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Abstract

A source coding problem for a one-stage branching communication system is consi-
dered. Messages of K correlated sources {X,...,Xx} = X ere encoded by & common
encoder snd two secondary encoders. At each receiver it is demanded: (i) to recover
messages of a part of the sources within given distortion levels, (ii) to keep secret
the outputs of another part of the sources for receivers connected to the secondary
ancoders; for this purpose correspanding distortions must be ensured to be sufficiently
great, (iii) to disregard the information of the rest of the sources.

1t is required that for a given reliabilty E > 0 at ell receivers the error probabilities
of the blocklength N code do not exceed 2-VE,

Inner and outer bounds on the region of achievable rates are established, depend-
ing on the reliability £ and permissible distortion and secrecy levels. The results
are specialized to some particular communication systems, including those studied by
Yamamoto and El Gamal and Cover.

1 Introduction

westudyapmblanafcommonmmdingofKuormlatedmfmtxmmimimmthma
destinations with respect to fidelity, security and reliability criteria for the one-stage branch-

ing communication system shown in Fig. 1.

The problem is a generalization of the encoding problem studied by Yamamoto [17] for
a bidirectorial branching commumnication system.
Let X., n = 1, N be a sequence of N discrete, independent, identically distributed

(i.id.) random vectors (RV) with K components X,
(Rv) X represents the message of the k-th source at the n-th
with values in the finite set Xi, k = 1, K, respectively. Let

A X X X =X, (2\.’1)" X..X (A‘x}" = {X)".
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= (Xi ., XKn) A random variable
moment, k=1, K,n=T1,N,
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Fig. 1. One-stage threedirectorial branching communication system.

Let X[, be the reconstruction of the n-th message of the k-th source at the m-th receiver,
with values in a finite set X", respectively, n =T, N, k € G" UG, m = 0,1,2. The sets
A are the reconstruction alphabets and in general they are different from X, k € GPUGP,
m=0,1,2. Let

(X'i',‘mk € g:n} ﬂx:.l.m (Xn':l.ll”"‘ml,ﬂ) =xnm;.n &= qun m=0. 1,2.

We denote by Ay, the Cartesian product of the sets 47", by (A77,)N - the Cartesian product
of the sets (A™)Y, keG™ s=1,2, m=0,1,2. Let

Z::l X A::! " Xml (‘:‘:I:I)N X (‘Y"le)hf = (’Yn)"| m= 0: 112-
For messages received at the outputs we use analogous notations, such as
(ks K € G") = T ans (Fmams Tman) = s (@F2, - 2hn) =XT, k€GP UGT,

{xr*n‘k € g:n) =x::,u {x::,hx::_z) =x" §= 1,2, m=0,1,2.
The common probability distribution (PD) of the vector of messages of K sources is denoted

by
P ={P'(z), z€ X}.

Since X, n=1,N, is a sequence of i.i.d. RVSs, we omit the subscript n in the sequel. Since
the sources are assumed to be memoryless, we have that
N
PN(x) = [] P*(za).
n=1
‘We assume the following distortion measures:
dp : A X A" = [0,00), k€GP UGE, m=0,1,2.
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The average distortions of N-vectors are defined by
N
a7 (%, X7) = N7' 3 07 (Zem, 7).
n==]

where xi € (%)Y, xP € (A7)", keGP UG, m=0,1,2.
For the system considered, a code (f. F) = (fo, fi, fa, Fo, F1, F) is & family of six map-
p‘lnp-
(i) three encoding functions
fo: ()Y = {1,..., Mo(N)},

fi H {1) ey 1“0(‘\()} 54 {1! ==y Ml[m}'
fa: {1, .. Mo(N)} = {1,..., Ma(N)},
(ii) and three decoding functions
Fon i {1, oo Mi(N)} = (&™), m =0,1,2.

The tasks of the system are:

1) to restore the messages of the sources {X4} at the m-th receiver within given distortion
levels A, k€ G, m=0,1,2,

R}mkwpamtthemmsagesofthesoumes{)ﬁ}, k € GF*, from the m-th receiver, m =
Lz,bymuingthedistonionsbmmetrmminedmdtheruﬁvedmmofthe
k.thmu:matthcwbhoutputtobeg:eatert.ha.na.givenlevelA‘:‘, keGy, m=12

Security evaluation by distortion measures wes first considered by Yamamoto in [19]
and later in [20] for the case of the Shannon cipher system with a broadcsst channel. The
problem of keeping the correlation information secret from the receiver was earlier considered
by Yamamoto in (18] and later in [19] for a one-way communication system.

