Path-Extensions and Long Cycles in Graphs

Zh. G. Nikoghosyan

Institute for Informatics and Automation Problems of NAS RA and YSU E-mail: zhora@ipia.sci.am

Abstract

A notion of a path-extension in graphs is introduced and a new estimate for the length of a longest cycle of a graph is established. It is proved that in every graph G, $c \geq (q+2)(\delta-q)$ where C is a longest cycle in G of length c, q is the length of longest path in G-V(C) and δ is the minimum degree of G.

Terminology

We consider only finite undirected graphs without loops or multiple edges. For unexplained terminology see [1]. The set of vertices of a graph G is denoted by V(G) or just V; the set of edges by E(G) or just E. If P is a path in a graph G then \overrightarrow{P} denotes the path P with a given orientation. For $u,v\in V(P)$ let $u\overrightarrow{P}v$ denotes the consecutive vertices on P from u to v in the direction specified by \overrightarrow{P} . The same vertices, in reverse order, are given by $v\overrightarrow{P}u$. For $\overrightarrow{P}=x\overrightarrow{P}y$ and $u\in V(P)$ let $u^+(\overrightarrow{P})$ or just u^+ denotes the successor of $u(u\neq y)$ on \overrightarrow{P} and u^- denotes its predecessor $(u\neq x)$. For cycles we will use analogical definitions. If $v\in V(G)$ then N(v) is the set of all vertices in V adjacent to v. Let d(v)=|N(v)| and $\delta=\min\{d(v)|v\in V\}$. For P is a path of G let |P|=|V(P)|-1. If |V(P)|=0 then |P|=-1. For C is a cycle of G let |C|=|V(C)|. Extending the notion of a cycle we will assume that every edge $e\in E$ is a cycle of length 2 and every vertex $v\in V$ is a cycle of length 0. And finally we let |C|=0 if $V(C)=\emptyset$. The length of a longest cycle C in G is denoted by c(G) or just c and the length of a longest path P by p(G) or just p.

For H a subgraph of a graph G let $Q = u_0 \dots u_q$ be a longest path in G - V(H). A tree T is said to be an QH-extension with T-rays $\overrightarrow{T}(u_i)$ if T is a union of Q and vertex-disjoint paths $\overrightarrow{T}(u_i) = u_i \overrightarrow{T}(u_i) u_i^*$, $i = 0, \dots, q$ of a graph G-V(H).

Preliminary Results

The following statement will be useful and is easely verified:

Lemma 1 Let $\overrightarrow{P} = u\overrightarrow{P}v$ be a longest path of a graph G, $\overrightarrow{\Omega} = x\overrightarrow{\Omega}y$ be a path of G with $|V(\Omega) \cap V(P)| = \{x\}$. Then

(i) $|u\overrightarrow{P}x| \ge |\Omega|$, $|x\overrightarrow{P}v| \ge |\Omega|$.

Moreover, if $u_1, u_2, v_1, v_2 \in V(P)$ and $|\overrightarrow{xP}v_1| = |u_1\overrightarrow{P}x| = |u\overrightarrow{P}v_2| + 1 = |u_2\overrightarrow{P}v| + 1 = |\Omega|$, then

(ii) $N(y) \cap V(u_1 \overrightarrow{P} x^-) = N(y) \cap V(x^+ \overrightarrow{P} v_1) = \emptyset$, (iii) $N(y) \cap V(u \overrightarrow{P} v_2) = N(y) \cap V(u_2 \overrightarrow{P} v) = \emptyset$.

Lemma 2 Let C be a longest cycle of a graph G,Q be a path in G-V(C) and $u_0,...,u_q \in V(Q)$. Then

$$c \ge \sum_{i=0}^{q} |Z_i| + |\bigcup_{i=0}^{q} Z_i|,$$

where $Z_i = N(u_i) \cap V(C)$, i = 0, ..., a.

