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Abstract

In this paper a rather simple method to obtain upper bound on the cardinality
of so called k-separated(kS) sets or perfect Hash families is presented. The obtained
bound is better than similar Fredman-KomIds [4] and Kérner-Marton [6] bounds almost
everywhere. For some cases the exact value on the cardinality of a kS set is given.
Besides two constructions of kS sets are given. The first construction is recursive in
nature, where for arbitrary g and k (g > k), n is practically of order log N and in
this sense is near to optimal. The second construction method allows to give good
constructions of 35 sets for small values of n.

1 Introduction

Let D be some subset of {1, 2,... ,q}" represented in the form of & | D| x n matrix D.

Definition 1. The set D is called kS (k < g), if any k -rowed submatrix of D includes
at least one column all elements of which are distinct.
Let us denote the maximal cardinality of a kS set by

N{“l a, k) =mDEII.D|

The problem on obtaining good upper and lower bounds on N (n, g, k) or development
of good constructions for kS sets has recently grown into an urgent one. These sets are.
known in literature under the name of perfect Hash Families. 3

Definition 2. (see [7]).

a) A function h : {1,2,...,N} — {1,2,...,q} is a perfect hash function for S C
{1,2,... ,N},ifh () #h (y) forall z,y€S, z#y.

b) A family H of functions 4 : {1,2,... ,N} — {1, 2,.... ,q} is called (N, g, k) perfect
iffm'evarySQ{I,‘.!,....N}.|S|=k,theree:d.stuahEH'auchtha.thisperfeutfurS.

Ifwedmten=|Hi,thenwehavelﬁ.E:N=N(n.q,k].

Ewﬁcrmu&aobtninedmuppermdlomrboundsofﬁuem. Fredman and Komlés
in [4] have obtained upper and lower bounds on N (n, g, k) expressed in the following form
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(see [6]): 2

é!agﬁf%Iog:\’(n.q.kjsglq('r-k+2) @

whereq&s:*@;{q—j}.audASBdmmahatAgf_l+0(1)) B, where 0 (1) tends to zero

when n tm:!x to infinite.
In [5), [6] Kérner and Marton using & very complicated proof technique, improved the
upper bound on N (n, g, k) &s follows:
1 i z =1 s
= log N (n, q, kjfug‘,n%nt—z % -’i’—_{l (2)
This bound matches with the one given in (1) for j =k —2.
Both upper bounds in (1) and (2) are of asymptotic nature and practically provide no
means to obtain the exact value of n.
Earlier results obtained on constructions. The known upper and lower bounds {see for
example bound (1)) theoretically state that for arbitrary g and k (g > k) there exists a kS
get auch that the length n and the cardinality N are connected by the relation

n=06/(logN).

Some constructions of kS sets expressed by error-correcting codes and balanced incom-
plete block designs(BIBD) are presented in papers [1] and [3], respectively. However the
paper [2] convincingly shows that for both constructions the length n strongly depends on g
and k and therefore they don't allow to construct kS sets for large n for the given g and k.

In paper [2] two recursive constructions of kS sets, where n is a polynomial function of
log N (for fixed ¢ and k) are given. More precisely

#=0 ((logm‘“'“”"’) .

In this paper using & rather simple method, we obtain the upper bound on N (n, g, k)
which is non-asymptotic and is better than similar Fredman-Komlés and Kémer-Marton
bounds almost everywhere. For some cases of interest the exact value of N (n, g, k)is given.

Besides two constructions of kS sets are given. The first one- recursive in
arbitrary ¢ and k (g > k), n is practically of order log N and in this sense is near to optimal.
The second method allows to give good constructions for 35 sets for small values of n.

2 Upper bounds

To obtain the upper bounds we need the following two Lemmas:
Lemma 1. Let D be a N (n, q, k) xn kS matriz. Then for an arbitrary q the following
relations hold:
(i) if k = 2n, then
N (n, q, k) =4q.
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(i) if k=2n—1, then

N{“-ka)ﬂtﬁ}(‘l—‘lu. if ﬂ‘ldOBnDthdgq_l
N(ngk)=(g-1), i n—1dvidesg—1

(i6i) if k =2n—2, then

|E2@-1)] i n>3

|Ik£
i e {3q-—6. if n=3.

