zﬂy Iy

a contradiction. So, (g4.1)—(g4.4) are proved. A similar proof holds for (g4.5)—(g4.7) when
A Z V(zHy) and A, Z V(yHz). So, (g4) is proved.0

(26),(87) Let u = z*. Choose v € A, 50 85 to maximize | vHy |. Cleatly, v €
V(yHu).

Casel. v=u.

Case 1.1 |T'(u)|-121.

By (e1) and (e2), |0(z,y)|~1 2| uHy |2 . If| O(z,y) | =1 = 7, then by (e1), T ()|
1< 1and |uHy |=, — 1 which by (e3) holds (#,uHy) € A.

Case 1.2 [T'(u)]-1=0.

Clearly, |0(z,y)| — 12| 2Hy | =1 2 Y. 1| O(,y) | =1 = % then | z2Hy | -1 =1
implying that uw € E for each w € V(zﬁy) —u, ie. (u,:ay) €A.

Case 2. v#u.

Case 2.1 |T(u)|-12 1.

By (e1) and (e2), | vHy | =1 > 7 — 1 and hence

0(z,9)| - 1 2| yHuhy (,0) vEz | -1 2| vHy | ~1+ [T ()| — 12 7o + T (w)| - 2.

If |O(z,y)| —1 = 7 then [T (u)| -1 =1, | vHy | ~1 = 7% —1 and by (e3), (6, vHy) € A.

Case 2.2 [T'(u)|-1= 9_

Clearly, [0(z,)| — 1 2| yHuA, (u,0) vHz | -1 2| vHy | =12 %. £ |O(z,y) - 1=
then | vHy | —1 = 7, implying that uw € E for each w € V(uﬁy)—u, ie. (u,vﬁy) eAD

(88) By (g4), (&, H) € A. Since {w,y} C As, we have h > 6. If | Ox(z,y) | —1 <
7+ then by (g4.6) and (g4.7),h — 2=|04(z,y)| — 1 < 7 < h/2 implying that h < 4, a
contradiction. So, |Ox(z,y)| — 1 2 7, + 1. By symmetry, |Ox(z,w)| =1 > 7, + 1 and the
result follows.O
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Proof of lemma 8. Immediate from definition 3.11.0
Proof of lemma 9. By (d3),h > % +1 and h > %41 +1 for each i € TR, In other

e h=12(u+%na)/2 (i=1..h). (8)

(i1) By lemma 8, it sufficies to prove |O(z,y)| —1 2 fi. Assume wlo.g. thati=1

and uy g € V(=+Hy).
Case 1. u,us € Up.
Putting T; = &NV (H) (i=1,2) we see that [Iy| =p; — b =y (i=1,2).

Case 1.1. T1UT: C V(zHy).
Clearly [0(z,y)| =1 2| 2Hy | =1 > max ([T, [Ta]) > (1 +m) /2.

Case 1.2. IMUTZ Z V(zHy).

Assume w.lo.g. that I N(V(y*Hz")) # 0. Let 2, Hz be the longest segment in
y*Hz~ with 2,2 € I'1. .

Case 1.2.1. TaNV(y*Hz")=0.

Choose w € V(z* Huy) such that usw € E end | zHw | is minimum. Then

|O(=z, )| — 1 2| :ﬁyl -12| wﬁyl+]=ﬁw | =22 70+ | zHw | -2,
|0(z,9)| - 1 2| e B 21wy Huig By | 1> 1~ | cHw | 42.

Combining these two inequalities yields |O(z,y)| — 1 > (11 + 72)/2.

Case 1.2.2. TNV Hz™)#0.

Let w;?w, be the longest segment in y"‘?z" with wy,ws €Ty,

Case 1.2.3.1. z,up € V(w, Hz).

It follows that [O(z,y)| — 1 2| zH w1z Huyw, By | —1 > max (m,7) > (1 +) /2.

Case 1.2.2.2. z,uy € V(z Huwy).

Clearly |0(z,9)| — 1 2| zHwiz Bugug By | -1 > max (1,7) 2 (1 + 1) /2.

Case 1.2.2.3. Either wy, w3 € V(21 H ) or 2,23 € V(wy Hun).