Proof. If $U_{i=0}^q Z_i = \emptyset$ there is nothing to prove. Let $U_{i=0}^q Z_i = \{\xi_1, ..., \xi_m\}, m \geq 1$, where $\xi_1, ..., \xi_m$ occurs on \overrightarrow{C} in consecutive order. Set

$$A_i = N(\xi_i) \cap \{u_0, ..., u_q\}, i = 1, ..., m.$$

Suppose m=1. Choose $u,v\in A_1$ such that $|u\overrightarrow{Q}v|$ is maximum. If u=v then $\sum_{i=0}^{q}|Z_i|=1$ and hence there is nothing to prove. Otherwise,

$$c \ge |u\overrightarrow{Q}v\xi_1u| \ge \sum_{i=0}^q |Z_i| + |\bigcup_{i=0}^q Z_i|.$$

So, we may assume $m \geq 2$. Set

$$f(\xi_i) = |\xi_i \overrightarrow{C} \xi_{i+1}|, \quad i = 1, ... m(\xi_{m+1} = \xi_1).$$

It is easy to see that

$$c = \sum_{i=1}^{m} f(\xi_i), \quad \sum_{i=1}^{m} |A_i| = \sum_{i=0}^{q} |Z_i|, \qquad m = |\bigcup_{i=0}^{q} Z_i|.$$
 (1)

For every $i \in \{1, ..., m\}$ choose $x_i, y_i \in A_i \cup A_{i+1}$ such that $|x_i \overrightarrow{Q} y_i|$ is maximum $(A_{m+1} = A_1)$. To show that

$$f(\xi_i) \ge (|A_i| + |A_{i+1}| + 2)/2, \quad i = 1, ..., m,$$
 (2)

we distinguish two cases:

Case 1. Either $x_i \in A_i, y_i \in A_{i+1}$ or $x_i \in A_{i+1}, y_i \in A_i$. Let $x_i \in A_i, y_i \in A_{i+1}$. Since C is extreme,

$$f(\xi_i) \ge |\xi_i x_i \overrightarrow{Q} y_i \xi_{i+1}| \ge |A_i \cup A_{i+1}| + 1 \ge \max\{|A_i|, |A_{i+1}|\} + 1 \ge (|A_i| + |A_{i+1}|)/2 + 1 = (|A_i| + |A_{i+1}| + 2)/2.$$

If $x_i \in A_{i+1}, y_i \in A_i$ then

$$f(\xi_i) \ge |\xi_i y_i \stackrel{\longleftarrow}{Q} x_i \xi_{i+1}| \ge |A_i \cup A_{i+1}| + 1$$
,

which implies (2).

Case 2. Either $x_i, y_i \in A_i$ or $x_i, y_i \in A_{i+1}$.

First, suppose $x_i, y_i \in A_i$. Then $x_i, y_i \notin A_{i+1}$ since otherwise (2) holds as in case 1. Choose $x_i', y_i' \in A_{i+1}$ such that $|x_i' \overrightarrow{Q} y_i'|$ is maximum. If $|x_i \overrightarrow{Q} x_i'| \ge (|A_i| - |A_{i+1}|)/2$ then

$$f(\xi_i) \ge |\xi_i x_i \overrightarrow{Q} y_i' \xi_{i+1}| \ge (|A_i| - |A_{i+1}|)/2 + |A_{i+1}| + 1,$$

which implies (2). Otherwise

$$f(\xi_i) \ge |\xi_i y_i \overleftarrow{Q} x_i' \xi_{i+1}| = |x_i' \overrightarrow{Q} y_i| + 2$$

= $|x_i \overrightarrow{Q} y_i| - |x_i \overrightarrow{Q} x_i'| + 2 \ge |A_i| - (|A_i| - |A_{i+1}| - 1)/2 + 2$,

which again implies (2). By symmetry, the case $x_i, y_i \in A_{i+1}$ requires the same argument. Thus (2) is proved. By (2),

$$\sum_{i=1}^{m} f(\xi_i) \ge \sum_{i=1}^{m} (|A_i| + |A_{i+1}| + 2)/2 = \sum_{i=1}^{m} |A_i| + m,$$

which by (1) completes the proof of lemma 2.