Proof. For our convenience, we call an element of the alphabet that occurs more than
mmwcdmnofthemhixbasaspaidekmmtanddmoteN(n,q, k)by N.

Proof of (i). Let k > 2n. Suppose that N > g. Then, evidently, each column in the
matrix D contains at least a single special element. Choose a pair of such elements from each
column and mark out those rows in matrix D where the chosen elements stand. Clearly, the
mumber of such rows in the matrix is not more than 2n. Then any k- rowed submatrix of
D with marked out rows will contain no column whose all elements are distinct. Thus we
obtain that the matrix D is not kS. This is & contradiction which proves (i).

Proof of (). Let k = 2n—1. On one hand, it is clear that the mmber of special elements
in each column of the matrix is not less than N — g+ 1.(This number is equal to N — g+ 1,
if in any column of the matrix there exists only a single element of such kind). On the other
hand, no row of the matrix may contain more than a single special element, otherwise there
will be 2n — 1 rows of the matrix D which do not contain a column whose all elements are
distinct.

Hence, we may write

(N-g+1)n<N
or
NPy By, @

On the other hand the construction given below shows that if k = 2n — 1,and (n — 1)
divides (g — 1), then the bound (3) is achievable.

Construction. Let k = 2n — 1 and (n — 1) divides (¢ — 1). Then we'll take any vector
of length &1 with a single special element in its (i — 1) &1 to i2=2 positions as the i-th
(=1,...,n) column of the matrix. Naturally, this matrix will be k = 2n — 1- separated.

Ezample. n =5, k=9, g = 13. Since 4 | 12 then we have a 15 X 5 matrix which is a
9-separated optimal set:
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000 ~1 N i R
W00 = == =] oen s 0N

10 10 10
11 111
12 12 12 12 1
13 13 13 13 1

Proof of (iii). Let k=2n—2, n> 3.
First, suppose that for any two columns of matrix D, there exist no row in the matrix
which includes a special element chosen from both columns. Then we have the following

inequality

n(N-g+1)<N

or
n 1 k+2
N2l B2y @
Nawuuppmethntinmembthmmmmmmwmmw
neously have a special element at least on one row. Then there should not be any other two
eolumns among the remaining n — 2 columns in the matrix, which have a special element on
any row, otherwise the matrix D will not be k = 2n — 2 -separated. Hence, we have

(n—2)(N—g+1)<N

N <l—(9 1)J—l (q 1)) (5)

Comparing (4) with (5), we obtain the first case of (iii).

Now consider the case for n =3, k=4.

First, suppose that there exist two columns in the matrix D which simultaneously have
no special element on any row of the these columns. Then we have the inequality

2(N-q+1)<N

N<2(q-1) (6)

Now let two columns in each of three pairs of columns simultaneously have a special
element on any row of the matrix. In this case each column has at least two distinct special
elements and there are no more than two such elements on each row, otherwise the matrix

will be no 45.



108 New Upper Bound on the Cardinality of & k-separated Set

Hem:e.si:m:etl:.senuml;vert:ui'nal:pet.’mllalenmal:msi:n:ml(mtlum.i'\'—q.;.zm.m,,_._ma’th‘m

3(N—g+2)<2Nor .
we have 3(N —g+2) s o

From (6) and (7) follows the second case in (iii). This fully completes the proof of Lemma
1. 5
(Notathatﬁ:rlugek,inammarmcﬂymnlosouSWthBonegimmLemmaLm

mwobtdnhmmdabettm‘t.hant.heprmntedonu).
Lemma 2. .n)f'ﬂ"w ﬂfmmﬂ: q, k (,‘SQJ. ﬂl‘f"lmh@lﬂﬁvhﬁn