Assume w.l.o.g. that w;,ws € V(z;??zz). If wy = 2, (resp. w; = z) then we could argue
8s in case 1.2.2.1. (resp. 1.2.2.2.). Otherwise (w; # z; and w; # 2,),

[O(z, )| —1 2| zgum.ﬁ_'ﬂaue?y | =12+ | nBuw | -1,
10(z,9)| -1 2| zBwz HuwBy | -1 > - | n Bwy | +1.

Combining these two inequalities yields |O(z, y)| — 12> (11 +72) /2.

Case 2. u;,u; € Up.

By (92) and (g3), [O(z,y)| =1 > % —1 (i = 1,2). If either u; € U, or u, € U, then by
(gl}wemdme. Let u,uy € U3 U Uh. ;

Case 2.1. Either [O(z,y)| —1=m—1or [O(z,y)| —1=2—1

Assume w.Lo.g. that |O(z,y)| — 1 =3 —1. Using (g2) we see that [T (u)| —1 =1 and
by (g4.1) and (g4.3), uz € UpUU., a contradiction.

Case 2.2. |0(z,y)| — 12~ and [O(z,y)| — 1 > 7.

Clearly, |O(z, y)| — 1 > max (11,7) > (n1 + 1) /2.

Case 3. U € Ulh L] eﬂu.

By (g2) and (g3),

Oz -127—1. 9
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Case 3.1. &, - B; CV(zHy).

Clearly |O(z,y)|-1 =] :.T"fy | =1 2 7. The result is immediate if either |O(z, y)|—1 > 5
or |0(z,y)|—1 > 75— 1. Thus we can assume |O(z,y)| -1 =| zHy | -1 = 4, = 73— 1. Since
|zHy| —1 =, we have A; = V(z Hy)—u;. On the other hand, by (94.3), A; € AaU{w:}
, & contradiction.

Case 3.2. %, — B} Z V(zHy).

Let z; H 2 be the maximal segment in y* Hz~ with 21,2 € N ().

Case 3.2.1. A, CV(zHy).

For each v € Az V(z?uq}. put F, = z?nu;?y if v = u; and

P, =z H zyu; HvAz (v, u3) ua By

if v # uz. Choose wy € Az V{z'ﬁugjsoastommdm.imlwlgug |. By (g2) and (g3),
]w.?fﬂ—lg'a—l.ﬂw;#zmmdwblzlﬁyl—lz'nmdhmce

[0(z,y)| =12 |Puy| =1 2| 2 Hy | — | 2Hwy | 42 2~ | zHwy | 43,
O(z,y)| = 12| zHy | -1 2| wHy | + | zBw | -2 > 3+ | zHwy | -2.
Combining these two inequalities yields the results. Now let wy = z. Choose w3 € Az
V{z"yug}soaswmmdmizalwg?ue |. Since H is extreme,
h 2| uzhs (uz, z) 2Bz Hug | ~1
which implies that
Balz) =iy = |2nHz|-12|As(2)|+ |42 (w)l, (10)

alz) =ty = |zHz|-1>|Az(z)|+1>2. (11)
Also, we have
[O(z,9)| =1 2| zHy | -1 2 m— | a Bz |. (12)

Claim 9.1. [O(z,9)| - 1> 1+ |z Hz|.
Proof of claim 9.1. Clearly,

0(z,9)] = 1 2 |Pun| =1 2| wHy | + | nHz | + | 21 Hz | -1. (13)

By (f1), | waHy | =12 12— 2~ |43 (2)| if 73 (z) =0 and | wpHy | -1 2 m—1-
| A2 (ua)| — | A2 (z)]| if 7 () = flp. Using also (10) and (11), we obtain | wp Hy | + | 2 Hz |
-2 3~ 1, which by (13) implies [0(z,)| — 12 7+ | 2 Hz |.O

Claim 9.1 with together (12) implies the result.

Case 8.2.2. Ay V(zHy).

Let y;?yx be the maximal segment in y*?;‘ with g1, 12 € Aa.

Case 3.2.2.1. Either z;,1 € V(mﬁz,] or z, Y € V(z;?m}.

