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Abstract

A notion of a path-extension in graphs is introduced and & new estimate for the
length of a longest cycle of a graph is established. It is proved that in every graph G,
¢ 2 (g+2)(6 —g) where C is & longest cycle in G of length ¢, g is the length of longest
path in G — V(C) and § is the minimum degree of G.

Terminology

We consider only finite undirected graphs without loops or multiple edges. For unexplained
terminology see [1]. The set of vertices of a graph G is denoted by V/(G) or just V; the set
of edges by E(G) or just E. If P is a path in a graph G then P denotes the path P with a
given orientation. For u,v € V(P) let u P v denotes the consecutive vertices on P from u to
uinthedi:ectionapedﬁedby?. I‘hememﬁm,inrmmdm.mgivmhyv‘ﬁu.
For?=z_pyanduEV{P)letu*(?}orjustu*dmtuthemofu(u;éy)on
P and v~ denotes its predecessor (u # z). For cycles we will use analogical definitions. If
v € V(G) then N(v) is the set of all vertices in V adjacent to v. Let d(v) = |N(v)| and
é = min{d(v)|v € V}. For P is a path of G let |P| = |V(P)| — 1. I [V(P)| = 0 then
|P| = —1. For C is a cycle of G let |C| = |[V(C)|. Extending the notion of a cycle we will
assume that every edge e € E is a cycle of length 2 and every vertex v € V is a cycle of
length 0. And finally we let |C] = 0 if V(C) = g. The length of a longest cycle C in G is
denoted by ¢(G) or just ¢ and the length of a longest path P by p(G) or just p.

For H a subgraph of a graph G let Q = ug...u, be a longest path in G — V(H). A tree
T'is said to be an QH-extension with T-rays T () if T is a union of Q and vertex-disjoint
paths T' () = wT (w)uf,i = 0, ..,q of & graph G-V(H).

Preliminary Results
The following statement will be useful and is easely verified:

Lemma 1 Let P = uPv be a longest path of a graph G, T = z 0y be a path of G with
[V(2) NV(P)| = {z}. Then
(i) luPz| > |Q], |z Po| > |Q).
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Moreover, i s, ua, 01, € V(P) and 5P| = i Pl = juPoal +1= g Pol+1=
2], then

(i) N(y) nV(w Pz™) = N@) nV(z* Pr;) = 0,

(i%) N(y) NV (uPvs) = N(y) N V(uz Pv) = @.

Lemma 2 LetC'bealmg:atcydeofath,Qbeapaﬁ
V(Q). Then

in G — V() and vy~ €

g 9
e> Y 1Zl+1U %l
i=0 i=0
where Z: = N(w)NV(C).i=0....a.

Proof. If UlZ = @ there is nothing to prove. Let ULoZs = {&1, »émhm 2 1 whexe
£1y..yém occurs on C in consecutive order. Set

A; = N(&) N {ug, .., i}, i =1,..,m.

Suppose m = 1. Chomsu,veAlsuchthat]uaﬂiammdmum. If w = v then
% ,|Z:| = 1 and hence there is nothing to prove. Otherwise,

25 a q
e uG@véul 2 Y12l +| U Zl-
=0 i=0
So, we may assume m > 2. Set

FE&) = Ctul, i=1,..m(Em1=&)-

It is easy to see that
=316, Slal=X1a, m=1Uzl o)
i=1 =1 =0 i=0
For every i € {1, ...,m} choose z;,y; € A;U Ai41 such that |zi6yi| is maximum (Am+1 =
Ay). To show that
f{EI)Z(IA‘I+|A‘+1|+2})(2! i=1,.,m, - (2)
we distinguish two cases:

Case 1. Either z; € A;,y € Ay or z; € A,y € Aic
Let z; € Ai, 3 € Aiya. Since C is extreme,

F&) 2 6@ Quibin| 2 AU Aia| +12 .
max{|Ail, [ial} +1 2 (Al + [Aial)/2+ 1 = (JAd + | Aia] +2)/2.

If z; € Ay, 1 € A; then

F(&) 2 16wk Qzibisa] > | AU Ay | + 1,

which implies (2).
Case 2. Fither z;,y; € A; or z;, 3 € Ay,
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First, suppose z;, % € A;. Then z;,y & Aiy ﬁnmo_t}a-wise{z)hn!dammme 14
Choose 7, € Ay such that |2/ G/ is maximum. If [z, @ 7| > (1Al — |Acsa])/2 then

(&) 2 62 Qofiss] > (1A = |Awsal)/2+ | Ases] + 1,
which implies (2). Otherwise

_ @z |6t Qziirs] = =, Gl + 2
= |z Qul — |2 QZ) +2 > | A — (A — |l - 1)/2+ 2,

which again implies (2). By symmetry, the case z;, s € Ay requires the same argument.
Thus (2) is proved. By (2),

30 £(6) 2 S04+ [Aea| +2)/2= 3 |4 +m,
i=]1 =] =]

which by (1) completes the proof of lemma 2.
By the same argument to the above we obtain:

Lemma 3 Let C be a longest cycle of a graph G, Q = ug...u, be a longest path of G —V(C)
and T be a mazimal QC-extension with T-rays ?(ﬂ,‘) =1.q?(u.}u;,i=0, «sq- Then

q q
2> 1z|+ Uz,
=0 =0

where Z = N(u})NV(C),i =0,...,q.