N(ﬂ,q,k)SI_N(n-l,q,k)-’-‘-—E—l,

Proof. Let D be a kS set.
Consider any of the columns in matrix D. For definiteness, let it be the 1-st column, and

let 7, 1 < i < g, be the number of i symbol in that column. Thenéz, =N(nqk.
Choose k—1 greatest numbers of z1, 3, ... , . Let they be the first k—1 (21,23, ...,%%-1)
ones.AmelElz.mM.'I‘hen.onanehmd,wehm

i=]

R ] ®

gince N (n, g, k) /g is the mean multiplicity of the element in that column. p
On the other hand, consider a M X (n — 1) matrix D' which includes the first M rows
of matrix D without its first column. This matrix is kS. Hence, we have
Mﬁ”(ﬂ_IIQ?k)' (9}
From expressions (8) and (9) we obtain

M.(k-l]s-’v(ﬂ—l'q‘ﬂ

which proves Lemma 2.
o]
From Lemmas 1 and 2 follows:
Theorem 1. The upper bound on N (n, g, k) is given by:
g q q
N (m a0 <llagtgltyl x - x ) (10)

n-ny

B -1)] for k=2n -1
A= liﬁ‘l(q—lj_‘ for k=2n,—-2, n; >3
3g—6 for k=4 n;=3.
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Comparison of upper bounds (1), (2) and (10)

First, we compare the bounds (1) and (2). To do this we state the following lemma:

Lemma 3. For any fized number k, there ezists a number gq (k) such that for all ¢ >
o (k) , the minimum of the right side in Korner-Marton bound

1 : = a-3
_mgmn,q,ku“ﬁn“q,ﬂhsk = (11)

1s achieved for j = 0.
Proof. Denote by
Ay )= B tog 1
Now estimate the difference of A5, (g, k) — A;(q, k), 0<j<k-3.

Ager (0, k) — Ag g, K) = B3 log =55 — 555 log 754 =
=25 [(g—5—1) log £} — q log ;54| =
= 55 [1og [ R — g (££1)"™
sjmrorqgk £2) ki) 5 1, then [ 422201 increases faster with g than

&Eti . Then it is clear that there exists a number gy (k, §) such that for ¢ > gy (k, 7)
1a.tsr expression is positive.

w (k) =, max a0 (k, J).
Then for all ¢ > g0 (k) Aj (g, k) increases monotonely with j, which proves Lemma 3.
]

Lemma 3 shows that except for a finite number of values of g the Kérner-Marton bound
is better than Fredman-Komlds bound.
The bound (2) is also given in [6] in the following form:

N(n,q, k)—3j qL'.“_l q_j
k- j—l qH,] 105 = 1’ fﬂfan,}'_fﬂl,2,...,k—2.

In view of all facts mentioned above, forq)q.;(k}wuhavet.heinaqmlity

N(n, g, k) < (k- 1)(:: 1)'

Comparing this bound with (10) we come to the following:

Conclusion. For a fixed k there exists a gp (k) such that for ¢ > go (k) K&rner-Marton
bound is better than Fredman-Komlés bound. In the cases when Kérner-Marton bound is
better than Fredman-Komlés bound, then bound (10) is better than both these bounds.

Illustrate this by an example.

Ezample. Let g =9, k = 5, then the bounds (for n > 3)

bound (1) N (n, 9, 5) < (2.2837)"

bound (2) N (n, 9.5) < 4. (2.25)"
bound (10) N (n,9,5) <|[[1.1415-2.25)2.25] x ... x 2.25].

--]I
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3 Constructions
First Construction. To describe the algorithm of the first construction we use the following

two Theorems. & ; L2
Theorem 2 1. LetV c {0,1,...,9—1} be a code with minimum Hamming distance

d. If
1
d>|1- )n,
( 6]
then V is also kS set.