By the same argument to the above we obtain:

Lemma 3 Let C be a longest cycle of a graph G, $Q = u_0...u_q$ be a longest path of G - V(C) and T be a maximal QC-extension with T-rays $\overrightarrow{T}(u_i) = u_i \overrightarrow{T}(u_i)u_i^*$, i = 0, ..., q. Then

$$c \geq \sum_{i=0}^{q} |Z_i| + |\bigcup_{i=0}^{q} Z_i|,$$

where $Z_i = N(u_i^*) \cap V(C), i = 0, ..., q$.

Lemma 4 For H a subgraph of a graph G, let $Q = u_0...u_q$ be a longest path of G - V(H) and T be a maximal QH-extension with T-rays $\overrightarrow{T}(u_i) = u_i \overrightarrow{T}(u_i)u_i^*, i = 0,...,q$. Then

$$\sum_{i=0}^{q} | \hat{Z}_i | \leq q(q+1),$$

where $\hat{Z}_i = N(u_i^*) \cap V(T), i = 0, ..., q$.

Proof. Set

$$U_0 = \{u \in V(Q) | u = u^*\}, U_1 = V(Q) - U_0.$$

For every $u \in U_1$ put $u' = u^+(\overrightarrow{T}(u))$. Assume, w.l.o.g., that T is choosen such that $|U_1|$ is maximum. If $U_1 = \emptyset$ then clearly $|\hat{Z}_i| \le q, i = 0, ..., q$, which immediately implies $\sum_{i=0}^q |\hat{Z}_i| \le q(q+1)$. Let $U_1 \ne \emptyset$. If $vw \in E$ for some $w \in V(T(u)) - \{u, u'\}$ and $u \in U_1, v \in U_0$ then the system

$$\{Q, T(u_0), ..., T(u_q), u\overrightarrow{T}(u)w^-, vw\overrightarrow{T}(u)u^*\} - \{T(u), T(v)\}$$

creates another QH-extension contradicting the maximality of $|U_1|$. Hence

$$u \in U_1, v \in U_0 \Rightarrow N(v) \cap V(T(u) - u) \subseteq \{u'\}.$$

Putting

$$B(u) = \{v \in U_0 | vu' \in E\} \text{ if } u \in U_1, \\ B^*(u) = \{v \in U_1 | uv' \in E\} \text{ if } u \in U_0,$$

we see that

$$\sum_{u \in U_1} |B(u)| = \sum_{u \in U_0} |B^*(u)|. \tag{3}$$

For every $u \in U_1$ set

$$U(u) = \{u\} \bigcup \{v \in U_1 | N(u^*) \cap V(T(v) - v) \neq \emptyset\}.$$

Now let z be an arbitrary vertex of U_1 . For convenience, renumber the vertices of U(z) as $U(z)=\{\xi_1,...,\xi_f\}$. Let $z=\xi_t$ for some t $(1\leq t\leq f)$. Assume, w.l.o.g., that $\xi_1,...,\xi_f$ occurs on \overrightarrow{Q} in consecutive order. For each $i\in\{1,...,f\}$ choose $\Psi_i\in V(T(\xi_i))$ such that $\xi_t^*\Psi_i\in E$ and $|\xi_i\overrightarrow{T}(\xi_i)\Psi_i|$ is maximum. In particular, we have $\Psi_t=(\xi_t^*)^{-}$. Set

$$F_i = V(\xi_i'\overrightarrow{T}(\xi_i)\Psi_i), \quad i = 1, ..., f.$$

For every $f \ge 1$ we let

$$\overrightarrow{M}_0 = u_0 \overrightarrow{Q} \xi_1^-$$
 and $\overrightarrow{M}_f = \xi_f^+ \overrightarrow{Q} u_q$.

