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Abstract

Let G be & graph with minimum degree §, C be a longest cycle in G and h be the
length of a longest cycle in G —C. Then |C] 2 (h+1) (6 —h+1).

1 Introduction

Our main purpose is to give lower bounds for the length c (the circumference) of & longest
cycle C in graph G in terms of the minimum degree & (G) and some structures of G — C.

In 1998 & notion of path-extensions was introduced [4] and & lower bound for the circum-
ference is obtained in terms of & (G) and the length g of a longest path in G — C.

() c=2(@+2)(6-q).

In this paper we present a similar result in terms of & (G) and the length h of a longest
cycle in G — C.

Theorem. c¢2>(h+1)(6—h+1).

These two results show how the path and cycle structures of G — C impact on circum-
ference and cycle structures of G. In view of the main purpose the following results can be
considered as starting points for h <1,

(B) k>2 =sc>2orh=0 (1952Dirac[2]),
(C) k>3 =>c>3(6-1)orh<l (1977,Voss[s]),

where k denote the vertex-connectivity of G. In the next result [3] some bounds of the type
¢ > k(6 — k +2) are established for k-connected graphs with a rather strong condition with
respect to G — C (for any two vertices z,y in some component of G — C, there is a path of
length at least k — 2 with endvertices z and y).

The bound (h + 1) (6 — h + 1) in the theorem is shurp, as can be seen from the following
family of graphs. Take k + 1 disjoint copies of the complete graph Kj_x;; and join each
vertex in their union to every vertex of a disjoint complete graph K. This graph G =
(k+ 1) Ks_ks1 + Ki I8 clearly not hamiltonian. Moreover, h = § — k + 1 and hence ¢ =
k(6—k+2)=(h+1)(6—h+1).
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2 Terminology
finite undirected graphs without loops and multiple edges. For unexplained
WI ammimdngrﬂll- The vertex set of & graph G is denoted by V (G) or just V; the set of
E(G) or just E. We use |G| as a symbol of the cardinality |V (G)|. For a subset §

:gs;;y_sd tes the subgraph (V — S) induced by V' — 5. If H is a subgraph of G, we
also use the symbol G — H for G —V (H).
Paths and cycles in graph G are considered as subgraphs of G, they are connected and

maximum d 0,1 or 2. The length of path P is |P| — 1. For convenience, every
etve (reop, vertex) will be interpreted s s cycl of length 2 (resp,1). By the definition, G
is hamiltonian iff b = 0. If h = 1 then V — V' (C) is an independent set of vertices or, in
other words, C is a dominating cycle of G. Let c (the circumference) denote the length of a
longest cycle in G. An z,y)-path is a path with endvertices z and y. Given an (z,y)-path
L of G we denote by L thnpntthithanoﬂsnbaﬁanﬁmnthy. Ifu,vEV[._L)thm
w T 'v denote the consequtive vertices on L from u to v in the direction specified by Z . The
same vertices, in reverse order, are given by v L u. For L =z Ly and u € V (L), let u*(T)
(or just u*) denote the successor of u (u# y)on L and u~ denote its predecessor (u # z).
Ingv(L)thm,ﬁ-_-{u+|ﬂeA—y}andA'={u'quA—z}. K Qisacydlein G
and A C V(Q) then G, A* and A~ are analogously defined. For v € V (Q), v v will be
as a vertex v. Forv € V, put N(v) = {u €V |uv € E}, d(v) = |N (v)| and

6= min{d(u) |u €V}

3 Special definitions

We begin introducing some special definitions and convenient notations. For the remainder
of this section let a longest cycle C in graph G and a longest cycle H = u;...upu; in G — C
be fixed.

Definition 3.1 T is an HC-extension; T (u;); %; 4.

Let T'(u1) , ...y T (up) are vertex-disjoint (w;, t)-paths in G—C for i = 1, ..., h respectively.
The union T = UL, T () is called HC-extension if N (&%) C V (T)UV (C) for eachi =T, h.
An HC-extension T is called maximal if it is chosen so as to maximize |{u € V' (H) | u # @}].
Ifuz;éﬁformmeue‘V(HJthenwsuseﬁtodmoteu*(?(u}}.

Definition 3.2 &,; @.; Vu; Y.

