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Abstract

The Hadamard transform of Sylvester’s type, which is also known as the Walsh-
Hadamard transform, is used in signal processing and communication. Note that the
Walsh-Hadamard transform operates only with vectors whose length N is a power
of 2. If N is not a power of two, then in order to compute the Walsh-Hadamard
gpxmdthnmmhumdthudimdwmpmmhwpndmupmm
next power of two. In the first case we have an information loss and in the second
case extra computations are needed. Thus, construction of fast Hadamard transforms
of different orders is important problem. In this paper we develop fast Hadamard
transforms based on special classes of Hadamard matrices, namely, the Williamson
type Hadamard matrices,

1 Introduction

The Hadamard transform, which is known for its simplicity and efficiency in its execution,
is one of important transform techniques for signal processing and compression. In the past
years, the Hadamard transforms and its variations have been intensively used for audio and
video applications [1] -[6]. In arder to reduce compntation several well-known fast algorithms
have been proposed [7] - [11]. The fast algorithms for Hadamard transforms can be found
in [8].

[h][nrethnn one hundred years ago in 1893 Jack Hadamard [12] proved that if A = (a13)0520
is an arbitrary real matrix of order n with entries a;; satisfying the conditions —1 < a;; £
+1, then

IMAF S H 2 “\?Jt

i=1j=1

and the equality is achieved when A is an orthogonal matrix, and for a;; = %1 the determi-
nant will get maximal absolute value.
A (—1,+1)—matrix H of order n satisfying conditions

H' H=HH =nl,

where T stands for transposition and I, is the identity matrix of order n, is called a Hadamard
makrix.
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Note that first Hadamard matrices were constructed by Sylvester in 1867 [13]. Sylvesters)

_ [ Ha H,i-l) =l 1
Ho=(g g )s B=b2ee (1).

where H; = (1). .
Originally matrix of the form (1) was called the Sylvester’s type Hadamard matrix [18,
19, 7], but nowadays is better known as the Walsh-Hadamard transform matrix.
Hadamard matrix is called normalized if the first row and the first column consists only
+1. It’s evidently that to any Hadamard's matrix to correspond a normalized Hadamard
matrix. Note that in 1933 Paley proved if H, is an Hadamard matrix of order n, » > 2, then
n = 0(mod4) [14, 15]. The inverse problem i.e. the problem of the constructions or proof
of the existence of Hadamard matrices of all orders multiple to four is unsolved up today,
though hundreds of papers and some books have been published on Hadamard matrices
construction and applications. (See, for example, [7],[16]-[19] and their references).

2 Fast Walsh-Hadamard Transform

LetX:(zn,zl,...,zx_;j,ilawlmn-vectm'withmdcnmponenta and N = 2. Then
the direct and inverse one dimensional Walsh-Hadamard transform of the vector X defined
from formulae [8]

Y=HyX, X=ZHyY. )
Sometimes instead of the formulae (2) is considered the following formulae:

s % !
Y= JnHvX, X =Y.

) -Bynﬁngrecunmtrepmenntion Sylvester matrices of order N, namely Hy = Hy;®H;,
it is clear that N—point Hadamard transform can be computed by first performing & two-
point Hadamard transforms and then performing two & —point Hadamard transforms. Re-
cumvalyumg this idea to compute the smaller transforms, an algorithm results to compute

defined from the formulae of the form
Cu(N) = Nlog, N. (3)
Note that this transform requires only addition/subtruction operations.
3 Cyclic and Symmetric Williamson Type Matrices

In 1944 Williamson [20],[21] noted that if A, B,C,D ; ;
mﬁwufm““ﬁ'ﬁh’éﬂwmdiﬁm 4,B,C, are cyclic and symmetric (-1,41)-

A+ B+ C 4+ D' =4nl,,



‘then the matrix

A 2@ D
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is an Hadamard matrix oorder 4n (further called as Williamson’s type Hadamard matrix
and A, B, C, D were called Williamson's type matrices).

As well as A, B,C, D are cyclic and symmetric matrices of order n, then they can be
represented as follows

n—-1 n=1 n-1 -
A=Y alt, B=S87, C=Xat', D= ar’, %)
i=0 i=0 =0 i=0
where U is a cyclic matrix of order n with first row (0,1,...,0), U? = U™ = I, is an identity
matrix of order n, and
U‘“=U‘:‘i=a!l-hh=b|l-hq=Gl—l]di=dn—{.i=1,2,-...ﬂ—1.
It is known that matrices
+ + + + - -
A=|+ + +|, B=C=D= —+—)
+ + + - -+

are Williamson type matrices of order 3. Then after substitute these matrices in (4) we
obtain Williamson type Hadamard matrix of order 12 which has the following form

R B M T - e o e
+++ -+ - -+ - -+ -
++ 4+ - -4+ - -4+ - -+
-+ + +++ -+ + + - -
+ - + + 4+ 4+ 4+ = + + -
+ 4+ - ++4+ ++ - - -+

