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Abstract

A mathematical formalization of thr test design problem for some class of analog
circuits is proposed; an algorithm of the test design is given based on this formalisation.

Design of tests for analog circuits is the actual problem of contemporary theory of testing
(see for example [1], (2], [3]), however in most cases this problem was investigated from the
point of view of the requirements of practical engineering. We shall consider below the same
problem in the mathematical interpretation. Of course, this mathematical approach must
{uke into account different technical and physical peculiarities of a situation.

We consider analog circuits which can be characterized by a transfer function H(p) having
the form of algebraic fraction (i.e. quotient of two polynomials). We suppose that the
congidered circuit has a single input and a single output; we suppose also that if the input
signal has sinusoidal form then the output signal has a similar form and its frequency is
equal to the frequency of the input signal. So the following statement holds:

Vou(p) = Via(p) = H(p), 1)

where Viu(p) and Via(p) are corresponding characteristics of the output and input signal.
The operational variable p can be replaced here ([4]) by jw, where j is the imaginary unit
and w is the frequency of the input or output sinusoidal signal V' = Vo exp j(wt + ¢).

Let us suppose that a circuit S of the mentioned kind (for example, an analog filter) is
given and some class W of its faults is fixed. The notion of tests for the given S and W is
defined in the natural way. Indeed, let the circuit S, is obtained by introducing the fault
w € W into the circuit S and let H and H,, are transfer functions correspondingly for S and
S,. Then the fault w € W is said to be testable if there exists a frequency such that

| H(jw) |# Hu(iw) |; (2)

(we introduce this more strong condition than A (jw) # Hy(jw), because the last condition
must be observed both by measurement of amplitude and by a measurement of initial phase
of output signal; but the measurement of initial phase of a signal is essentially more difficult
than the measurement of its amplitude and the testing of the condition (2) (connected only
with the measurement of amplitude) is more natural from the technical point of view). In
this case w is said to be testing frequency for the fault w. The system (wy,wa, . .., wn) 18
said to be a test for S and Wif this system consists of all testing frequencies for all testable
faults w € W.
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y we introduce the following formulation for our mathematical interpretation
thembhnlmm above. We suppose that the following objects are fixed: (1) t];f
ﬁﬁ’«ﬂ“‘- l; (2) éheﬁmcﬁon f(z) everywhere defined on [a, b]; (3) the constant C' such
o z) - f()| < C |z - y| for every z,y € [a, b]; (4) the rational mumbers &, and &; such

0 < &; < &3. The following information must be found: either we must find the number
wo ; Ltblldmh dﬁ:; IIJ:;(wJI > &1, or we must establish that | ()] < &, for all w € [a,1].
a!"algori\‘.h::A“. an algorithm giving the solution of this problem. We shall denote it
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on the first step - in the point (a +5)/2;
on the second step - in the points a + (b— a)/4 and a + 3(b — a)/4;
on the third step - in the pointsa + (6—a)/8, a + 3(b — a)/8, a + 5(b — a) /8, ...,
on the n-th step - in the points a+ (2k+ 1)(b— a)/2" for all integer k
such that 0 < k< 2™1 -1,

| Every number |f(a + (2k + 1)(b— a)/2")| (which we denote as F;,) we compute with the
accuracy (g2 —¢€;)/2, i.e we find rational approximations u and v such that u < F, < v and
‘v ~ u < (g3 — £1)/2. For every number F}, we note what a possibility among the following
ones takes place: either Fi, < (g3 — £1)/2 or Fi, > £; (the first possibility takes place if
u < £, the second one - if u > £;). The process of working of the algorithm A is interrupted
when for some F}, the inequality Fi, > £; is found; in such a case we have found the
number wy = a + (2k + 1)(b — a)/2" such that |f(wy)| > £; and we say in this case that
the algorithm gave the ”positive answer” concerning wy. Otherwise the process is continued
until m step, where m is minimal integer such that m > 1 + loga(c(b — a)/(e2 — £1)). If for
all Fy,, where 0 < k < 2™ — 1, we obtain the inequality Fjm < (£2 — €;)/2 then we say
that the algorithm gave a "negative answer” concerning wy (we shall prove below that in
this case |f(w)| < &5 for all w € [a, b]).

Theorem. Let f(z) is the function everywhere defined on the segment [a, b] and such that
|f(z) — fly)| < C |z — y| for &ll z,y € [a,b] and for some constant C. Let rational numbers
€, and £; satisfy the inequality 0 < £; < £2. Then if the algorithm A applied to [a,b], f, ¢,
€1, £2 gives the positive answer concerning some wy € [, ], then |f(wo)| > &; if algorithm
A applied to the same objects gives the negative answer, then |f(wg)| < & for all w € [a, b].

Proof. If the algorithm A gives the positive answer, then such F}., is found that Fi, > &
and hence the number wy = a + (2k + 1)(b — a) /2" satisfies the condition |f(wg)| > £;. Now
let us consider the case of the negative answer, Let m > 1 + logy(¢(b — a)/(e2 — 1)) and
for all Fym such that 0 < k < 2™ — 1 the inequality Fym < (62 — £1)/2 holds. Then
we prove that |f(w)] < &3 for all w € [a,b]. Indeed, if w € [a,B], then there exists an
integer k, such that 0 < k < 2™ — 1 and |w — (2k + 1)(b— a)/2™| < (b — a)/2™, hence
11/ (@)| — (2K + 1) (b= a)/27)]] < C(b—a)/2™ < (e — £1)/2, 50 that || ()| ~ Frm| <
(£ — £1)/2. But Fi;m < (2 — £1)/2 and we obtain | f(w)| < 2. This completes the proof.

The algorithm described above can be used not only as a precise algorithm but also as
an approximate one. Sometimes the upper bound 1 + logs(c(b — a)/(e2 — €,1)) for m is too
great for computational implementation; in this cases we have to consider only feasible steps
of the algorithm. However in many cases the required frequency wy can be found quickly. In
the approximate form the algorithm is formulated as follows: the process of its working is
continued until its steps are implementable by the used computational means; if the required
wp such that | f(wo)| > &1 is not found within these possibilities, then the algorithm gives the
negative answer. Such a form of the considered algorithm, probably can be suitable from
the practical point of view.

The algorithm of test generation for the given circuit S and the class of its faults W
now can be described as follows. Let H be the transfer function for S. We consider all
the faults w € W and for every w we find the circuit S, and the transfer function H,, for
it. Then we apply the algorithm A to the function |[H|* — |H,[* (for example, we use the
approximate variant of A). If the algorithm A gives the negative answer, then we adopt that
the corresponding fault w is not testable by our means (in this case indeed the difference
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mathematical description of the mentioned problem.
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