Let T be & maximal HC-extension. For each u € V (H), put

S, =N(@)NV(T), u=|0l,
Vu=N@ENV(C), tu=|T.
Definition 8.8  Uy; Uy; U”.
For T' a maximal HC-extension, put Uy = {u € V (H) | u = 4} and
Uhi={ueV(H)-TU|® ZV(T )}, U =V (H) - (UUh).
Definition 8.4 B,; BY; by; B2,
Let T be a maximal HC-extension. For each uEV{H),putB.={vEUn|ﬂ§EEI.

Clearly B, = 0 if u € Up. Furthermore, for each u € U put B} = {v € V'(H) | u e E}.
Cleatly B; C V (H) — Up. Let b, = |By| and b = |By].



4 Results

Our main purpose is to prove the following result.

Theorem. Let G be a graph with minimum degree §, C be a longest cyclein G and h
be the length of a longest cycle in G — C. Then |C| > (h+1)(6—h +1).

We need the following two preliminary results.

_.Lemm 1. Let C be & longest cycle of a graph G, Q beapathin G— C and F, =
whPw, (i=0,..,q) are vertex-disjoint paths in G — C having only vy, ..., v; in common
with @. Then

q q
23 |2+ Uz.I.
=0 1=0

where Z; = N (w)NV (C) (i=0,..,q).

Lemma 2. Let C be a longest cycle of & graph G and H = u;...uzu; a longest cycle of
G — C with a maximal HC-extension T. Then for each u € Uy,

(1) [T)-122 = h>2(p+h)>eu+b+1,

@) [Ti-1=1 = h222>p.+ba+1

5 Proofs
Proof of lemma 1. We shall prove the result for the case v, = w; (i=0,...,q), since
otherwise the arguments are the same. The result is immediate if UL, Z; = 0.Let UL, Z; # 0
and let £, ...,€m (mzl)bethadmmuufmz(omu:dngmainmmxﬁvecrdﬂ.
Set
F, = N (&) {wo, ..., wg} (i=1,..,m).
Suppose that m = 1. If [F;| = 1 then g = 0 and Z = Z, = {£;} implying that
q
c22f 14| .
Let |Fy| 2 2. Choosing u,v € F (u#u}sudnhatluaulismuimm,

q q q
ez |owot] 233 a1 +1=3: 121+ ]
=0 =0 =0

Thus we may assume m > 2. It means, in particular, that ¢ > 3. For i = 1,...,m, put
F(6) =|6C%us| — 1 (indices mod m). It is easy to see that

c=éf(&). glml=glzl. m=‘ga‘- )

For every i € T,m choose z;,1 € F;U Fi1 such that I:(a’y.-l is maximum (indices mod
m).
Claim 1.1 f(&) 2 (IE| +|Fn|+2)/2  (i=1,..,m).
Proof of claim 1.1 Case 1 Either z; € F;, % € Fiyy or z; € Fiy, % € F.
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If z; € Fiy % € Fu then :
f&) =z |ﬁzlam&+1| — 12> max(|F|, [Fal) +1 2 (IFi] + | Fia| + 2) /2.

Otherwise, the result holds from f (&) > |6 Qziéesa — 1.

Case 2 Either z;, w € F: or %i, % € Fi. -
First suppose i, % € Fi. We can assume Z;, t ¢ Fiyy, since otherwise we are in case 1.

Ghoose 2, 1 € Fun such that [a{ Q] is meximum. 1F 21 Q] ~1 > (1B = |Fual) /2 then
£(6) > |6 @i ~ 12 (Bl = B 2+ Pl +1 = (B +|Fosa| +2) 2.

Otherwise,
fl&)2 |Em‘5=;f¢+1| -1= Iz:ayd +1= |3"6“' - |=t??.=;| g
> |E| = (1Fl = |Fenal + 1) /242> (B + | Fa| +2) /2.

$°£(6) 23 (Bl +|Fal +2) /2=3 |Fi| +m,
=] =1 i=1

and the result holds from (1).<
Proof of lemma 2. Ebresnhu.ueV(H).?g“tAs{v)=(¢-UB-)ﬂV{T(v})-Let
pu (v) denote the vertex in A, (v) maximizing [vT' (v) pu (v)| . In particular, pu (u) = @~.
Put 7, (v) = i if pu (v) € @y and P, (v) =t if py (v) € By. Clearly 7, (u) = 4. Putting
A_={ueV{H)|A.(ﬂ)9‘0},weuneabothafnﬂowingabbmiation
Ay (v,w) = 0T (v) pu (v) P (v) T (4) P, (w) pu () T (w) w
foreachv,w € A, (v# w).Let Ay = {£,....,&s} . Assume w.Lo.g that u = ¢, and &, ...,&;
occurs on H in consequtive order. For each integeri (1 <i< f) let
My =6&H 6, wi=|Au(&)l+|Au(Es1)|  (indices mod f).
Since H is extreme,
IMi| 2 |As (€06l (=1, f). (2)
Iﬂtf,ﬁf.hethelongutaegnentunﬂudth ;
aeV(EHE), {6} SBU).
Put

OF = {M; € (M, ..., My_1} | B, (&) # Pu (:11)},
B = (M, . My} — (FFUR).