Assume w.l.o.g that z;, 3 € V(y,ﬁzg). Then

[0z, 1) - 1 2] yHughs (ug, ) Hzm Ha | -1 2 m +1,
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and the result follows by (9).
Case 8.2.2.2. z,2€V(n ﬁm}.
Apply the arguments in case 3.2.2.1.
Case 3.2.2.3. y1n € V(nHn)
W&ﬁ=l=#ﬁl+lmﬁml—2md
P = yEmAa (u2,12) mﬁzxulgz.
Py = yHugha (a2, 00) 11 H nuy Ha,

we obtain
I0@,W) - 12 [Pl —12|sBy |+ |nHz > n— | 2 Hy | +2. 1)

Claim 9.3. |0(z,y)| —12m+| 2 Hy | -1
Proof of claim 9.3, 117, () = 0 then by (1), 8> 7~ T~ |ds (un)| ~ | 4a 12)| aad

[O@@,y)| =12 Bl =12 B+ |4 (wa)| + | Aa (1) | + | 2 By | -1
>t |z Hy | -2

Otherwise (73(yz) =ta), B> 7 — 2 — |Aa ()] =72 — 3 and
0@,y ~12 Al =126+ | 2 Bw | +1 2w+ | n By | -2.0

Claim 9.2 together with (14) implies the result.00 :

(i2) By (d1), h 2 27, imlying that [O(z,y)| — 1 > h/2 > 7. Also, |O(z,y)| -1+,
by (96). Recalling lemma 8, [Q (z,y)| —1 2 |O(z,y)| = 1 2 (7= +7) /2.0

(mJ By (Fl)r |O(2| y}l =1 2 T= +1 and by (.'76)! IO(S, I')I =1 2 Ye- Uamg lma. a‘
we obtain the result immediately.O

(i4) Claim 9.3. max(|0x(z,y)| - 1,|0:(z, w)| = 1) > (7% + 1) /2.

Proof of claim 9.3. By (96)! min(fO(z.y)l—l,fO(a:,w)[—lJ 2 Ts- If either Ior{xsy}l_
12 7, or [Ox(z,w)| — 1 2 7. then clearly we are done. Otherwise, by (g3), [Oz(z,p)| -1 =
|O:(z,w)| —1=7:—1 angl the result holds by (g8) and lemma 8.0

Claim 9.4. min(| O(%,3) | =1, O(%,w) | ~1) > (% + % +1) /2.

Proof of claim 9.4. By (952 and (g6), | O(z,y) | =1 > 7. and [O(z,y)| =1 > 4,
respectively. Since V/(O(z,y)) {2} = 0 (by definition 2.10), |O(2,y)| - 1 > |O(z,y)] >

% + 1, implying that | O(Z,y) | =1 2 (% + 7 + 1)/2. Analogously, | O(2,w) | -1 >
(1 + % +1)/2.0 2
Claim 9.5. | O(Z,2) | -1 > (7% + 7 +1)/2.
Proof of claim 9.5. Let v € A, —z. By (¢5 o "
[Oere) | <1 7 repesivi e T o (e O2) |1 2 2o med

| O(Z,2) | -1 > |O(z,v)| + | vT (v) 92| -2 > 7, +1

which implies | O(Z,2) | —1> (7 +% +1) /2.0

The result holds from claims 9.3-9.5 and lemma 8.0
: {15)8 E?y (96), 10(z,4)] =1 > 7, and |O(2,w)| =1 > ~, and the result follows from
lemma 8.
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. (i6) By (6), [O(z,5)| - 1 > mx (e, %) I [T (z)| ~ 1 2 2 then by (g2), O(z,)] -
" 2 4. and the result holds immediately. Thus we can assume [T'(z)| —1=1. Put z=z*
and w = z~. By (43) end (96), |0«(z,y)| —1 2 max (1= — 1,7, %) - K |O:(z,9)| 12
imin (s, 7z + 1,7 + 1) then clearly we are done. Now let [0.(z,y)| - 1= —1=7% = 7.
diince u & U, (by (1)), we have by (¢4.3) and (94.7),7% < (7= + 1) /2 = (7 + 2) /2 implying
dhat v, < 2 and |0,(z,y)| — 1 < 2. It means that h < 4. Recalling also (g4.1) and (g4.5),
swe conclude that h = 4, a contradiction.O

(i7) Ifeither |O.(z,y)|=1=1==10r |Oy(z,y)| =1 =y—1, say |Ox(z,p)| -1 = 1=-1,
dhen by (gl)—(g3), |T'(z)] — 1 = 1. By (g4), either (:':.zﬁyj € Aor (5.1;?::} €A
wr (Z,H) € A. This implies by (g4.2) and (g4.6) that y € Up, a contradiction. Thus
30,(z,y)|—1 = 4 and |Oy(z,y)|—1 = 7. Using (¢6) with lemma 8, we obtain |(z, y)|-1 >
% + ) /2 for each z € {z*,z7} and [z, y)| — 1 2 (9 + 1) /2 for each w € {y*,y7}.
Then the result follows by (i1).0