Proof. Components of any two vectors @ and b, @,5 € V differ at least in d positions
and components of any third vector 2, Z,€ V; € # @, b coincide with the components of
each of two vectors @ and b no more than in n — d positions. Hence if

d>2(n—d)ord>§—n.
then the set V' is 35. Moreover in a matrix including any three vectors of V' there exist at
least 3d—2n columns whose all elements are distinct, and therefore if the following inequality
also holds 5
3d—2ﬂ>3(n—d}ord>§n,
then in the matrix of any four vectors of V' there exist at least 6d — 5n columns whose all

elements are distinct. Thus V' is 45.
Suppose, proceeding in this manner we come to the following:
If

where a1 and b;_;are natural numbers, then V is a (k — 1) set and any matrix of (k — 1)
vectors of V has at least by_;jd — ap—1n columns with all distinct elements. And if the

inequality also holds
bg—yd — ag_1n > (k— 1} (B - cﬂ

il +k—1
R—1 = =E
d>bk_;|+k—1n b}ﬂ
then V is a kS set.

By taking a3 = 2 and b3 = 3 in the following recurrent relations:
ar=0p1+k—1
be=br1+k-1

we have
o =450 1= (8 -1
b =50 = ),
which proves Theorem 2.

'This theorem was already proved by the authers when t knew that using other technique,
N.Alon have given the proof of this Theorem earlier (see [1]). g S5
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The following two corollaries are easily obtained from this Theorem.

For convenience we denote kS sets by PHF (n, N, g, k) following the notations accepted
by the suthors in paper [2].
Corollary 1. Let Vbeq-aryMDReode(N.K.D).K+D=N+1.Ifxultq).1,thm
2

Vis PHF (N,¢*,4,k) .
Corollary 2. Let V be extended Reed-Solomon(RS) code over GF (p™),

(N=p"K,D=N—-K+1), where p> (%). If K=p™", then V is

Pm-‘(p"',p"’ ,p"‘,k).

Theorem 3. If there exist PHF (ng, Ny, qo, k) end PHF (ny, Ny, 1, k), where g < ¢ <
Ny, then there also exists PHF (ngny, Ny, qo, k) -

Proof. Put each symbol from the set {1,2,...,4;} in correpondence with any distinct
row vectors of the set PHF (ng, No, go, k) . Then substitute each symbol of {1,2,...,¢} in
the matrix PHF (ny, Ny,q, k) by corresponding vector of length ng. We obtain Ny x ngn;
matrix consisted of symbols {1,2,...,qo}. This matrix is PHF (ngny, Ny, g, k). Indeed,
by the condition of the Theorem in any k rows of matrix PHF (n;, Ny, g1, k)there exists
a column with k distinct symbols from {1,2,...,g:1}. A Ni X ng submatrix in the matrix
PHF (ngny, N, go, k) corresponds to this column on the same k rows of which stand k vectors
from matrix PHF (ng, Ny, qg, k). Therefore, by the condition of the theorem this submatrix
includes a column which contains k distinct symbols from {1,2,...,q} .

|

Construction algorithm.
Let g, k (g > k) be arbitrary natural numbers. The construction algorithm is implemented

step by step.

Step 0. Using some method construct PHF (no, No = p',g, k)for arbitrary i > 2 and
prime p > (3).

Step 1.

We have PHF (ng, No = 7,4, k).

Following Corollary 2 construct ~ PHF (ny = p', Ny = p#~,p', k).

By Theorem 3 we obtain PHF(ﬂ|=noﬂ;.N;=P"‘-l|q-k .

Thus we have i

n = m‘;p‘ -plog N,
From the step [ — 1, we have PHF (ny-y, Ng-l,q,ﬁ).
Ny
Using Corollary 2 construct PHF (n;= Ni_y, N} ,N,_,,k).
: LS
By Theorem 3 we obtain PHF (m =nan, Ni= N1 ,q, k) .

Applying induction method we get the following relation between n; and N;
ng
S N.
L] 'lmp P’bﬁ (]
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Bﬂnsthelstterrelnﬂoninbothefmm
n =06 (p(logN)).
From the recurrent relation
i X
M=-N|_; and NCI:Fl-

we obtain MG
M=Pat—:p°*-="

whereag =i, for1<j<i-1 aj=."_'1,.’=L,

Taking a; =1 for all 1 < j <1—1in (12), we have

,i—l

N:D‘PP‘-

(12)

From which, if 1 <[ <i — 1, since p' < ip*?, then

=0 |log,...log, N; x logN; | ,
n (K, OE,txDE:J

-1

and if i — 1 <1 < ip™!, then

-2

=06 |log,log,...lo
ny e(ogp Ep g,N;xlogN;).

etc.
In general, we have

=0 | log,log,...log, N
n (og’gf %, ongN).

where when n — o0, § — o0.
Evidently, the first multiplier in the parentheses is far much less than log N, and therefore

we may say that the order of n is practically near to asymptotically optimal value © (log N).