For $f \ge 2$, in addition, we let

$$\overrightarrow{M}_{i} = \xi_{i}^{+} \overrightarrow{Q} \xi_{i+1}^{-}, \quad i = 1, ..., f - 1.$$

For convenience, for each $u \in V(Q)$ we let

$$T(u) = uT(u)u^*, \hat{Z}(u^*) = N(u^*) \cap V(T).$$

To prove that $|\hat{Z}(\xi_t^*)| \leq q - |B(\xi_t)|$ we distinguish the following cases: Case 1. $f \geq 2$. Since Q is extreme,

$$|V(M_i)| \ge |\xi_i \overrightarrow{T}(\xi_i) \Psi_i \xi_i^* \Psi_{i+1} \overleftarrow{T}(\xi_{i+1}) \xi_{i+1}| - 2 \ge |F_i| + |F_{i+1}| + 1, \quad i = 1, ..., f-1.$$

By lemma 1 (see(i)),

$$\begin{aligned} |V(M_0)| &\geq |V(\xi_1\overrightarrow{T}(\xi_1)\Psi_1\xi_t^*\Psi_f\overleftarrow{T}(\xi_f)\xi_f'| - 1 \geq |F_1| + |F_f| + 1, \\ |V(M_f)| &\geq |V(\xi_f\overrightarrow{T}(\xi_f)\Psi_f\xi_t^*\Psi_1\overleftarrow{T}(\xi_1)\xi_f'| - 1 \geq |F_1| + |F_f| + 1. \end{aligned}$$

However,

$$|V(M_i)| \ge |F_i| + |F_{i+1}| + 1, \quad i = 0, ..., f,$$
 (4)

where $F_0 = F_f$, $F_{f+1} = F_1$. For every $i \in \{0, ..., f\}$ let X_i' be the first $|F_i| + 1$ vertices set of \overrightarrow{M}_i , X_i'' be the last $|F_{i+1}| + 1$ vertices set and $Y_i = V(\overrightarrow{M}_i) - (X_i' \cup X_i'')$. By definition,

$$|X_i'| = |F_i| + 1, \quad |X_i''| = |F_{i+1}| + 1, \quad i = 0, ..., f.$$
 (5)

Set

$$\begin{split} Y_i' &= \{u \in Y_i | \xi_i^* u \not\in E\}, \quad Y_i'' = \{u \in Y_i | \xi_i' u \in E\}, i = 0, ..., f, \\ X_t &= \{u \in X_t' \bigcup X_{t-1}'' | \xi_t' u \in E\}, \quad W_i = X_i' \bigcup X_i'' \bigcup Y_i', i = 0, ..., f. \end{split}$$

For every $i \in \{0, ..., f\}$ choose $\tau_i \in Y_i$ such that $|\xi_i \overrightarrow{Q} \tau_i|$ is minimum, where $\xi_0 = u_0$. If $v \in Y_i'' - \{\tau_i\}$ then by lemma 1 (see(ii) with $\Omega = v\xi_t' \overrightarrow{T}(\xi_t)\xi_t^*$), $v^- \in Y_i'$, which implies

$$|Y_i'| \ge |Y_i''| - 1, \quad i = 0, ..., f.$$
 (6)

For every $v \in X_t$, by lemma 1 (see(ii)), $v^-, v^+ \notin X_t$, implying that $|X_t \cap X_t'| \leq [|X_t'|/2]$ and $|X_t \cap X_t''| \leq [|X_{t-1}''|/2]$. Since $X_t \subseteq X_t' \cup X_t''$, by (5) we obtain

$$|X_t| \le |F_t| + 1. \tag{7}$$

Prove that

$$|W_i| \ge |F_i| + |F_{i+1}| + |Y_i''| + 1, \quad i = 0, ..., f.$$
 (8)

If $Y_i = \emptyset$ for some $i \in \{0, ..., f\}$ then $|W_i| = |V(M_i)|$ and therefore (8) holds by (4). Otherwise X'_i, X''_i and Y'_i are vertex-disjoint sets and therefore (8) holds by the definition of W_i using (5) and (6). So , (8) is proved.

