A Construction for the (n, 4, 2) Optical Orthogonal Codes

Sosina S. Martirosvan

Institute for Informatics and Automation Problems of NAS RA and YSU

Abstract

An optical orthogonal code is a constant weight block code with good autocorrelation and cross correlation properties. In this article we consider Optical Orthogonal Codes (OOC) when the maximal correlation equals two. It is given a new construction method for (n, 4, 2) - OOC.

Definitions

An (n, ϖ, λ) optical orthogonal code C is a family of binary sequences of length n and weight which satisfy the autocorrelation property:

$$\sum_{t=0}^{n-1} x_t x_{t+\tau} \leq \lambda$$

 $\sum_{t=0}^{n-1} x_t x_{t+\tau} \leq \lambda$ for any $x \in C$ and any integer $0 < \tau < n$, and the crosscorrelation property: $\sum_{t=0}^{n-1} x_t y_{t+\tau} \leq \lambda$

$$\sum_{i=1}^{n-1} x_i y_{i+\tau} \leq \lambda$$

for any $x \neq y \in C$ and any integer $0 \leq \tau < n$ (where the subscripts are to be taken modulo n) [1].

Whereas several optimal constructions for $\lambda = 1$ known, only a few are known for $\lambda = 2$. For $\varpi = 4$ and $\lambda = 2$ the correlation properties are automatically satisfied, so all that is important is the set of sequences with full cyclic order.

The case $\varpi = 4$ and $\lambda = 2$ is the first non-trivial case. Bitan and Etzion in [3] give a method for constructing optimal (n, 4, 2) -codes with the use of Steiner quadruple systems. In this article we will give a new construction method of (n, 4, 2) -OOC for any length n, the cardinality of which is $|C| = O(n^2)$.

For the case $\varpi = 4$ and $\lambda = 2$ the cardinality of known OOC [2] derived by using a greedy algorithm is equal to $n^2/96$.

Our codes cardinality is equal to $|C|=\left\{\begin{array}{l} \frac{n^2-2n+1}{36}, & \text{when } n \text{ is even,} \\ \frac{n^2-2n+1}{36}, & \text{when } n \text{ is odd.} \end{array}\right.$ The Johnson upper bound is equal $\frac{n^2-3n+9}{24}$.

Let $U=(u_1,u_2,...,u_n)$ be a binary n-tuple of Hamming weight ω , where $u_i\in[0,1]$.

For convenience , we use the set notation of U , i.e. $U = \{u_{V1}, v_2, ..., v_n\}$, where v_l denotes the slot distance between lth "1" and l+1th "1" for $l=1,2,...,\varpi-1$, and v_{ϖ} denotes n minus the slot distance between wth "1" and 1st "1".

Head	Head	Head
entry	entry ·	entry
entry	entry	entry
entry	entry	entry

Table 1:

Definition 1 For any $U=(u_1,u_2,...,u_n)$ binary n-tuple of Hamming weight ϖ , let set $\dot{U}=\{a_1,a_2,...,a_\varpi\}_n$ where a_l denotes the slot distance between the lth "1" and (l+2)th "1", $l=1,...,\varpi-2$, and $a_{\varpi-1}$ denotes n minus the slot distance between $\varpi-1$ th "1" and 1st "1", and a_{ϖ} denotes n minus the slot distance between ϖ th "1" and 2nd "1".

For any U the set U we will call second neighbors' set of U.

The binary n-tuples of Hamming weight 4,

The binary variables of Tables 3.
$$C = \{U_{i,j}\}_n \ j = 1, 2, ..., \left\lceil \frac{S_n}{2} \right\rceil, i = 1, 2, ..., S_n - 2j + 2,$$
 where $U_{ij} = \{i, S_n - i - j + 2, i + 2j - 1, 2S_n - i - j + 3\}_n$.

The cardinality of the code C is: $|C| = \sum_{i=1}^{S_n/2} S_n - 2j + 2$,

$$|C| = \left\{ \begin{array}{ll} \frac{n^2 - 2n - 8}{36}, & \text{when } n \text{ is even,} \\ \frac{n^2 - 3n + 1}{36}, & \text{when } n \text{ is odd.} \end{array} \right.$$

The class of the code vectors for fixed $j, j = 1, 2, ..., \left\lceil \frac{S_n}{2} \right\rceil$ we will denote by

$$L_j: L_j = \{U_{i,j}\}_n, i = 1, 2, ..., S_n - 2j + 2$$

Example: $n = 10, \varpi = 4$.