Let us consider the following sets:

Ay = {x: Folfolx)) =x°, dilxi,x}) < A}, k €GP},
Ap = {x: Fulfu(fox))) =™, df*(xx,x]") < AF, k€GP,
(e, XP) 2 AP, k€GP, m=1,2.
For brevity we denote
(AP, k€ Grugr) =A™, (A% A, A%) = A.
The error probabilities of the code (£, F) are defined as follows:
' enlf, F,A™) = 1 — P*N(Ap), m=0,1,2.

A triplet of nonnegative numbers (Ry, R1, Ry) is called (E, A)-achievable for E > 0, AT > 0,
keg',"ugg‘,m=0,1.2.iffornnye)ﬂanderB'icienﬂylargethmudutnamde(f,F‘)
such that

N7'log Mu(N) € R+,

Gm(ft T Am] Sm{_NE)| m=0,1,2. (1)
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('I'hslosm:iﬂnnmdmonmtialﬁmcﬁomnretakmtothebamz_)

e ol th set R{E, A) of all (E, A)-achievable rates the rates-reliability-distortions and
partial secrecy region. When E — 0, R(E, A) becomes the rates-distortions and parti
secrecy region R(A). K G = GF" = 0, then R(E,A_) is the rates-reliability-di ”"Ih"l
r@m.de{A)isthemtu—me R(A) in the case when the system has two
correlated sources {X;} and {X3}, the decoder Fp is absent and at the decoder Fy, only the
messages of the source {Xy} are reconstructed, m = 1,2, and no secrecy restrictions are
present, was studied by Yamamoto [17], who called such scheme a bidirectorial branching

ication system. If GF* = GI* = 0, the system has one source {X}, and Ry = R; =
Rj, then R(A) becomes the rate-distortions function for the robust description
considered by El Gamal and Cover [7). ESCEIDtion aystay

Inner and outer bounds for the rates-reliability-distortions and pertial se :
’R.(E.A]mformuhtedinbheTheorminthesemndsecﬁon. Proofs are in the
third Section and in the Appendix. _ presented

The preliminary results were presented at the 1999 International Conference on C
Science and Information Technologies [15] and at the 2000 IEEE International Symposium

on Information Theory [16].

2 Formulation of Results

Let
.P"—"{P{sz‘ In E A, n=rﬂ'}

be a PD on ¥,
Q={Q(z},2%, 2 | Za), Za € X, 2y € X™, n=T N, m=0,1,2}
be a conditional PD on &° x X! x A2 for given z,
Pen={P(zxa)}, n=TN, k=TK,

with
P(zgn) = E P(zy,).
2 n€Xr, r=1K, rk
‘We also need
Qr ={Q(z7' | za)}, n=TN, m=0,1,2,
with
Q(zq' | za) = Z Q{zﬂ!:}uxﬁ | Za),
THLERY, =0,1,2, tyim
and
Qi = {Q(kn | zkn)}, k=T K. n=TN, m=0,1,2,

with
Q(z’lﬂ - Pz peeey T My *eey n g L)

o | Zhn) hebes, g 7 (@101« ¢+ 1 Trm1my Th, Tkn | Tea)Q(2y | 2a)
Consider the set

a(E)={P: D(P|| P*) < E}.
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We denote by ®(P, E, A) = Qp the fiunction, which puts into correspondence with the PD P
some PD Qp such that for given A, if P € aE), the following three conditions are fulfilled:

Epgpd7 (Xe, X7') =
2
= 5 Plzea)Qe(els | 2en)i(zim2le) AT, kEGP, m=0,1,2, O

LT o

Epg a7 (X, Xi') 2 AL, k€ G, m=1,2. )
Denote by M(P, E, A) the set of all such functions ®(P, E, A) for given P, A and E, and
by M(A) — the set of all functions ®(P*, A), for which (2) and (3) are valid for given A
and P*. Below we shall write for brevity simply ®(P) and ®(P").
Let us denote by ®;(P), i = 1,2, those functions ®(P). which ere of the following forms:
91(P) = Qp(z* | 2)Qp(2* | 2)Qp(2° | 2%, 2),
y(P) = Qplz* | 2)Qp(z? | )Qp(2° | Z*,2).