By lemma 1 (see(ii) with $\Omega = \xi_t^i \overrightarrow{T}(\xi_t) \xi_t^* \Psi_i \overleftarrow{T}(\xi_i) \xi_i, i \neq t$) we have

$$N(\xi_t') \bigcap (\bigcup_{i=0}^f X_i'' - X_{t-1}'') = \emptyset.$$

By symmetry,

$$N(\xi_t') \bigcap (\bigcup_{i=0}^f X_i' - X_t') = \emptyset.$$

So , recalling the definition of $B(\xi_t)$ and X_t we deduce that

$$B(\xi_t) \subseteq \bigcup_{i=0}^f Y_i'' \bigcup X_t. \tag{9}$$

By lemma 1 (see(ii) with $\Omega = \xi_i^* \Psi_i \overleftarrow{T}(\xi_i) \xi_i, i = 0, ..., f$),

$$N(\xi_t^*) \cap X_i' = \emptyset, i = 1, ..., f; N(\xi_t^*) \cap X_i'' = \emptyset, i = 0, ..., f - 1.$$

Furthermore, by lemma 1 (see(iii) with $\Omega_1 = \xi_t^* \Psi_1 \overleftarrow{T}(\xi_1) \xi_1$ and $\Omega_2 = \xi_t^* \Psi_f \overleftarrow{T}(\xi_f) \xi_f$) we have

$$N(\xi_t^*) \cap (X_0' \mid JX_t'') = \emptyset.$$

By the definition of Y_i' ,

$$N(\xi_t^*) \cap Y_i' = \emptyset, \quad i = 0, ..., f.$$

Thus, recalling the definition of W_i we deduce that

$$N(\xi_{t}^{*}) \cap W_{t} = \emptyset, \quad i = 0, ..., f.$$
 (10)

Using (7), (8), (9), (10) and recalling the definition of $\hat{Z}(\xi_t^*)$,

$$\begin{split} |\stackrel{\wedge}{Z}(\xi_{i}^{*})| &= |N(\xi_{i}^{*}) \cap V(T)| \leq |V(Q)| - \sum_{i=0}^{f} |W_{i}| + \sum_{i=1}^{f} |F_{i}| \\ &\leq q + 1 - \sum_{i=0}^{f} (|F_{i}| + |F_{i+1}| + |Y_{i}''| + 1) + \sum_{i=0}^{f} |F_{i}| \\ &\leq q - (\sum_{i=0}^{f} |Y_{i}''| + |X_{t}|) + |X_{t}| - \sum_{i=1}^{f} |F_{i}| - |F_{1}| - |F_{f}| - f \leq q - |B(\xi_{t})|. \end{split}$$

Case 2. f = 1.

By lemma 1(see(i)), $|T(\xi_1)| \le |M_0| + 1$ and $|T(\xi_1)| \le |M_1| + 1$, which implies

$$|T(\xi_1)| \le (|M_0| + |M_1| + 2)/2 = q/2.$$

On the other hand,

$$u \in U_1 \Rightarrow B(u) \leq q/2,$$

(11)

(12)

since $v \in B(u)$ implies $v^+, v^- \notin B(u)$.

Case 2.1. $\hat{Z}_1(\xi_1^*) \cap (V(M_0) \cup V(M_1)) = \emptyset$.

By (11) and (12),

$$|\hat{Z}(\xi_1^*)| \le |T(\xi_1)| \le q/2 \le q - B(\xi_1).$$

Case 2.2. $\hat{Z}_1(\xi_1^*) \cap (V(M_0) \cup V(M_1)) \neq \emptyset$

Case 2.2.1. $\hat{Z}_1(\xi_1^*) \cap V(M_0) \neq \emptyset$, $\hat{Z}_1(\xi_1^*) \cap V(M_1) \neq \emptyset$.

