MaTesamimsecrne ponpocsl knfepreTaxs ¥ BRmrcIHTeasHofl Toonnor 19, 1998, 89-93,

Modelling of the Relaxation of Auto-Oscillatory Processes in
Non-Linear RLC Circuits

R. R. Gyulbudaghyan
"Armatom” Institute

Abstract
A dynamic model describing auto-oscillatory processes of parametric type is analysed. It has been
made possible to analyse a family of dynamic equations describing relaxation auto-oscillations and 1o
increase the set of values of amplitudes and periods of auto-oscillations due to the introduction of non
linear parameter |. It becomes possible to describe some types of non linear RLC circuits and relaxation
of auto-oscillatory processes taking place in these circuits more precisely and comprehensively with the
help of varying the coefficients of nonlinerity.

A dynamic model adequately describing relaxation of auto-oscillatory processes in some
types of non linear RLC circuits is proposed. Within the framework of the proposed model,
particularly at large values of the bifurcation parameter (u>>1), the algorithms for calculating the
amplitudes and periods of relaxation of auto-oscillatory processes for the mentioned RLC circuits
are found.

Investigation ofthemmofpmcemtahnsplmmnonhnwsymm:s ofgmnmmm
in such areas as physics, engineering, biology, economics and others. The
processes going on in non linear RLC circuits are of interest. A great number of works has been
carried out in this field, in particular in [1,2,3]. A full investigation of those processes could be
fulfilled with the help of constructing of the dynamic models endowed with the most important
properties of the processes going on in real RLC circuits.

A sample of constructing such dynamic model is brought in this paper to analyse relaxation
oscillations in some types of non-linear RLC circuits.

Circuit Description. The following types of RLC circuits are considered (see Fig. 1
and Fig. 2).

a) Ferromagnetic-cored coil, differential capacitor with closed p-n junction and S-type two-pole

RsCgyL. connected with them in series.

b) Ferromagnetic-cored coil, differential capacitor with closed p-n junction and S-type two-pole

RsCyL connected with them in series.

c) Coil without a core, differential capacitor with closed p-n junction and S-type two-pole RsCLy
connected with them in series.

d) Coil without a core, capacitor and S-type two-pole RsCLo connected with them in series
e) Coil without a core, capacitor and N-type two-pole RyCLg connected with them in parallel.
The following designations are used:

L is the inductance of the ferromagnetic-cored coil,
Ly is the inductance of the coil without any core,
Cq is the differential capacity of the closed p-n junction,
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C is the capacity of the capacitor,
is.isﬂ:scmm:ntlms-typem-pole.
iaismccurmntmdieN-typetwo-pole

Volt-ampere characteristic of the S-type two-pole is described as following:

2+1
Bt o, L, u)=0xLu)=—%+ i‘;—'

Volt-ampere characteristic of the N-type two-pole is described as following:

iy = O(RNJ.,U) = Q(IJ.#)

Thaph.nseplansfonhes-typemo-pu

1=123,..

le with series connection to the LC-circuit is:
@) =G5

where x =iy y=['%]“i“r
And the phase plane for the N-type two-pole with parallel connection to the LC-circuit is
determined as following:
L
(xvy)=(unl[;']”!!j.)

where x=uy, Y =‘[%]mf:.
1 is the coefficient of nonlinearity, m is the coefficient of nonlinearity determined from the
following relationships: i
du
I—-m=C==
e d I1=123.. ()

In the case of the two-pole connected with an LC circuit in series (see Fig.I), using Kirchho
laws, we get the following form of the dynamic model 5 ?

[+ )2 - prx-m =0 12123, ()

Note 1. Inequanonsa)and(S the differentiati
e W!Y) on;scamedombyscalet:methmmlawsw

t=(LO)"z
_[e g
F_ L ”=
where for the RgCaL circuit and L for the RsCL circuit.
When m = 0, the model (2) is modified to the following model
f+[(21+l)z”-p]i+x=0 1=123.. ° @)
The model (3) characterises auto-oscillations in the RsC4Lo, RsCLo, RyCLy circuits,
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where

Note 2. In the case of m = 0, | = 1, the equation (2) reduces to the well-known Van der Pol
equation having the following form

#+(3% - pfi+x=0 @)
Let now give the theorems what evidence in analogous to the proof of theorems in
work [1].
Theorem 1. Equations (2) and (3) have the only limiting cycles - I'(,1), /= 12.3..-which
are orbitally stable.
Theorem 2. When p>>1, T (1), /=123 the limiting cycles are described with closed
and piecewisely analytic Jordan curves —J, which are schematically presented in Fig.3.
Statement 1. When p>>1 the equations (2) and (3) have the solutions x{p1,1) which accept
the form of almost discontinuous damping relaxation auto-oscillations. The solutions are
schematically presented in Fig. 4.
Statement 2. Let po>1. Limiting amplitudes of equations (2) and (3) represent the only
positive real roots of the following algebraic equations.

21 ”"
B g = ——r g ¥ =0
(+1)3r I=123... ®)

Statement 3. Let p>>1, limiting periods of equations (2) are expressed by the following
relationships:

p@2+1),  2A+1-mu _;._1_’_. @1+1)1 -ma™)
(ul,m)= Im IIJ(21+1)(1 ,,)4-2,;’1:.“ 20 +1 :]’“ 2+1-my

li= 1.2,3. (5)

Statement 4. Let p>>1. Limiting amplitudes of equations (3) are defined from the following
relationships:

o l M p2I+1) u__H 1=123..
Tx(ﬂ,f)-zﬂ ll‘{{.’ 2 +1 o 1 (a 2!'!'])‘ @

It must be noted that for the solution of algebraic equations (5) as well as for the calculation
of formulae — T(, /, m) and T((x, [) itis worked out the algorithm using Fortran.

The values of the functions T("‘”'l) and 7;(‘"' l) are presented in Table 1 for some values of
quantities | and .

Note 3. All the quantities presented in Table 1 are dimensionless so as the following
relationships can be used in the deriving equations (2) and (3):
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where the index "bas" designates the basic value of the respective quantity.
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Fig.1. Nonlinear oscillating contour in series connected with a S-type two-pole
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Fig.2. Nonlinear oscillating contour In parallel connected witha N-type two-pole

Table 1. Some Values of Periods and Amplitudes of Relaxation
Auto-Oscillations Described by Equations (2) and (3)

a(l, p)
3.30656

3.42540
3.65148
3.65148
1.20905
121516
1.22090
1.22631
1.13037
1.13401
1.13741
1.14062
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Fig.3. The schematic form of the closed, piecewise analitic Jordan curves - J (ABA'B’),
1,23, ..
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Fig.4. The schematic form of relaxation oscillations :(p,!,r),! =123,... at
great values of the bifurcation parameter p>> 1
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