Define the regions:
D= ﬂ,{E,A.P,!b{PJ) = {(RQ‘RhRﬁ) :

Ry = Ipaip)(X A X33, X131, X31),
Ry = Ipsry( X A X1,), Re 2 Ipete)(X A X1, X30)},
DI s Dz(E,A:Puq’fP)] - {(RO:RI:R?) :
Ry 2 Ipeie)(X A X§y. X1, X34),
Ry 2 Ipae)(X A X1y, X31), Ba > Ipee)(X A X30)}
D3 = %(EI A, P- Ql (PJ) — {{Hﬂl Rll RB) .
Ry Z Ipayr)(X A X} 3) + Ipep)(X A X3y) + Iney(p)(X A X5y | X32),s
Ry > Ipgur(X AX3)), Ra 2 Ipe,p)(X A X))}
Dy =Du(E, A, P, ®3(P)) = {(Ro, Bs, Bz) :
Ry 2 Ipgy(r)(X A X1) + Ipsar (X A X3)) + Inear)(X A X5, | X1y),

Ry 2 Ipayry(X AX3y), Ra2 Ipeye(X A X3}
Next consider the regions:

4
R™(E, A, P,®(P), ®(P),®:(P)) = | D

i=1

and
RY(E, A, P,®(P)) = {(Ro, R1, Ra) :

Ry > IP.G(P)(X A Xglnxl].I'Xg.i}:
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Ry > Ipae)(X AXL), Ba 2 Ips(X AX3,)}
Wsahulluneasinneresﬁmat-efork{E.A) the region

R-(E,A)= R (E, A, &(P), &1(P), ®a2(P)),
Pea(E) #(P),81(P)#:(P)EM(P,E,A)

and as outer estimate the region

R*(E,A)= N U  RYE A P).
Pea(E) #(P)EM(P,E,A)

Then we can prove the following theorem.
Theorem: For E >0, AP >0, ke GrUgs, m=0,1,2,

R-(E,A) CR(E,A) C RY(E, A).

From this theorem we deduce the following corollaries.

Corollary 1: When E — 0, we obtain inner and outer bounds for the corresponding
rates-distortions and partial secrecy region R(A).

Corollary 2: When the system has two correlated sources {X;} and {X3}, decoder Fp is
absm,attheﬁrstdwoderonlythamessagasoftheuoume{.x;} and at the second decoder
mlymemmgadthemm{xn}mmthermmcted,mdnowmtﬁm
are present, then we arrive at the result of Yamamoto [17] for a bidirectorial branching
communication system. But for this system our inner bound for the rates-distortions region
illnr.gm‘,bemmeYnmmotodidmtt&kemtoacwummeregimD;mdﬂhwhfdﬂnthig
case coincide and take on the following form:

{(}?01 Rll Rﬂ) :
Ro> R(AY) + R(AY),

Ry > R(AY), Ra2> R(A%)}.

Corollary 3; If the system has two correlated sources {X;} and {Xa}, R, =0, GFr UG =
@, m = 0,1, then it becomes the cascade communication system studied by Yamamoto [17],
the rates-reliabilities-distortions region of which was specified in [8], [12].
Corollary 4: If GI* UG = 0, the system has only one source {X}, encoders f; and f; are
absent, or R; = R; = Ry, then we arrive at the result of El Gamal and Cover [7] concerning
multiple descriptions, see also [2]-{4], [7]-{11], [13], [14], [21]. :
Corollary 5: When the system has two correlated sources {X;} and {X;}, encoder f3,
decoders Fy and F; are absent, at the decoder F; only the messages of the source {X; } must
be reconstructed, then the inner and outer bounds for the rates-reliability-distortions and
partial secrecy function coincide:
R (E,A') = R*(E,A') = R(E,A') = max min I XAX7),
EA)=REM=REN) - py o om T (XAX)
Epqnda(Xa, X3) 2 A}

and specifically for the same problem with absence of reliability criterion we arrive at the
result of Yamamoto [19] for an one-way communication system with correlated source out-
puts.
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Corollary 6: If X — X}, — X}, or X — X}, — X}, form Markov chains and decoder
ﬂ,h.bsmr,thmtheinnermdo::wb:mduﬁorthemes-rﬂhbﬂﬂrdimﬁmmdwﬁd
secrecy region eoincide and give the rates-reliability-distortions and partial secrecy region:

RIE,A)= [] U {(Ro, Ry, Ra) : Ro 2 Iper)(X A X33, X311, X31),
PealE) $(PIEMIPE.A)
Ry 2 Ipgip (X 1\ Xg 1)y Ra 2 Ipapy(X A ”J}
Corollary 7: In the special case of absence of decoder F for Ro = R(E,A') + R(E, A?),
where R(E.A™), m = 1,2, ere the rate-reliability-distortions and partial secrecy functions:

E,A™) = 1, XN , m=1,
R{ : PG“IS; Q.P E.F'Qrdm(xk: Xﬂl} < Ak ] ke gns P.q'( ‘q‘) 2‘

Epq a7 (X, X[') 2 A7, kG

the inner and outer bounds for the rates-reliability-distortions and partial secrecy region
coincide:
R (E.A)=R7(E,A)=R(E,A)={(Rg, R, Ra) :
Ro > R(E,A') + R(E,A%), Ry > R(E,A'), Rq2 R(E,A%)}.
Remarks: 1. The considered problem can be generalized by considering different reliabili-
ties E, at the different receivers, m = 0,1,2.

2. A similar problem can be considered for a multistage branching communication system
(17].

8, Our inner and outer estimates R™(E, A) and R*(E, A) for R(E, A) are not proved
to be convex. Naturally, it is desired to receive the convex estimates for R(E, A). But, the
difficulty (which we were not able to overcome) is that the timesharing arguments may not
be applied for the problem with reliability criterion.

3 Proof of the Theorem

We use the typical sequences technique [5], [6] and apply the following modification of cov-
ering lemma from (1], [}, [9], [11]:
Lemma: Let for fixed type P. conditional type () and £ > 0

L(P.Q) = exp{N(Ipq(X A X1,) +€)},
Lo(P,Q) = exp{N(Ipq(X A X3, | X1,) +£)},

Lo(P,Q) = exp{N(Ipq(X A X5, | X11,X3;) +€)}-

Then for sufficiently large N there exist:
a collection of conditional types

{TP.Q(X | x{,l,l])! L= llLliP!Qj}l

which is a covering for 7p(X),
for I = 1, L, (P, Q) a collection of conditional types

{TP-Q("Y l x}.l.h'xg.l.l:h)' l? T ks L'Jz-Pl Q]}’
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which is a covering for Tro(X | Xi.14,):
forlh = l,LliP.an Ip= 1;-["ZIP!Q] a collection

{Tra(X | X140 %5140 X013 ke )s [0 =1,Lo(P.Q)},
which is & covering for Trg(X | X} 1.4 XE.1.4,4)-
Proof of the Lemma is given in Appendix.
We begin the proof of the theorem from the inclusion
R™(E,A) CR(E, A). O]

Denote by P(X, N) the set of all distributions P, which for given N are types. Let us present
(X)" as a family of disjoint types

@)= U 7(X).
PEPIX,N)

Let some & > 0 be given. Then from [5] we have
) 2 Tp(X)] < (N + 1)/¥ exp{— i
[ML(JM P(X) < (N+1)Hexp{-N  min D(P | P)}<

< exp{~N(E +8) + |¥|log(N +1)} < exp{~N(E + 3)}.
Hence, to obtain error probabilities small enough, it is sufficient to construct i
e
®(P) = Qp. According to the lemma there exists a covering
{Trqu(X | 3‘1.1.:.): b =m}
for 7p(X). Let
B(P,Qp,h) = Trgp(X | X114) — U Tege(X | x{_;_fl): h =1,L,(P,Qp).