Observe that [~| < 2 and [M;] — 1 > |Ay (&, &i41)| — 1 for each i € T, f. Then clearly
MeQt = |Mi|—1>uw+|Au(u)|—-1, (3)

MeQ = |Mi|-12w-—|Ad(u)|+1, 4

Me® = |M|-1>uw;. (5)
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Claim 2.1 K[| =0then M| —12w (i=1,...f).
Proof of claim 2.1 Immediate from (3), (4) snd (5)<
Claim 2.2 If || =1, say O~ = {M;}, then M, € O*.

Proof of claim 2.2 By the definition, {£,....£,} C B, and £,4; € Ay — (BuU{u})
and the result follows.<

Claim 2.3 If || =2, Le. 0 = {M;, My}, then M,, M,_, € O~

Proof of claim 2.3 By the definition, {Eﬂsfb{u&'} C B, and &49,6-1 € Au —
(B, U {u}) and the result follows.<

Claim 2.4 TL, (IMi| -1) > £L; w.
Proof of claim 2.4 Immediate from (3), (4),(5) and claims 2.1, 2.2, 2.34

Claim 2.5 |T(u)|-122 = &,NB.=0.

Proof of claim 2.5 Casel. uel].

Suppose, to the contrary, that &, B, # 0. ¥ z € &, B, then by definitions 3.1 and
3.2, the collection of paths

{T @), T ), 28} (T @), 7 (2))
generates some HC—extension, contradicting the maximality of T'.

Case 2. u€ U".
By definition 3.3, ®, C V (T'(u)) and the result follows

nnme:hataly
(b1) By claim 2.5, |®,U Bu| = @u + by. Observing that TL, |A, (§)] = [®.UB.|, we
obtain by claim 2.4,

n=5 01 -1) 2 £ o =£ (140 6]+ 1A (G0)) =
=2 £ 1Au(6)] = 210, UB = 2(pu +5) 2 pu + b +1.
(b2) Clearly @y > by + |{u}| = by + 1. By claim 2.4,
J g
h=3 (Ml-1) 2?::m-2]¢.UB.|=2¢.zv.+b.+1
1 =]
which completes the proof of lemma 2.<
Proof of the theorem. Let H = u;...u5u; be a longest cycle in G — C with a maximal
HC—extension T. If h = 0 then clearly ¢ = |[V| > 6+ 1> (h+1)(5— h+1). So we can
assume that h > 1. Let u € Uy and v € V (H) — Up. If uz € E for some z € V (T (v)) then
z € {v,5}, since otherwise the collection of paths

{T (ul) [ "'lT(u'l) WY al 1‘3}
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gmeratmmotharﬂc—mmsimmcﬁngthemaﬁmaﬁtyofﬂ[notherwmds,
weloveVE-Un = SV(TW)C{v).
Recalling definitions 3.2 and 3.4, we obtain
uelp = wu<h—-1+b, (6)
Alw,ioread:ueUl,h2¢.+b.+1{bylmmnﬂ),i.e.
uelh, = Yu<h-1-b,. )

Casel U*=0.
By (6) and (7),

T euslUlh-1)+ 32 8 X eu< (-] (R-1)— 3 b
welo u€lp ugtlo ugtlp
Obseningthatlg:mbzs‘;zmh..weobtain

3 %=§;mgn(n-1). (8)

weV(H) i=1

By definition 3.2, ¢y, + ¥ =d(f) 26 (i=1,..,h). Using (8),
h _h ﬁ- P h A # 21
gw—g(d(u.) %)Zéd(m) h(h-1).