Lemma 4 For H a subgraph of a graph G, let Q = ug...ug be a longest path of G — V(H)
and T be a mazimal QH-extension with T-rays ?(u‘) = u;?[m}u;,i =0,...,q. Then

| 2| € qla+1),

M-

where Zi= N(ug) N V(T),i =0, ...q.

Proof. Set
Up={ueV(Q)lu=u"},U) =V(Q) - Up.
For every u € U, put ' = u"‘(?{u)). Assume, w.lo.g., that T is choosen such that
(V] is maximum. 1f Uy = 0 then cleacly | Zi| € ¢,i =0, ..., g, which immediately implies
1ol Zi | < qlg+1). Let Uy # 0. K vw € E for some w € V(T(u)) — {u,%} and
u € Uy, v € Uy then the system
{Q, (o), -, T(tg), u7T (w)™, vw T (w)u’} — {T(us), T(v)}
creates another Q) H-extension contradicting the maximality of |U;|. Hence

u € Us,v € Up = N(v) NV(T(u) - u) C {w'}.
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Putting
B(u)={ve Ul € E} if uel
B'(w)={veUus € E} if uelo
we see that @)
Y 1B)l= X |B*(u)l-
uelh uelp

Tor every u € Uy sel
U(w) = {u}U{v € GIN@) NV(T() - v) # 0}

Now let z be an arbitrary vertex of U;. For convenience, renumber the vertices of U(z)
J.O.g., that £1| w:Ef

as U(z) =i§;,...,£_f}. Let z=§ forsomet (1<t< f). Assume, W
oocurs on @ in consecutive arder. For each i € {1,.., f} choose ¥; € V(T(&:)) such that
£, € E and [&T (€) V| is maximum. In particular, we have ¥, = (£) - Set

Fi=VETEW), i=1,...1
For every f = 1 we let .
Mo=uQ& and ﬂ;=£}"6ﬂq-
For f > 2, in addition, we let
=606, i=1..f-1
For convenience, for each u € V(Q) we let
T(u) = uT(u)s’, Z (u*) = N(u*) V(D).

To prove that | 2 (&)| < ¢— |B(€)| we distinguish the following cases:
Case 1. f > 2.
Since Q is extreme,

V(M) > 16T €)W Vi T esr)ina] =22 [Fil + |Foal +1, i=1, f = 1.
By lemma 1 (see(i)),

IV(Mo)| > [V(& T (&) W69, T (61)€)| — 1 > |F| + |Fyl +1,
IV(Mp)| > [V T (&) 2& 0T ()8 - 1> |Fif + [Fy| +1.

However,
V(M) 2 |F| + |Feal +1, i=0,...,f, (4)
%here f‘n = Fy, Fpy = F. For every i € {0,..., f} let X} be the first |F}| + 1vertices set of
> X be the last |Fy| + 1 vertices set and ¥; = V(M) — (X! X"). By definition,

Xl =I5Bl +1, |X{|=|%ual+1, i=0,..,f (5)
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Y={ucY|§ug¢E}, Y'={ueYléuecE}i=0,..f,
Xy ={u EX:UX:—I*E:“ €EE}, W '.X:UX:U]‘TJ' =0,..., f.

For every i € {0, ..., f} choose 7; € ¥; such that |, Qx| is minimum, where & = uo. If
v € ¥ {n} then by lemma 1 (see(ii) with Q = v§ T (&)&), v~ € ¥/, which implies

Y12 -1, i=0,..f. ©)

and | X N X7| < [|X;_,1/2). Since X, € X;UX]', by (5) we obtain

|X| < |F|+1. (7

Prove that
Wil 2 |F| + |Foal + X" +1, i=0,....f. (8)

If ¥; = 0 for some i € {0,..., f} then |[W;| = |V(M;)| and therefore (8) holds by (4).
Otherwise X!, X! and ¥/ are vertex-disjoint sets and therefore (8) holds by the definition of
W, using (5) and (6). So , (8) is proved.