(i8) Observing that [O(z,y)| — 12| yHz | =1 = h— 1, we obtain the result from (8)
nmmediately.0

(i8) Put z=z*. We can assume h > 4, since otherwise the result holds from (i8). By
vd3),|0(z,y)| —12 h—22 v —1. If |O(z,y)| =1 2 7« +1 then clearly we are done. Let
10(z,y)|~1 =% By (¢7), [T(2)|-1<1. KANV(y*Hz") #0 thenby (g7), 2z~ € E.
Hence |O(z,y)] — 1 > h ~ 1 and by (8) we are done. Now let A, C V(z Hy). It means that
\f= = 2 and |0O(z,y)| — 1 = 2. But then h = 4, a contradiction.O

Proof of the theorem. Let C be a longest cycle of a graph G and H = u;...usu; &
yongest cycle of G — C' with a maximal HC'—extension T. Putting U. = {v},...,v}} and
asing definition 3.3, we let for each i € T,

O(T (v7), Vaests V{2) = (P, ..., PD),
Re=< (V0 T U 0 VIE) - 2% >,

where Voew = V —(V (C)UV (T)) and Vjj2 = V (T)~VT(4;). Since ¢ > 6+1 > k+1,  vari-
ation of Menger’s theorem (7] asserts that for each i € 1,7 there are k — 1 internally disjoint
paths B, .., B in (k — 1) —connected graph G — 2{J,, starting at R;, passing through
Vaews 2nd terminating on C at k— 1 different vertices. Let E* have a common vertex v with
E® for some a,b € T,k — 1 and j,e € T,7 (j # e). If v € V (C) then there is a path starting
in R;, passing through Vi, and terminating in R,, contradicting the fact that v}, v; € U..
S0, v € V (C). Choose vertex-disjoint paths B, ..., E* (i; € TE—1 for each j € T,%)
so as to maximize { and put E}"} = z,i"—"’w; (j=1,..,t), where z; € V(R;) and
w) € V(C). It is easy to see that ¢ > min (r,k—1). By (a2), for each j € T, there is
an (2,05} —path F{*) passing through V (R;)UV(Z(v})) and having length at least py;.
Denoting E; = u;F}"’z,E{;’Jw; (4 = 1,..,t), we see that E},..., B are vertex disjoint
(H,C)—paths with |Bf| =12 g +1 (i =1,...,t).

Casel. k>4, h>5.

Case 1.1. r> k.

It follows that £ > k — 1. Let &,...,& be the elements of {w}, ...,w{} occuring on C in
consequtive order.

Case 1.1.1. t> k.
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Assume w.lo.g. that @y 2 ... 2 Puz. Since r > k, we have

1 k g 1L
EE'P-;Z;ZW

i=1
that
e S e
Em—rhlp':_hhlw- (15)

By (i1) and (i8), |2 (v, ;)| — 1 > B for each a,b € T,7 and i € T,A. Hence
h
R =125 3 A= n (D).
Then for each 4,7 € I,%,
|w;Cuj | =12 B - 1+|Bj| =1+ (u5,9])| - 12 pu; + 0 + 24 (7). (1)
Using (15),(16) and recalling that ¢ > k, we obtain
C='é]ﬂfdafiuf"l)ZzélP-;+2t+tp(T}
23 g +2+tu(T) 2 § £ oy +bu(T) +2k
T A, h
2} vt X o+ 20) = (3 ¢, +2h),
where §41 = &. It follows that I, ¢, < h (c/k — 2). Since gy =d (w) 2 6 (i = 1,..., ),
h h
2 W= hé=3 o > hs—ch/k+2h.
=1 i=1
In particular, max ¢ > 6 — ¢/k + 2. Using lemma 3, we obtain
h
© 23 thck max vy 2 b6~ ch/k +2h+6— c/k+2,
and the result follows immediately.