 $S_{10}=2, j=1, i=1,2,$

$$\begin{array}{l} D_{10} = 2, 7 = 1, 2 = 1, \\ U_{11} = (1101010000)_{n=10}, U_{11} = \{1, 2, 2, 5\}_{n=10}, U_{11}' = \{3, 4, 7, 6\}_{n=10}, \\ U_{21} = (1011001000)_{n=10}, U_{11} = \{2, 1, 3, 4\}_{n=10}, U_{21}' = \{3, 4, 7, 6\}_{n=10}. \end{array}$$

1: Bounds on OOC for (n = 3k + 1, 4, 2)

umas c	II OOC TOL (11	
n	New OOC's	UB
7	1	1
10	2	3
13	4	4
16	6	8
19	9	12
22	12	17
25	16	22
28	20	29
31	30	35

Proposition 1: For fixed $j, j=1,2,...,\left[\frac{S_n}{2}\right]$, all vectors of the class $L_j:L_j=\left\{U_{i,j}\right\}_n$, have the same second neighbors' set, which is the following:

$$U'_{ij} = \{S_n - j + 2, S_n + j + 1, 2S_n + j + 2, 2S_n - j + 3\}_n \text{ for } i = 1, 2, ..., S_n - 2j + 2.$$

Note that for fixed n and $j, j = 1, 2, ..., \left\lceil \frac{S_n}{2} \right\rceil$ all these $S_n - j + 2, S_n + j + 1, 2S_n + j + 2, 2S_n - j + 3$ for numbers are different.

Proposition 2: For any two vectors $U_1 \in L_j$ and $U_2 \in L_k$, where $j \neq k, k, j = 1, 2, ..., \left\lceil \frac{S_k}{2} \right\rceil$ the sets U_1' and U_2' disjoint.

Theorem: Let C be a family of U_{ij} binary n-tuples of Hamming weight 4,

 $C = \{U_{i,j}\}_n \ j = 1, 2, ..., \left\lceil \frac{g_n}{2} \right\rceil, i = 1, 2, ..., S_n - 2j + 2$

where $U_{ij} = \{i, S_n - i - j + 2, i + 2j - 1, 2S_n - i - j + 3\}_n$

The family C is (n, 4, 2) - OOC

Proof: Suppose to the contrary $\lambda \geq 3$.

The proof for the autocorrelation:

 \triangleright Note that for any vector $U \in C$ there are two shifts U^1 , U^2 the set notations of which have one of the following forms:

Case1) $U^1 = \{r_1, r_2, r_3, r_4\}_n$ and $U^2 = \{r'_1, r'_2, r_3, r_4\}_n$, where $r_1 + r_2 = r'_1 + r'_2$

From proposition 1 it follows that the Casel) occur only if $U^1 = U^2$ (as $r_1 + r_2 = r'_1 + r'_2$).

Case2) $U^1 = \{r_1, r_2, r_3, r_4\}_n$ and $U^2 = \{r'_1, r'_2, r'_3, r_4\}_n$, where $r_1 + r_2 = r'_1$ and $r'_2 + r'_3 = r_3$ 1. Let $r'_1 = r_3$.So $r_1 + r_2 = r'_2 + r'_3$ and as the second neighbors' set doesn't contains the same number twice(see proposition1 it follows that $r_4 = r'_1 = r_3$. From the other side $r_4 + r'_1 + r_3 = n$. So

 $r_4 = r_3 = \frac{n}{3}$. But this is a contradiction, because it follows from construction of C that

for any $U \in C$ only one element of the set U can be equal to $\frac{n}{3}$.

2.Let $r_1' \neq r_3$. As U^1 , U^2 are different shifts of the same vector U, then the set U^1 must contain an element which is equal to r_1' , it can be only r_4 (as $r_1 + r_2 = r_1'$ and $r_2' + r_3' = r_3$. So $r_4 = r_3$, because the set U^2 must contain an element which is equal to r_3 and it can be again only r_4 .