Hy= (6)
- + + + = = <+ 4+ + — i o
+ -+ -+ - + 4+ + + -+
+ 4+ - - -4+ +++ + + -
-+ 4+ -+ + 4+ - - + 4+ +
+ -+ + -+ -+ - + + +
\+ + - + + - = - + + + +/

Below there are given first rows of cyclic and symmetric matrices 4, B, C, D of

Williamson type of orders n, n = 3,5,...,25 [18], [19].
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Table of Williamson Type Cyclic and Symmetric Matrices of order n
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4 Block-Cyclic Block-Symmetric Hadamard Matrices of Williamson Type
and Its Fast Transform Algorithms

In [22) it was shown that if there exist Willixmson type cyclic and symmetric matrices of
order n then there exist block-cyclic block-symmetric Hadamard matrix of order 4n, where
blocks of order 4 are themselves Hadamard matrices.

Let Hy be a Williamson type Hadamard matrix of order 4n of the form (4), where
A, B,C, D are cyclic and symmetric Williamson type matrices of order n, and consequently
can be represented as (5), and for all i = 1,2,...,n — 1 we have a; = ap—j, b = bpi, & =
Cnmiy i = dnri.

One can show that the matrix Hy, can be represented in the following form of block-cyclic
Hadamard matrices [18]

n=1

Hin=Y QoU, (7
=0

where
o b o 4
Qi - & —-d o
- & & k|’
- - & o

are Hadamard matrices of Williamson type when a;, b;, ¢;,d; = £1, for all i = 0,1,...,n—1.

Introduce the Williamson type Hadamard matrices of orders 4 which will be used to
construct block-cyclic and block- symmetric Hadamard matrices of Williamson type of order
4n.

(+ + + + (+ + + — + + - +
|-+ -+ -+ 4+ + |-+ - -
o R i e LS i S Bl s G
\- - + + \+ - + + -+ + +
(+ — + + (+ - - -
|+ o+ -+ _|+ + + -
Qa—_+++.04-+_+_
\- - - + \+ + - +

Furmphbbck—cydicmdblockMHndmudmnhﬁxofordulﬂfwmedhy
Qo @Q; and has the following form and equivalence to the matrix (6)
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[F FF e omam o b e =ne )
SRec A0 G0 e e n: SR S R
- 4+ 4+ - 4+ = + + a5 T e e r
=ik e BT b ad s ok
+ - - - ++++ + - - -
o e SR e
.Eﬁl=+_++ == N s S e T o ®)
4+ -+ - =4+ + + + -+
+ - — - 4+ === 4+ + + +
sl ek s asthi sl TR Stsk o sind
+ -+ 4+ + -+ + -+ + -
\+ + =+ + + -+ - =4+ + /

Below the first block-rows of block-cyclic and block- symmetric Hadamard matrices of
Williamson type of orders 4n, n = 3,5, .. .,25 are given [18].

n

]
I

E
I

9:

n

]

n=11:
n=13:
n=15:
n=17:

3:
b5:
T:

Qo,—Q1; —Qs;

Qo,—Q1,—Q1; —Q1,—Qs;

Qo, @2, —Q3, @1, @1, ~ G, Qs;

Qo, @1,—Q3, @1, —Q1,—Q1, @1, —Q3, Qs;

Q0,—Q4, Q4 @1, —Q3,—Q3,—Q3,—Q5, 01, Q4,— Q4 -

Qo @2, —Q1,—Q1,Q1, @2, —Q1; —Q1, @1, @1, —Q1, —Q1, Qs;
Qo,~Q2,Q1,—Q1,—Q1,~Q2,-Q1,Q3, @3, —Q1, ~Q2, —Q1, ~Q:, @1, - Q3;
Qo,~Q1,—Q1,~Q2,~Qs,—Qs,Qs, Q2,—Q1,~Q1, @2, Qs, —Qs, —Qs, —Q3,
—Q1,~Qs;

: Qﬂl Ql) Qh "Q!v _Qh "'Ql.n Qlt _'Qi.' QI: _Qh "Q.h Q’: -Qh Ql: _Qll _Ql!