Case 1.1.2. t=k-1.
Observe that E,“‘) terminates in {w;,...,w;,,} for each i € T)k—1, since otherwise

B}, .., By, EY contradict the maximality of ¢ for some j € TE=T. By the same argu-
ments, E{” terminates in {wf,..,wi_,} for each i € TF—1 and j € TE. By Menger's
theorem [7], there is & path E = vE£,,, starting in
k k k-1
) . .
< (V{T)U}-J: fﬁU’l_.'I“LJ] V(E®)) - {"’1----’195-1} >

and terminating in C — {w},...,w}_;}. Assume w.lo.g. that e
wmequﬁmorder.'l‘heniti;easy:olseethat : & 'Eﬁlmmain

1 E
e=).( &C6u1 | —1) 23 pur + 2k + ku (T)
L =1
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', where {3 = ;. Further we can argue exactly s in case 1.1.1.

Case 1.2. r<k-1.

It follows that t = r. By Menger's theorem (7], there are k vertex-disjoint (H, C)—paths

B = vwBu; (i=1,..,k). Assume wlo.g that w,..,w; occurs on C in consequtive
. order. Put
W={w,..,wm}, W' ={uw],..,u}.
Let a,b € T, k. Denoting
W* (a,b) = W* NV (w, Cup)

we will say that w.?fw.ksasu.itableaegnentif

b—a
weCun | =12 Y g +2(6—0)+ 3 (10 Tasies, Tass)| - 1),
v EW*(ab) -1

where 7;, Bj € {ﬂ,}UUo (F=1,.., k).

Claim 1. Let i € Lk If either [W*(i,i+1)] # 1 or [W*(i,i+1)] = 1 and
W* (i,i + 1) N {w, wis1} = B then w, C wyyy is suitable.

Proof of claim 1. Case al |W*(i,i+1)|=0.

Let Ty (By, Biya) = (E;, Ej;) and Ty (v, v441) = (%, Ti4a). Then w;C wyy, is suitable,

since by (al),
| Cwigy | =12 2+ (1925, i) — 1).

Case 2. |W*(i,i+1)| > 2.

Let E, F be any two elements of {£}, ..., E}} with E = zEv, F = yFu for some v,w €
W;. Since Ty, (E, F) = (E, F) and {z,y} C Uy, we have by (al), | vgw | =12 @+ @, +
2+ (|92 (z,y)| — 1) implying that w, C ws,, is suitable.

Case a3. |[W*(i,i+1)|=1.

Assume w.lo.g that W* (i,i+ 1) = {wj}. If either E, or Ej; (say E;) has no common
vertex with Ej then using transformation T, (E;, E}) = (E;, E}), we obtain by (al),

| 0 Cwgy | -1 2| w Cwj | 12> tpu; +2+ (12 (3, Vi) — 1)

for some appropriate U; € {1} UT, and %y, = v]. It means that ua'aw‘.u is suitable.
Now let both E; and Ey;; have common vertices with Ej. Walking along E; from w] to
v; we stop at the first vertex v € V (E) UV (Eiy,). Assume.w.lo.g. that v € V (Eyy,).
Putting E,,, = w} E{vBiy1vi41 and Ty (Ey, E.,) = (E{, Ef,,), we see by (al) that for some
appropriate ; € {v;} UT, and T4y € {vis1}UT,

| wiClung | ~1 2| wCwi | =1 > 2+ pyg + (19 (B, Tawa)| — 1).

So, again w; C wy,, is suitable.0

Claim 2. Ifw.(_i"wg and umaw. are suitable segments then | w.aw. | is suitable as
well. :
Proof of claim 2. Immediate from the definition.0

Claim 3. Let w,Cws is a suitable segment. If wy,Cwpy; is not suitable and
W* (b,b+1) = {uwp} then w, Cwy,, is suitable.
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3. Immediate from the definition.O]

Mm.imoidﬁi € TF I W*(i,i+1) C {w,wn} and [W*(G,i+1)] = 1 (say
oy = then w;— Wiy 18 suitable.
W,S;;:fllf n{l::ijz 4. m;m.:ms w.lo.g that W*(i,i+1) = {w}, ie. w} = w. I
IW‘ {‘_1'.')' >2 then b)‘ claims 1 and 3, lﬂd-;?lﬂﬂ.l is suitable. Let IW. (I'.— 1‘|)I =1,
ie W*(i—1,i) = {w}}. If either B, or By (say Ei-,) has no common vertices with
E; then using transformations Ti (Ei—1, E}) and Ti (B, Eiy1), we see that Wi--l?lﬂg is
suitable and by claim 3, wi—; C wiy i8 suitable as well. Now let both E,_; and By, have
common vertices with Ej. Walking along Ej from wj to v we stop st the first vertex
v € V(Eia)UV (Bita) - Assume w.lo.g. that v € V (Eiyy). Hv =0ji. e. v_; = v} then
wsing Tir (Bie1, WiBivBiy1vie1) and Tip (Biy Wisa Biyavvy) we see that w1 C'w, Is suitable,
By claim 3, wi—; Cwi1 is suitable as well. Finally, if v %vizst e %y & Up) then using
Tiy (Bir, wiBjvEvs41) and Ty (Bi, Biya), we see that w;_; Cw; is suitable, implying by
claim 3 that w;_ C ;1 i8 suitable as well.0 ¢