(o

For any Iy =1, L1(P, Qp) a covering
{Troe (X | X111, X3 000)» 1a=1,La(P,Qp)}

for Trgp(X | x},,,) exists. Let for I = 1. L(P, Qp)
B(P,Qp, b, k) = B(P, Qp, h) (W Trar(X | X100 %000m) = U Trap(X | 610, 2)}-
b<ia g s

For any I =1,1,(P,Qp), la =1, L3(P. Qp) & covering
{Teap (X | X107 111 120 X113 120 )s Yo =1, Lo(P, Qr)}
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for Trge(X | %1341 %G 14, 1,) €xists. Let for o =1, Lo(P,Qp)
B"Pu Q.Ps lo, 111 ‘I} e B{P! QPI Ill l:) n

M Trp (X | 510033 141 s X011t te) _:;9;.1;‘0’“( £ TR PRPRE D) &
Far U?a- R.lr Rﬂ) € Dl we define a code {le} — Uo,fh f?r}.ﬂrplnFS} as follows:
encoding functions
(li,12,lp), when x € B(P,Qp,ly,1s,13), P € a(E +6),

folx) = { ,
7 when x € Tp(X), P ¢ a(E +8),

fi “hlil lﬂ) =1, f?uh Iﬂ: ID) = “h lﬂJ! fm(k'} L k’: m=1,2,
decoding functions
F.Oﬂh !g,fq) - xg.]jhl‘,h! Fla'l) S Tx x}'u,v F’{!‘l L)) - "g,u,;,. Fm(k‘) = rn, m=0,1,2.

According to the definition of the code (f, F), to the lemma and the inequalities (2) and (3)
we have for P € a(E + 6)

i (%, X5) = N"n L ™En 2T | X6, X7V (T1, 2Tp) =

o ‘E_ P(2Zkn)Qp(zhn | Ttn)dE (Zkn, Zhn) = (5)

=Epgpdi’ (X, X[') S AT, k€GP, m=0,1,2,
i’ (Xe, X}") = Epgudy (Xi, X') 2 A7, k € G, m=1,2. (6)
We see that for the code, which has the following properties
My(N) 2 exp{N(Ipez)(X A X5, X1, X3,) + 32)},
M;(N) = exp{N(Ipap)(X A X1,;) +€)}, (7
My(N) Z exp{N(Ipae)(X A X}, X3,) + 22)}
for cach type P € a(E +6), the conditions (1)~(3) take place. For the case of D the proof
mm:;f?ﬁemow,mdmgmmlmmmthsm
{Trau(X | Xm11n)s bm =1, Kn(P,Qp), Km(P,Qp) = exp{N(Ipg,(XAXp;)+€)}, m=1,2
for Tp(X). Let
B(P,Qp,lm) = Trgs(X | Xm14,) — LL:L Trar(X | X010 )s tm =1, Kn(P,Qp), m=1,2.
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For any la = T, Ka(P, @p) & covering
(Trar (X | Kpip %1000 lo = LK(P;Qp),
Ko(P,Qp) = exp{N(Ipgs(X A X011 X31) +)}
for Ty (X | 32.1,,) exists. Let for lo = T, Ko(P, Qr)
B(P,Qp,la, ko) =

B(P, @p,12) N{Trap (X | X100 X0 1000) = :.léj:. Trap (X | 3100 %010 )}

Wedaﬁnea.code (f-F) - Uﬂ!fhf!:FﬂiFhFﬂ) as follows:
“‘hlh ID): when x € B{-Pr Q.Pl I1.) ﬂB(P, oPa Imlo). Pe G{E+6},

folx) = {
K when x € Tp(X), P ¢ a(E +96),

filly,lasko) = b, fall,layko) = la, fm(K) =K, m=1,2,
Folls, laylo) = X110 ater Fillh) =X, Falla) = X140 Fn(K) =%™, m=0,1,2.

By analogy with the case of Dy we can show that the conditions (5)-(7) take place.

For the case of Dy the proof is similar to the case of Ds.

Teking into account arbitrariness of £ and 6, continuity of all functions with respect to
E, we obtain (4).