_Q’s Qll QI;

: Qo, @1, @1,-Q1,Q1, —Qs, —Q2,Q3,Q1, Qa, _Qh —@1,Qs, Q1,Q3,—Qs,

_le Qlt -Qh Qli QI; :

: Qﬂ- Q’v Qlt _QI: Q-li Q'I Ql: _'Qil QQ: "qﬁ _Ql: "Q-h _"QC: _QI! "'Q‘! q'h

""Q-ll QI: Q’! Ql: _Q’! ql: Q,;

: qnl _Qh _ng "Ql: _Ql: _QI: Q’: _Q!: Ql: QII _QI:'—QM Q’l Q’l _Qh

_Qh Qh ql! "QI: Q’a _QI: _'Q:l: "QI: _Qiy '_Ql.-

hpracﬁae,thepmblmhboomputeeﬂidmﬂytheweﬂideﬂsoﬂnmﬁnm;l‘: X,
where Q;,1=0,1,2,3,4 given above and X = (70,21, 23,25)" and ¥} = (v?,y},v;—',;;?)'?;té
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ainput and output vectors respectively. Let us denote r; = 21 +23+ 23, 72 =71 —2Zo. Then,
irectly from Q; we see that the following relations hold

W= (zo+z1)+(za+2), ¥=—(20—21)—(22—123),
B=—(z0—z1)+ (22— %), ¥5=—(z0+71)+(22+7),

W= (Bo+z1)+(22—23), ¥i=—(20—2)+(z2a+23)
V= —(zo+z)+ (22— 33), ¥i=(20—2)+(22+2),

B=(zo+z)—(2a—2), ¥=—(20—2)—(22+2)
V= (zo+z)+(2a—23), 13=—(20—21)+(22+72a)

W=(z0o—21)+(2a+2s), v3=(20+21)—(2a—2s),
Vi=—(z0—2)+ (2a+2s), V3=—(20+21)— (22— =),

V2= (zo—21) — (2a+23), vi=(20+21)+(2a—2),
Vi=(zo—21)+(z2a—2), U= (20+21)~(22—2),

Note that above equations can be rewritten more compact form as follows

vo =71+ Zo, Yo =1 — 223, Vs =r1— 223, Vg =11 — 223;
W=v—22, vi=r, v =13 — 233, V=18 —2z;
W=9-22, ¥3=VYs— 22, Vi = Vg — 22s, v =r3;

B=1W-22, B=V—2,, vi=ra 2 = 13 — 223;
vi=—ra vi =vg — 223, Vi = g — 221, v3 = yg — 2z3;

Andysisafgimabm&pointhuafurmnnhmthuifwmthemwpunte]ym
need to implement 7 additions/substructions and 3 shift operations. However, using them
together requires less operations. For example, the combined transformation Qo and Q; of
vector X requires only 10 addition/subtraction operations and 3 shift operations.

Now we will evaluate the complexity of the block-cyclic block-symmetric Hadamard trans-
fm-m.Letkbethenumbcrofvarioublochintheﬁntb]nck—mwoﬂhemmixﬂ'..mdk;h
thennmbaruftepetitionufthei—thpairofbloch.i=1,2...,kg.'l'hentheWi!1imontype
block-cyclic block-symmetric Hadamard transform requires only 3n one-bit shift operations

and

C(Han) = n(4 + 3K) + 2(n — 1)(2n + ¢ — )‘;:k;) )

additions and subtractions. For example, a 20-point transform requires only 145 additions
and subtractions and 16 one-bit shift operations.

Give an example. From the table of block-cyclic and block-symmetric Hadamard ma-
trices of Williamson type it follows that block-cyclic block-symmetric Hadamard matrix of
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w‘,mmgypaufwdulﬂhuthufolbwhsm

Q -G —-@
His (—Q: Q -@Qi].
-Q1 _Ql. Qo
Input vector Fya luplm.t as FF; = (:q.v-rir’x?)s where ﬂ - (fﬂ:fhfls.fs)' x{ =
U"'.{l';efﬁ-ﬁ;);intx; = (fo, fo» fro, fua)- 3 s =
HuyFa=Y+Y+1,
M QuXo —QuX: —QuX,
Y= —Q:Xn) , hi= ( QXy |, a=|-QiXa |.
-@:1.Xo - Xy QoXo

It is not difficult to see 10 additions/substructions abd 3 shift operations are needed
to compute each of the vectors ¥;,i = 0,1,2. Hence 12-point block-cyclic block-symmetric
Hadamard transform requires only 54 additions /substructions and 9 one bit shift operations,

In the table below we show the necessary number of operations for given Hadamard
transforms.

The columns of the Table give: Orders of cyclic and symmetric Williamson matrices;
Corresponding orders of Hadamard matrices of Williamsin type; Number of addition and
substruction for block-cyclic block-symmetric Hadamard transform; Number of operation of
the above transform with shifts; and Number of shifts.

n | 4n | Block-symmetric | Block-symmetric | Number
block-cyclic block-cyclic of
Hadamard trans. | Hadamard trans. | shifts
with shifts
3 (12 60 b4 9
6| 20 160 145 16
7|28 268 247 21
9| 38 400 373 27
11 | 4 704 629 33
13 | 52 760 721 39
15 | 60 912 867 45
17| 68 1236 1168 51
19 | 76 1158 1219 57
2] | 84 1576 1393 63
23 | 92 2442 2329 89
25 | 100 2080 2005 75
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