Claim 5. For appropriate %, %; € {v:} UTh,

c=£.: (| wiCuig | -1) Zg oo + 2k+ iil (192 (@, 504)| - 1).

Proof of claim 5. s?menot. Let i € TE. If w;Cwyy is not suitable then by
claims 1 and 4, either wy_y Cwiy Or w; Cwiyg is suitable. Thus there exist some suitable
segment on C and let w, C'ws be the longest one for some a,b € TE  (a # b). If w, Cuwyy,
is suitable then by claim 2, w, C w4, is suitable as well, & contradiction. Otherwise, by
claims 3 and 4, w; Oy, is suitable and hence (by claim 2) w, Cwyy is suitable as well, a

contradiction.O
Claim 6. If k > 4 and h > 5 then for appropriate %;,; € {v;} UT, (i=1,..k),

> (90Tl =1 2 b ).

Proof of claim 6. Assume w.l.o.g that 8 =max {6:}. Put

Ao:{i”n(ﬁhﬁﬂ-l)l_lz.ﬁl}, A1=_‘E—Ao'
Ay={i€ Ay € {7,Tn}} (i=1,2).

We can assume that A, # 0, since otherwise by (i1), T, (| (9:, Bipy)| — 1) > kB >
kp (T). T {9,041} = {1, us} then by (i8), i € Ao. It means that Ay; () Ay = 6, On the
other hand, by (i5), either A;; = 0 or Ay, = 0. Assume w.Lo.g. that A3 = 0, i.e. A = Ay

CB.BB bl. IAuf _>_ 4,

Recdﬁngfieﬁniﬁm&g,itisnofhmdmseethatthmmatleasttwopathsammg
: n’;;]f-:dl wmgmmmm V(T (w1))—uy, ie. [T (w)|—12> 2. By (i?}, Ar=0

Csaa b2. |A.n| =3.

!fﬁallmthatnhleasl:onsofthepathsEl,...,E.hmacommonvartexwiﬁhV(T(u;})—
uy, ie. [T ()| — 1> 1. Clearly |T'(u;)| — 1 = 1, since otherwise |An| > 4. Assume w.lo.g.
that.A1={1,2,3}anclU1=Ug=‘U3=u1. Ififg=§’;=ﬁthanclearlyvl,ﬁz GUumdby
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7). 0.9, 55)| 1>ﬂ1.scmtnd1mon. Otherwise, by (i4), |2 (%, Tis1)| — 1 2 5, for some
11 € A;, again a contradiction. So, 1 < |4y| < 2.

Case b3. |An| =2

Case b3.1. h=B8.

Let i € A;. Assume w.lo.g. that ; = 4,7 = u, for some 5 € T,h. By (il),
W0 (5, 9441)| — 1 2 B for each j e TR - h:—l s}. Since h > 8, there are at least four
“pairwise different intesm fisfa o, fa in TR — {1,h,s—1,s}. By (il),|Q (v;,Fiss)| = 1 >
%, (i=1,234).5

A
i€ A = 00Tl =12 25 8- B~ = Br— B4 3" By).
=] ]
On the other hand,
h h
P40 = 105, Br)| 12 B = 2(3 B 3 i+ b, an
=1 =]

Since hBy — by — Bu — Ba-1 — Ba 2 Tiey Bi = Ty By, We have
1€ Ag, j €A = [T, Tisa)| — 1+ |05, Tju1)| — 1 2 2u(T).
Observing that |Ag| 2 |A;|, we obtain

2 (190, 500) | =1 = 5 (190T0) | -1+ 5 (190Ta) | -1)
2 (| Ao| = |A:)(T) + 2| Ay | p(T) = (| Ao| + |As[)(T) = ku(T).