By lemma 1 (see(ii) with Q = & T ()€ T (€,)€:,i # t) we have

MENU X - Xt =0,
By symmetry, 5
NENUX-x) =0
So , recalling the definition of B(¢) and X, we deduce that

I
B(&) c Uv'UX. (9)
i=0

By lemma 1 (see(ii) with = £, T (£)&,i =0, ..., f),
NENXi=0i=1,..f; NENXI=0,i=0,...f-1
; Furthermore, by lemma 1 (seeiii) with 0, = &%, T (&), and Q, = £, T (¢,)¢;) we
1Aave
NENXGUXT) =0.
By the definition of Y,
N(SJnYr=ﬂ! i=0,..,f.
Thus, recalling the definition of W; we deduce that
NEYNWi=0, i=0,..f. (10)
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Using (7), (8), (9), (10) and recalling the definition of Z (&),
|5 €)] = INE)NV(@)| £ IV(Q)] — Theo Wil + Zhea 1P
< g+1— SLo(Fl + |Fual + ¥+ 1) + Tl Fil 56
< g (Sl Y]+ 1]) + X — SLa Bl - Bl - |Fyl = F < = 1BEE
Case 2. f=1.
By lemma 1(see(i)), |T'(£1)
|T(&)] < (|Mo] + | Mi] +2)/2=a/2.

| < |Mo| +1 and [T(&)] < |Mi| + 1, which implies
(11)

On the other hand, (12)
uelU; = B(u) <q/2, .

gince v € B(u) implies v*, v~ ¢ B(u).
Case 2.1. 21 (&) N(V(Mo) UV (M) = 0.
By (11) and (12), .
| Z (&) < IT(&)] < 9/2 < q— B(&)-

Case 2.2. 21 () N(V(Mo) UV (My)) # 0

Case 2.2.1. 2; (E)NV(Mo) # 9, Z1 (€) NV (My) # 0.
Let £}¢ € E for some £ € V(Mp). By lemma 1 (see(i)),

o @€ > 166, T ()61 = IT(&)]-
On the other hand, since C is extreme,
[€Q&] > 166 T ()&l = ITE)] +1.

Then
IV (Mo)] > fuo @&| + |EQ &l 2 2IT(E)| +1 = 2|Fy] +3.

By symmetry, [V(M;)| = 2|Fi| +3. Then we could argue exactly as in case 1 by the
same definitions X/, X?, Y7, Y/, X, and W; for i =0,1.
A A
Case 2.2.2. Either Z;ﬂ(fi') NV(Mp) =0 or Z, (§)NV (M) = 0. ,
Assume, w.lo.g., that Z; (&)NV (M) =0 . Let X}, XZ,Yd,Y'W, are defined exactly
as in case 1 and let X; = {u € X{|¢{u € E}. Asin case 1,

Pl =G Nx5) < 1xal /2 (13)
Since Q is extreme, |B(é:) NV/(My)] < [V(M;)| /2. Then
[B&)| < Y] + 1 X + [V(M3)]/2. (14)

Thus, using (13) and (14) by a similar argument to the above (case 1) we obtain | %
(&) < g |B(&)|. We have thus shown that | 2 ()| < g — |B(&)| for all £ > 1, ie.

A
ueli=|2Z (v <q-|B(u)|. (15)



Path-Extensions and Long Cycles in Graphs 31

By (15), ;.
> 1zw)| <Uilg- Y Blu). (16)
wel] well

Noting that é (u) € (V(Q) — {u}) U B*(u) for every u € Up, we see that
uelp=|Z )| <q+|B ),
which by (3) gives
20. | Z (u)] < |Uslg + Z |B*(u)| = |Uslg + Z {B(u)|. (17)
By (16) and (17),
YlZil=X 120+ X | 2 (u)| < qlg+1).
i=0 uelhp

uel

Lemme 4 is proved.

The main result

Theorem. Every graph G contains a cycle of length at least (g+ 2)(§ — g), where g denotes
the length of a longest path in G —V/(C), C denotes a longest cycle in G and § the minimum
degree of G.
Proof. We can assume that g > 0 since otherwise (§ = —1) G is hamiltonian and
=|V(G)| 2 6+1=(g+2)(6 — q). Let @ = ug...u, be the longest path in G — V(C) and
T be s maximal QC-extension with T-rays ?(m) = m?(ug}u,‘, i=0,..,q. Set

Zi=N@)V(C), Z=NE)OV(T), i=0,..q

By lemma 4, $04| Z: | < q(g + 1). Since
1%l +1 ‘%' | =d(u}) 2 6,i=0,..,q,

it follows that ,
zlzil 2 2(5- | Zi)) = (g +1)6 - ZI Zi| 2 (@+1)(6—q).

Inpa.rncu]a.r max|Z4|>6 g. Since UL Zi| >ma.x|z‘|,1tfulluwsbylemm32that
c>z|z,|+iUmi>{q+1)(5 —g) +max|Z| > (g+2)(6 - g).

Theomnmpmed.

The following example of a graph shows that the theorem 1 is best possible. Let G
be a (4 — g)-connected graph, S be a minimum vertex cut of G with < § >= K;_, and
H; = Kg41,i = 1,...,6 — g+ 1 be the components of G — S, where every vertex of H; is
adjacent. to all vertices of S. It is easy to see that |C| = (g +2)(6 — ¢) and |Q| = g, where
C' denotes a longest cycle of G and @ a longest path of G — V(C).
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