The Powers of the Essential Subformulaes Sets in Frege Proofs and Substitution Frege Proofs

Anahit A. Chubaryan

Department of Informatics and Applied Mathematics, Yerevan State University
E-mail: achubaryan@ysu.am

Abstract

In the paper the Shannon function are defined, which characterize the power of essential subformulae sets for a formula with a fixed number of proofs steps. It is proved that the Shannon function for Frege proofs has linear estimate, while the Shannon function for substitution Frege proofs has exponential estimate.

1 Introduction

In several reviews of the major results in the area of the complexity of the proofs the relation of Frege systems (\mathcal{F} -systems) to Frege systems with substitution (\mathcal{SF} -systems) is discussed. It has been proved that \mathcal{SF} -systems have an exponential speedup over the \mathcal{F} -systems by steps ([1]-[3]). It has been shown that there are tautologies with substitution Frege proofs (\mathcal{SF} -proofs) of O(n) symbols, while its Frege proofs (\mathcal{F} -proofs) require $O(n^2)$ symbols ([1]-[3]). In [4] it is prove that there are tautologies of size O(n) that require O(n) lines and $O(n^2)$ symbols both in the \mathcal{F} -systems and in the \mathcal{SF} -systems. These results are proved by introducing the notion of essential subformulas for tautologies.

It is interesting how great can be the power of the essential subformulaes sets for a tautology, which has a fixed number of proofs steps in the \mathcal{F} -systems and in the \mathcal{SF} -systems.

In the present paper we introduce the Shannon function, which characterize the power of the essential subformulaes sets for tautologies of fixed proofs steps in \mathcal{F} -systems and in \mathcal{SF} -systems. We prove that the Shannon function for \mathcal{F} -proofs has a linear estimate, while the Shannon function for \mathcal{SF} -proofs has an exponential estimate.

2 Basic concepts, definitions and notations

We shall use generally accepted concepts of Frege system and Frege system with substitution.

A Frege system F uses a finite complete set of propositional connections. F is described

A Frege system \mathcal{F} uses a finite, complete set of propositional connectives; \mathcal{F} is described by a finite set of inference rules defined by the figures of the form $\frac{A_1A_2...A_k}{B}$ (the rules of inference with zero hypotheses are the axioms schemes); \mathcal{F} must be sound and complete, i.e. for each rule of inference $\frac{A_1A_2...A_k}{B}$ every truth-value assignment satisfying $A_1, A_2, ..., A_k$ also satisfies B, and \mathcal{F} must prove every tautology.

A substitution Frege system SF consists of a Frege system F augmented with the substitution rule with inferences of the form $\frac{A}{A\sigma}$ for any substitution σ , where a substitution

 σ consists a mapping from propositional variables to propositional formulas (in particular variables) and $A\sigma$ denotes the result of applying the substitution to A, which replaces each variable in A by its image under σ^1).

We shall henceforth assume that we have a fixed Frege system \mathcal{F} and corresponding

substitution Frege system SF.

The result proved here does not depend on the details of the language employed, but we shall assume that our language contains the connective \rightarrow together with the other connectives. This assumption will simplify the example, on which are based the lower bound.

We shall use the generally accepted concept of proof in \mathcal{F} ($\mathcal{S}\mathcal{F}$) as a finite sequence of formulas such, that every formula in the sequence is one of the axioms of \mathcal{F} ($\mathcal{S}\mathcal{F}$) or inferred from earlier formulas in the sequence by a rule in \mathcal{F} ($\mathcal{S}\mathcal{F}$). The formulas in the sequence are the lines in the proof.

The proof of a given formula in some system is called the *shortest* if it has the minimal number of lines among all proofs of this formula in this system. The number of the lines in the shortest proof of formula Φ in the \mathcal{F} -system (\mathcal{SF} -system) will be denoted by $T_{\Phi}^{\mathcal{F}}$ ($T_{\Phi}^{\mathcal{SF}}$).

In [4] the notion of essential subformulas in any tautology is introduced. Let Φ be some

formula and $Sf(\Phi)$ is the set of all non-elementary subformulas of formula Φ .

For every tautology Φ , for every $\varphi \in Sf(\Phi)$ and for every variable p $(\Phi)^p_{\varphi}$ denotes the result of replacement of the subformulas φ everywhere in Φ with the variable p. If $\varphi \notin Sf(\Phi)$, then $(\Phi)^p_{\varphi}$ is Φ .

We denote by $Var(\Phi)$ the set of variables in Φ .

Definition 1. Let p be some variable that $p \notin Var(\Phi)$ and $\varphi \in Sf(\Phi)$ for some tautology Φ . We say that φ is essential subformula in Φ iff $(\Phi)_{\varphi}^{p}$ is non-tautology.