Case b3.2. 6<h<T.

Let i € A;. Assume w.l.o.g that % = u;, ;43 = u, for some s € T,h. We will writei € A}
if and only if | (%, Tis1)| — 1 2 f; for some j € {1,h,s —1,5}.

Case b3.2.1. A; = A;j.

Let i € Aj and let % = uy, %41 = u, (s € TR). By the definition, [ (9, T1)| — 12 5
for some j € {h,5 — 1,3}, say j = 5. Since 6 < h < 7, there are at least three pairwise dif-
gmlmtesm fusfa, fain Th—{1,h,s — 1}. By (il), Iﬂ(l?nﬁm)l 1> max (By,, Bp, By) -

ieA = [Q0,0n)|-12 *(gﬁd"ﬁl-ﬂn*ﬂ.-1+ﬂ!. + By, + Bp)

\and hence we can argue exactly as in case h > 8.

Case b3.2.2. A # AL

Let A = {'sJ}: where i ¢ A} and let 7; = U = u, Tia = Uy, a.‘l'l-l u, for some
s,r€T,h(s<r). By (i8) and (19), 4 < s <r < h—1. If s = r then it is easy to see (by
iduﬂnit!unaﬁ)t.hattﬂthu'ulEUgoru.EUulmplﬁngby[tﬁ}thntlEAl.acontndichm
So, assume s #r,i.e. 4<s<r<h-1

Case b3.2.2.1. h=T.

Case b3.2.2.1.1. s=4,r=5.

By (i5), either [ (9;,Tis)| — 1 2 By or [Q(T;,Tpa)| — 1 2 fy. Since i & Aj, we have
|2 (95,9541)| = 1 = Ba. Using (i1),

[0 Tus)| = 12 R(E B = B~ Br— B — Bu+ 2B + B+ i),
0@ Ty)l — 12 $(E fi— B~ Br— s + 262+ o)
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Umgsj.soa]lk—zmequahﬂeud'type(l'?) we obtain the desired result as in case h > §,

Case b3.2.2.1.2. 8= 4,r=6.
By (#1) and (i9),

(0@ Tu)l — 12 B(E = By = Br =B~ Buc+ 36a-+ B + ),
1200, )l — 12 A(E Bi— B =B+ B+ ).

Apply the arguments in case b3.2.2.1.1.
Case b3.2.2.1.8. s=5,r= 6.
By (i1),(i5) and (i9),

(00 Tera)| =12 (B = B~ Br = B = B+ 26+ Ba + i),
1000, T)| — 12 ME A= Bi— B+ o+ ).

Apply the arguments in case b3.2.2.1.1.
Case b3.2.2.2. h=6.
Clearly s = 4, = 5. By (i1),(i5) and (i9),

|nrv¢.ﬁ+1}|—1>1(z’:m By — o — s — B+ 282+ 260),
@, Tj)l -1 2 k(Eﬁi - B1+Bs).

Apply the arguments in case b3.2.2.1.1.

Case b3.3. h=35.

Let A; = {i,j} and % = U; = w1, V41 = th, Vj1 = v, forsome s,r e Lh (s <
{i&)md(iﬂ),a=r=4mdwecmreacha.oontrad.ictionasinca.seb&'z':z e g

C&BBM. |Anf=1.

Let Ay = {i} and B = uy, Uiy =, forsome s€ LA .

Case bd.1. h=5.

By (i8) and (i9), s = 4. Also, by (i1) and (i9),

5
R0 Bu) = 12 50 A= = Bo+ B+ ).

Apply the arguments in case b3.2.2.1.1.
Case bd.2. h>6.
There are at least two distinct integers f3, fz in T,h — {1,h,s — 1,5}. By (i1),

- Lot
|20, Tia)| =1 2 H(E Bi — Br — Bn — Ba-1 — Ba + 2By, + 28y,)-

Since | Ap |> 4— | A; |= 3, we have at least two inequaliti
argue as in case b3.2.2.1.1.0 HoB.cE 90 7). /60, weioy
By claims 5 and 6, ¢ > 2 i
5 k24,h51m1%:+ k + kp (T) and the result follows as in case 1.1.1.1.
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Since h > k, we have h = k = 4. By a variation of Menger's theorem [7], there are
‘wour vertex-disjoint (H,C)—path. It can be easily cheeked that ¢ > 18. If § < 6 then
<22 18> 20(6+2) /9= (h+1) k(6+2)/(h+k+1). Let § > 7. Using (d3) we can show that
< 3forsomei €14, ie. max vy > 6—3. Then by lemma 3,c > ©L, (6 — ) +6-3=
-3 -Th o U s <12thenc>56—152 (h+1)k(5+2)/(h+k+1). So, it
wnufficies to prove T, ¢ < 12.