Now we shall prove the inclusion

R(E,A) C R*(E, A). ®)

Let £ > 0 be fixed and a given code (f, F) of blocklength N has (E, A)-achievable triplet
(Ro, R, Ra) of rates. It is enough to show that for every type P € a(E) and for some
¢(P) =~ QP(E‘?.AI.-@.’; I 3!1) € M(P,E, AL n =_1N' we have

1
7 108 Mo(N) + & 2 Ine(r) (X A X5y, X1, X3,),

1

0B M(N) +& > Tnaey(X A Xy), (9)

1
77 108 Ma(N) + € 2 Ipa(e)(X A XG,),

when N is large enough.
For sufficiently large N and P from a(E — ¢) the following inequality takes place

[ 40N A1 N A 75(X)| = exp{N(Hp (X) —£/2)} (10)
x € AyNA1NA2N7p (X) corresponds & uni v X1
e el o e i il SR S i

which
x€ TP.Q(X l xg.h x%,l: xg,l}
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Sinee x € A A1 N Az, then
Epgdp(Xi, Xi*) = df (xa,x7') AT, k€G, m=0,1,2,
Epgdp(Xe, X7') = df (%, x}) 2 AT, k€GF, m=1.2.
So Qe M(P,E,A).
The set of all vectors x £ Ag N A; N Az N7e (X) is divided into classes corresponding to
these conditional types Q. Let us select from them the class, which for given P contains the
greatest number of x. We denote corresponding conditional type Q by Qp = ®(P), and the

class itsell we denote by (Ao N A NA2N7p(X))(2(P)).
Using polynomial upper estimate [5] of the number of conditional types Q we have

Ao N A1 N AsNTR(X)] <
< (N + )*HXHEH2] (40 A N AN TR(X) (@(P))] < (11)

< exp{Ne/2} | (AsN A1 N A2 N Tp(X)(2(P))|

for N large enough.
L-Bt 130_1.3 be the set ﬂfall (xg.l, x%‘“ ﬁu:}' forwhich thm exist vectors

x € Ay A NANTe(X), x € Trar)(X | %05, X12:%51):
such that %8, = Fo(fo(x)), X[, = Fn(fm(f(x))), m = 1,2. According to the definition of
the code remark that
|Do,12| < My(N).
We see that

oA NANTR(XN@ENIS Traie)(X | 38y, xhs, %,)| <
A

B
1 %100 %4,)€D0,

< My(N) exp{NHpap)(X | X35, X}'I,Xgi]}-

(12)
From (11) and (12) we receive that
|40 41 N A N Tr(X)| < Mo(N) exp{N (Hpa(r)(X | X33, Xi 3, Xi2) +€/2)}-
From the last inequality and from (10) it is not difficult to derive
Mo(N) > exp{N(Ipeee)(X A X5y, X1y, X33) - €)}-
Hence 1
N log My(N) > Ipae)(X A Xg4, X33, X3,) — € (13)

We can remark that

ix}..l: axg,hxg,l : (XgI‘,X}I‘,X;'I) € ‘Dﬂ,l,zl < MI{N)n
|x?,‘1,3x&;,x{', : (3B X10%5,) € Do.x.n' < My(N).
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For the same ®(P) as in (ll)thefollawinghc.luaim are valid
T X 1 . 3 =
(AoNAx NA:N7x(X))(8(P)) € f "g.a#i.nﬂlé.;}iﬁ.u P (X | x45,%},,%3,)
- U Teaw)(X | 3§, %}y, x3,) €
= 1382 =(’%.Iv"i.1dl)m.u o8 15k y. Bxd (o, ok e )EDo,12 Ra(P) X010 %11, %21

c Tpar) (X | x11),
_’l.xva"a,l-’i:‘(’%.{#.v"i,ﬂ‘al-l.' rad I “J

(14)
i elds
— (o4 N AN TR @(P))] <
T: X | xt
Sx}.‘l-a‘a.lr‘!.l "’El"‘l.:-’i:)mu' P,G{PJ( le.l)_l = (15)
< My(N) exp{NHpo(e)(X | Xi1)}-
Taking into account (10) and (11) with (15) the inequality
My(N) > exp{N(Ipsr)(X A X},) —€)}
holds. Therefore i
7 08 Mi(N) 2 Ipep)(X A Xi1)—e. (16)

For the same ®(P) as in (11) similarly to (14) and (15) we obtain that
(AaNA1NA2NTR(X))(®(P)) €

F [’*.:*inyll)m.l.. Tear) (X | x51,1,3G,) =

ﬁ,o{P)(x ng.lsx}.li’é.lj Q

U ]
113G 1y < (B xh 508 1 )EDo1 2 3y k1, B y: (0] 1 ) 5 o ) €D 1 2

c ] Toem (X ;
YL MR JRTE QR o Por) (X | x3,)