This is a contradiction.⊲

The proof for the cross correlation:

 \triangleright Note that after some shifts set notations for any two vectors $U_1, U_2 \in C$ will have one of the following forms:

Case1) $U_1 = \{r_1, r_2, r_3, r_4\}_n$ and $U_2 = \{r'_1, r'_2, r_3, r_4\}_n$, where $r_1 + r_2 = r'_1 + r'_2$

Case2) $U_1 = \{r_1, r_2, r_3, r_4\}_n$ and $U_2 = \{r_1', r_2', r_3', r_4\}_n$, where $r_1 + r_2 = r_1'$ and $r_2' + r_3' = r_3$

1) Let $U_1, U_2 \in L_j$, $j = 1, 2, ..., \left\lceil \frac{S_n}{2} \right\rceil$ (U_1 and U_2 belongs to the same class.)

Case1): As U_1, U_2 have the same second neighbours' set and that set includes every element only once (see proposition 1) and $r_1 + r_2 = r'_1 + r'_2$ we will have: $r_2 + r_3 = r'_2 + r'_3 \Longrightarrow r_2 = r'_2$ and $r_4 + r_1 = r'_4 + r'_1 \Longrightarrow r_1 = r'_1$. So $U_1 = U_2$, which is a contradiction.

Case2) Note that for fixed $j, j = 1, 2, ..., \left\lceil \frac{S_n}{2} \right\rceil$ this sets

 ${i, S_n - i - j + 2, i + 2j - 1, 2S_n - i - j + 3}_n$

 $\{S_n-j+2, S_n+j+1, 2S_n+j+2, 2S_n-j+3\}_n$ for $i=1,2,...,S_n-2j+2$, can have an intersection only if $i=S_n-3j+3$, or $i=S_n-2j+2$.

For $1 < j \le \left\lceil \frac{S_n}{2} \right\rceil$ the set notation of U_1, U_2 can be only the following:

 $U_1 = \{S_n - 3j + 3, 2j - 1, S_n - j + 2, S_n + 2j\}_n$, when $i = S_n - 3j + 3$,

 $U_2 = \{S_n - 2j + 2, j, S_n + 1, S_n + j + 1\}_n$, when $i = S_n - 2j + 2$

And this sets are disjoint (as $1 < j \le \left\lceil \frac{S_n}{2} \right\rceil$) This is a contradiction, because for case2) we have that $r_4 \in U_1$ and $r_4 \in U_2$.

2) Let $U_1 \in L_j$ and $U_2 \in L_k$; k < j; $k, j = 1, 2, ..., \left\lceil \frac{S_n}{2} \right\rceil$ (U_1 and U_2 belong to the different classes.)

It follows from Proposition 1 that case1) can't occur.

case2) Note that for k < j; $i_1, i_2 = 1, 2, ... S_n - 2j + 2$, these sets:

$$\begin{array}{l} U_1=U_{i,j}=\{i_1,S_n-i_1-j+2,i_1+2j-1,2S_n-i_1-j+3\}_n;\\ U_2'=U_{i,k}'=\{S_n-k+2,S_n+k+1,2S_n+k+2,2S_n-k+3\}_n;\\ \text{can have an intersection only if }S_n-k+2=i_1+2j-1;i_1=S_n-k-2j+3. \end{array}$$

From the other side for case2) we will have that

1) $2S_n - i_2 - k + 3 = S_n - i_1 - j + 2$ or

2) $2S_n - i_1 - j + 3 = i_2 + 2k - 1$.

But for $i_1 = S_n - k - 2j + 3$ the equations 1) and 2) are note correct.

Thus case2) can't occur.⊲

References

- F. R. K. Chung, J. A. Salehi, and V. K. Wei, "Optical Orthogonal codes: design, analysis and applications," IEEE Trans. Inf. Theory, vol. 35, pp. 595-604, May 1989.
- [2] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D. Smith, "A new table of constant weight codes',' IEEE Trans. Inf. Theory, vol. 36, pp.1334-1380, Nov. 1990.
- [3] S. Bitan and T. Etzion, "Constructions for optimal constant weight cyclically permutable codes and difference families", IEEE Trans. Inf. Theory, vol. 41, pp.77–87, Jan. 1995.