Case 2.1. Either [Uy| =0 or |Up| = 4.

It follows that p; < 3 foreachi € T, 4.

Case 2.2. |Uy] =3.

Assume w.lo.g. that Ty = {u;}. If us %;¢ E then it is easy to see that ; < 3 for each
si€ T,4. Otherwise (us %€ E), ugus & E and hence p; < 3,03 < 4,52 <2 and ¢4 < 2.

Case 2.3. |Up| =2

By symmetry, we can distinguish the following two cases.

Case 2.3.1. Up= {uy,u}.

Ifu,aieEandug&;ﬂEthendmlygo‘ESfDrearhiE]._{. Assume w.lo.g. that
s T € E. We can assume also u; g E, since otherwise the cycle u; 1 uguy tiq uau; is
warger than H, which is impossible. Then clearly ; < 3,104 < 3,03 <4 and p, < 2.

Case 2.3.2. Up={u,us}.

1t is easy to see that @; < 3 for each i € T, 4.

Case 2.4. |Up| = 1. Returning to the proof of lemma 3, we can see that in this special
s2ase the lower bound in lemma 3 can be improved by a unit. So, it suffices to show T, ¢ <
\18. Denoting Uy = {u}, we see that p; < 3,2 < 3,93 < 3,5 < 4 and the result holds
Jimmediately.

Case 3. k<3

Claim 7. Let G be a k—connected (k € {2,3}) graph with & > k and without k + 1
wertex-disjoint. (H, C)—paths. Then

¢ > min (k (h+1) k(5 — k+4)).

Proof of claim 7. Casedl. k=3.
. Assume w.l.o.g. that Fy, E; end Ey are T—transformed. We now prove that leauﬂ
—1>min(h+1,6+1). If v3 = v{ then clearly

| wy Cwg | -1 2| wiEywy HvgByws | =1 > h+ 1.

Let v, # vt. Walking along H from v to v we stop at the first vertex z with either
SuwacEorfw ¢ Eor z=v;. f 2wy € E or z= vj then clearly | wy Cwp | 1> h+1.
I,LatﬂuaeEandgmEE.HQwGEformawEV(C)—{w;,ua,ua}tbmthereuetL
vertex-disjoint (H,C)—paths, contradicting our assumption. So, N(2)NV (C) C {ws}, i.e.
@2 6—-1and h > ¢, +132 6. By (¢6), |0(z7, 1) —1 > % > ¢ > 6 — 1 implying
that | w; Cw | -1 > 6+ 2. Thus we have proved | w; Cw | —1 > min(h+1,6+1).
By symmetry, we have similar inequalities for segments wy C'ws and ws C wy and the result
holds from h+12 6+ 1.

Case d2. k=2.

Apply the arguments in case 1. Claim 7 is proved.O

Case 3.1. k=3.



154 Cycle-Extensions and Long Cycles in k-connected Graphs

We can assume that there are no 4 vertex-disjoint (H, C)—paths, since otherwi

(h+1)4 . (h+1)k
62 T A Tl

mwmemmdisﬁnguhhthefoﬂowingtwom.
Case 8.1.1. ¢=>3(h+1).
Eh>6—2thenc>3(h+1) 2 3(h+1)(6+2)/(h+4). Otherwise, the result holds

from ¢ > 3(6— 1) (see [12]).

Case 8.1.2. c>3(6+1).

Ifh<35+2thenc>3(6+ 1)=23(h+1)(6+2)/(h+4). Let h>3(6+1). ohﬁﬂl'\ring
that ¢ > 3 (h/2 + 2) (by standard arguments) we obtain the result immediately.

Case 3.2. k=2

Apply the arguments in case 1.
Thus we have proved the theorem for h a longest cycle in G — C. Observing that

(6+2).

h+1)k K +1)k
czh;klf“’“?’%““)

for any k' < h , we complete the proof of the theorem.O
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