[(Ao N A1 N A2 N TR(X))(2(P))] <

< 53 T X 4
3 1311 + (8 1] 1] 1 )EDo, 1,0 ! Pae) (X | "g.lJI <

< My(N) exp{NHpg(r)(X | X3,)}.
From (10) and (11) we have
M;(N) 2 exp{N(Ipe(r)(X A X3,) —€)},

hence 3
EIOSMz(N) 2 Ipsm(X A X,’.l} —E. (17)
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Since the inequalities (13), (16), (17) we can assert for each type P from a(E — ¢) with
" certainly choosen ®(P) (by the way discussed above), then taking into account erbitrariness
of £ and contimity by E of all used above functions, we complete the proof of (9), hence of
(8) too.

Appendix

Proof of Lemma: The first part of the assertion is proved in [9]. Using the method of
random selection, by similarity with the proof of Lemma 4.1 [sec. 2, [5]], we show the exis-
tence of & covering for Tpg(X | x1,,.),4 € {1,-, [1(P.Q)} with L,(P, Q) of elements. Let

Iy be fixed and {(,, b = 1, L1(P, Q)} be & collection of Rv independent and identically dis-
tributed on Tpg(X3, | x},,)- Denote by ¥(x) the characteristic function of the complement

L(PQ)
of random set I}-Jr! Tpa(X |xi’.1.h-CkJ:

- La(PQ)
¢(x)={ L f x¢ U Trg(X | XK1 Ga):
0, otherwise.

It is necessary to show that for N sufficiently large
Pr{ T ¥(x) < 1} >0,
“T’.Q{x’l}.ulj
gince it is equivalent to the existence of the required covering. We have

Pr{ > ¢(x)zl] <

*€Tpq(Xlx], 1)

La(PQ)
< |‘1},¢;{X|x}'ul)|l’r{x¢ l;L:-ll Tra(X | "i.u,s(lo)] -
Taking into account the independence of Rv (,, Iz = , L2(P, Q) and the polynomial estimate
for numbers of conditional types [5] we have for N large enough
La(P,Q)
Pr{x¢ U Tﬂnfxlx{,uuﬁg)} <

la=1

)
Jies

< (1~ |Toa(X | s s Tra X 6]
< (1 - exp{NHpo(X | X}, X3:)~

— X1 |X] |2?| log(N + 1) - NHpg(X | X1,)})PQ) <
< (1 - exp{—N(Ipg(X A X3, | X1,) + %}})Lsu’m.



T4 mmmmmdwwmdmwwm

wheree > N1 ||| 2] | 22| log(N +1). Applying the inequality (1~t)" < exp{—st} (which
holds for each 0 < t < 1 and 8) with
it= EJQ’{—NUHQ(X A x;.l | Xi;} i+ E)}’

and s = L(P, Q), we continue the estimation

Pr{ > \b{x)zl}s

x€Tp,q(XPx} 11, )
< exp{NHrg(X | X1)} exp{—La(P, Q) exp{~N(Ip(X A XE, | Xin) + )1} =

= exp{NHpa(X | Xi,) - exp{N5}},
and when N is large enough, then

Pr{ > P(x) > 1} <l

x€Tp,g(Xxi )

For ) =1|L1(P-Q}| = 1:L3{PDQ] mmdmm
{Tea(X | 21,00 X0 11ty Kot dado)s 0= ,Lo(P,Q)}

for Tpq(X | 3} 14,,%3.1.1,4,) By be demonstrated similarly.
Proof of the inequality (10): It is clear that

[ 40N A2 N A2 NZo(X)| = [72(X)] - [BUZAUZNZe(X)) -

For P € a(E — €) we have

[AUEUZNT: (X)| < g fxuzygnmxn

< 3exp(~NE) exp{N(Hp (X) + D(P || P'))} <
< exp{N(Hp (X) — &+ “E2)} < exp{N(Hp (X) - ¢/2)

for IV large enough.
Then using the polynomial inner estimate [5] of the aumber of Pfor N enough
we obtain that H s KEe

[4oNA1NA2NTR(X)| 2 (N + 1) exp{NHp(X)} — exp{N(Hp(X) - £/2)} =

= exp (N () - ¢/2)} (FoE Tt - 1) > e V(B () - /2
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