We denote by $Essf(\Phi)$ the set of essential subformulas in Φ .

It is obvious that if Φ is minimal tautology, i.e. Φ is not a substitution of a shorter tautology, then $Essf(\Phi) = Sf(\Phi)$.

The formula φ is called determenative for the \mathcal{F} -rule $\frac{A_1A_2...A_k}{B}$ $(k \geq 1)$ if φ is essential subformula in formula $A_1 \wedge (A_2 \wedge ... \wedge) A_{k-1} \wedge A_k \rangle ... \rangle \to B$. By the $Dsf(A_1, ..., A_k, B)$ the set of all determenative formulas for rule $\frac{A_1A_2...A_k}{B}$ is denoted.

In [4] the following statement is proved.

Lemma 2.

1. For any \mathcal{F} -rule $\frac{A_1A_2...A_k}{B}$ of \mathcal{F} $(S\mathcal{F})$

$$Essf(B) \subseteq \bigcup_{i=1}^{k} Essf(A_i) \cup Dsf(A_1, A_2, ..., A_k, B),$$

2. For any substitution rule $\frac{A}{A\sigma}$ of $S\mathcal{F}$.

$$Essf(A\sigma)\subseteq\bigcup_{\varphi\subseteq Essf(A)}\{\varphi\sigma\}.$$

To evaluate the powers of the essential subformulaes sets for a formula of a fixed \mathcal{F} -proofs lines and of a fixed \mathcal{SF} -proofs lines two Shannon function are defined:

$$\begin{split} Sh^{\mathcal{F}}(n) &= \max_{T_{\Phi}^{\mathcal{F}} \leq n} |Essf(\Phi)|, \\ Sh^{\mathcal{SF}}(n) &= \max_{T_{\Phi}^{\mathcal{F}} \leq n} |Essf(\Phi)|. \end{split}$$

¹This definition of substitution Frege system allows to use the simultaneous substitution of multiple formulas for multiple variables of A.

3 Main result

In this section we prove, that Shannon first function has a linear estimate, while the Shannon second function has exponential estimate.

Theorem 3. For a sufficiently large n

1.
$$Sh^{\mathcal{F}}(n) = O(n)$$
,

2.
$$Sh^{SF}(n) = 2^{O(n)}$$

>Proof is based on the following statements:

- a) in every axiom of F-system (SF-system) there is only a limited number of essential subformulas,
 - b) every F-rule has a limited number of determenative formulas only,
- c) if in some $S\mathcal{F}$ -proof the last formula A_n is inferred from A_{n-1} and earlier formulas $A_i, A_{i_2} \dots A_{i_s}$ by any \mathcal{F} -rule, and A_{n-1} is inferred by the substitution rule from A_{n-2} , then

$$|Essf(A_n)| \le 2|Essf(A_{n-2})| + \sum_{r=1}^{s} |Essf(A_{i_r})| + |Dsf(A_{n-1}, A_{i_1}, \dots, A_{i_s}, A_n)|$$

(see Lemma),

d) for the formula

$$\Phi_m = x_1 \to \underbrace{(x_2 \to \ldots \to (x_2 \to x_1) \ldots))}_m \quad (m \ge 1),$$

$$|Essf(\Phi_m)| = m + 1,$$

e) for a sufficiently large m the formula Φ_m can be proved using only O(m) lines in

 \mathcal{F} -proof and only $O(\log_2 n)$ lines in \mathcal{SF} -proof [1].

The upper bound for the function $Sh^{\mathcal{F}}(n)$ follow from statements a) and b), the upper bound for the function $Sh^{\mathcal{SF}}(n)$ follow from statements a), b) and c). The lower bound for the function $Sh^{\mathcal{F}}(n)$ is obtained from the formula Φ_m by m = O(n), the lower bound for the function $Sh^{\mathcal{SF}}(n)$ is obtained from the formula Φ_m by $m = 2^{O(n)}$.

References

- Cejtin G., Chubaryan A., On some bounds to the lengths of logical proofs in classical propositional calculus (in Russian), Trudy Vycisl. Centra AN Arm SSR i Yerevan Univ. 8, 57-64 (1975).
- [2] Chubaryan A., On the complexity of proofs in different systems of propositional calculus, [in Russian], Applied Mathematics, Yerevan State Univer. 1, 81–89, (1981).
- [3] Buss S. R., Some remarks on lengths of propositional proofs. Arch. Math. Logic (1995), 34, 377-394
- [4] Chubaryan A., The complexity in Frege proofs with substitution (in press), 3p., 2000.