It follows, in particular, that max {hu} > § 2 d (&) — h+1. Ths

i‘b"-}-m‘_ax{%}g(h+1)(%id(tﬁ)-h+1) >(h+1)(6—h+1)
i=1 i=1

which by lemma 1 gives the desired result immediately.
Case 2 U* #0.
Assume that T" is chosen 8o &s to minimize |[U*|. Let v € U*. By the definition, &, C

V(T (v)). Let z,..., 2 be the elementa of &; occurring on 7' (v) in consequtive order such
that z) =0 . Clearly t = |®,| = . Since T (v) can be replaced by vT' (v) zf & T (v) 2 for
each i € .7, we can assume w.Lo.g. that N(z;) CV (T (v)) (i=1,..,t) and

¢ =max {N (z) "V (T)}.

Finally, assume that v is chosen from U* so as to maximize @,. Putting Z; = N v
(""1""")“’““*1“*%Zd(&)"I&IZJ—IZ;l ("=1?.|t),tf:s (z:)N {C}

ZiZ 6t (L, ' ©)
Claim 1. ¢ (h+1)(6—h+1)+ (0 — 1) (6 ) — (b + 1) [U*] (s — 1) /2h.
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Proof of claim 1 If u € U* then clearly h > 4, + 1 and h > 2 (b, + 1), implying that
h 2 b, + 1+ (pu + 1) /2 or, equivalently,

vel" = gu<h-bi—1+(gs—1)/2
Combining this with (6) and (7), as in case 1,

A
E’Wm‘f’m?x{wﬂ} 2(h+1)(6—h+1)—(h+1)|U%| (s — 1) /2h. (10)
=]
Using lemma 1 for Q=§‘T_{u)u?v'.
A ¢
€2} Yot max {$u}+ 3 |21,
] 1=2

which by (9) and (10) completes the proof of claim 1.<
Clearly h > @,+1. On the other hand, h < é , sinceotherwisec > 0> (h+ 1) (6 — h+1).

So,
uel” = pu+1<h<é (11)
By (11), 1pu (tu — 6+ 1) < 0 for each u € U*, which is equivalent to
uel' = &/4-p.2(pu—68/2). (12)
Claim2 Ifh>2andé—h+132then
h6-h+1)(6E-h-1-1)+ 31 >0 (13)

Proof of claim 2 Clearly 6 > h+12> 3. If § — h+ 1 = 2 then the desired result is
equivalent to 6§ > 3. Otherwise, § — h—1—1/h > 0 and the result follows.<

Claim3 c¢>@0 | = e>(h+1)(6-h+1).

Proof of claim 3 If either h < 1or § —h+1 < 1 then it is not hard to see that
¢> (h+1)(6—h+1). Let h>2and §—h+12> 2. By claim 2, we have inequality (13)
which is equivalent to

h(6+1) 1

T (6—h+l+ﬁ)z(h+l)(5—h+1). (14)
If (h+ 1) |U*| < 2h(6 — ,) then we are done by claim 1. Otherwise, using h > @, + 1 (by
(11)), or, in other words, 6 — @, > 6 — h+1, we have (h+ 1) |U*| 2 2h(6 — h+1) + 1. But
this is equivalent to

6+1 h(6+1), ol
2 |U*| = T \6—h+1+%}
and the result follows from (14).<1
If |U*] = 1 then by (11), (s, — 1) (6 — ) = (s — 1) /2 and the result holds by claim
1 immediately. So, we assume |U*| > 2. Recalling, how v is chosen from U* and how z;, Z;
are defined for T (v), we now choose w € U* — v and define ,2; (i=1,...,r) for T (w)
by the same way. Also, choose ¢ € {(y, ¢w} such that

(6 —p)=min(p, (6 o), vu(b—pu)-

Claim4 c2(2+1)(6—¢).
Proof of claim 4 Using (9) with lemma 1 for @ =0 T (v)vHwT (w) ®,
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o2 121+ 5 || + max (121, -, |2 |21 |2])
> 29 (6 — ) + max(8 — ¢, 6 — 9w) = (20 +1) (6 - ) @

K |N@)NV(C) > (6+1)/2 for all u € U* except one, then by lemma 1,
e> (U] -1)(6+1)/2+(6+1)/2=|U"|(6+1) /2,

whichbyclnimSgiwst.hedesiredmﬂt. Otherwise, ., > §/2 and ¢,, > §/2 for some
u1,us € U* implying that (p > §/2 es well. Recalling also that h > 9 +1 (from (11)) and

using (12) we obtain
(0—6/2)" < (h—6/2)" < (h—8/2)" + (8*/4— o) — (0 - 6/2)°

which is equivalent to (2¢+ 1) (6 — @) = (h+1) (6 — h +1). Then the desired result holds
from claim 4 immediately.<
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