Erzample. k=3,q=3.
The constructions described in [2] for these parameters give the following 38 sets:

() PHF (3x 4,5%,3,3), n = 0.556 (log N)?;

(b) .PHF(R_‘,'U—I],?,3,3), ““U-MUOSN]!;

(c) our construction: We'll use RS codes with the parameters (g —1,k,d) ,where g = 3,
k=3"!andd=2-3"1> 2(3'—1) as MDR of corollary 1.
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Step 0. Take

Step 1. We have

By Corollary 1 construct
By Theorem 3 we obtain

Step 2. We have
By Corollary 1 construct
By Theorem 3 we obtain

PHF (4,9,3,3) -50 called 'tetra’ code.

PHF (4,3%,3,3).
PHF (8,3%,9,3).
PHF (32,3°,3,3).

PHF (32,%,3,3).
PHF (38 -1,3°%.3%3).
PHF (23296,3'% 3 3).

Using the table below we may compare the constructions (a), (b) with (c) for some

values of n and N.

Constructions n N
(n),7=2 48 625
(b),j=6 60 729
(c), step 1 32 729
a),i=17 19125 |5 = 3>
(b), j=1458 | 4248612 | 314%
(c), step 2 23296 C

Construction 2. (For ¢ =3, k= 3).
Construction algorithm.

The construction algorithm is implemented step by step. In the j-th step we con-

struct

PHF (5%,%,3,3).
Denote the corresponding matrix by Mj.

Step 0: Take the following 3 matrices

000 01 2 021
a=| T 41 b=l 20), e=|1702]:
32 3 2:001 210

Remark. It is easily verified that the rows of any two of these three matrices taken

together are PHF (3,6,3,3).

Denote by L; the 3 x j matrix consisted of all vectors of length j from the alphabet

el

Step 2. For j = 2 construct the matrix

{a,b,c} .
Step1. Forj=1

we have PHF (1,3,3,3).

0 a
ﬂ‘;=(M1L;)=(1 b).

2 ¢c
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mpﬁngtheminm:ﬁxm&mdmlbsﬂmﬁngthnsymboha,b,cbymupmding
matrices, we obtain 9 X 4 size matrix ‘

00 0]
111
22 2

114

oo o

-
- o

My =

oW

1
2
0

2 2
2 0
2 1

[
=0
L

and obtain PHF (22,32 3,3) — so called tetra code.

fszma. Let the 33~ x (j — 1)matriz M;_, be PHF((;'—n’,aJ-l.a,a). Then the
malriz

My = (M L)

of size ¥ x ((j—1)" +3(j — 1)), where Mj_, is obtained from M;_, by tripling the
rows in it and Lj_, is obtained from L;_, by substituting of symbols a, b, ¢ by corresponding
matrices, is PHF ((7 1) +3(j—1),3,3,3). _

Proof. Let = ZnZi, § = Jm¥i» Z = Zm% be three distinct rows in matrix M;. Then

1. Let Z # P # Zm . Then the proof follows immediately from the condition of the
Lemma.
Z
2. Let Zn = P = Zm . Then any column of matrix | %, | is consisted of distinct

Z
symbols.

3. Let any two vectors of three vectors Z,, ., Zm coincide, but the third vector does
not, let namely Z, = §,, # Zn. Then in matrix _

)

exists a column whose all elements are distinct, which follows from the Remark.
This completes the proof of Lemma 3. |

It is easily seen that the column of the form (012012...012)” occurs (j — 1) times in
the matrix M, Leaving only one of these columns in the matrix , we obtain the matrix M;
consisted of I columns.
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