Let $\xi_1^* \xi \in E$ for some $\xi \in V(M_0)$. By lemma 1 (see(i)),

$$|u_0\overrightarrow{Q}\xi| \ge |\xi\xi_1^*\overrightarrow{T}(\xi_1)\xi_1'| = |T(\xi_1)|.$$

On the other hand, since C is extreme,

$$|\xi \overrightarrow{Q} \xi_1| \ge |\xi \xi_1^* \overleftarrow{T} (\xi_1) \xi_1| = |T(\xi_1)| + 1.$$

Then

$$|V(M_0)| \ge |u_0 \overrightarrow{Q} \xi| + |\xi \overrightarrow{Q} \xi_1| \ge 2|T(\xi_1)| + 1 = 2|F_1| + 3.$$

By symmetry, $|V(M_1)| \ge 2|F_1| + 3$. Then we could argue exactly as in case 1 by the same definitions $X_i', X_i'', Y_i', Y_i'', X_1$ and W_i for i = 0, 1.

Case 2.2.2. Either $\hat{Z}_1(\xi_1^*) \cap V(M_0) = \emptyset$ or $\hat{Z}_1(\xi_1^*) \cap V(M_1) = \emptyset$.

Assume, w.l.o.g., that \hat{Z}_1 $(\xi_1^*) \cap V(M_1) = \emptyset$. Let $X_0', X_0'', Y_0', Y_0''W_0$ are defined exactly as in case 1 and let $X_1 = \{u \in X_0'' | \xi_1'u \in E\}$. As in case 1,

$$|X_1| = |X_1 \cap X_0''| \le |X_0'|/2.$$
 (13)

Since Q is extreme, $|B(\xi_1) \cap V(M_1)| \le |V(M_1)|/2$. Then

$$|B(\xi_1)| \le |Y_0''| + |X_1| + |V(M_1)|/2. \tag{14}$$

Thus, using (13) and (14) by a similar argument to the above (case 1) we obtain $|\hat{Z}|$ $|\xi_1^*| \le q - |B(\xi_1)|$. We have thus shown that $|\hat{Z}(\xi_t^*)| \le q - |B(\xi_t)|$ for all $f \ge 1$, i.e.

$$u \in U_1 \Rightarrow |\hat{Z}(u^*)| \le q - |B(u)|. \tag{15}$$

$$\sum_{u \in U_1} |\hat{Z}(u^*)| \le |U_1|q - \sum_{u \in U_1} B(u). \tag{16}$$

Noting that $\hat{Z}(u) \subseteq (V(Q) - \{u\}) \cup B^*(u)$ for every $u \in U_0$, we see that

$$u \in U_0 \Rightarrow |\hat{Z}(u)| \leq q + |B^*(u)|,$$

which by (3) gives

$$\sum_{u \in U_0} |\mathring{Z}(u)| \le |U_0|q + \sum_{u \in U_0} |B^*(u)| = |U_0|q + \sum_{u \in U_1} |B(u)|. \tag{17}$$

By (16) and (17),

$$\sum_{i=0}^{q} | \stackrel{\wedge}{Z}_i | = \sum_{u \in U_1} | \stackrel{\wedge}{Z}(u^*) | + \sum_{u \in U_0} | \stackrel{\wedge}{Z}(u) | \le q(q+1).$$

Lemma 4 is proved.

The main result

Theorem. Every graph G contains a cycle of length at least $(q+2)(\delta-q)$, where q denotes the length of a longest path in G-V(C), C denotes a longest cycle in G and δ the minimum degree of G.

Proof. We can assume that $q \ge 0$ since otherwise (q = -1) G is hamiltonian and $C=|V(G)|\geq \delta+1=(q+2)(\delta-q)$. Let $Q=u_0...u_q$ be the longest path in G-V(C) and T be a maximal QC-extension with T-rays $\overrightarrow{T}(u_i) = u_i \overrightarrow{T}(u_i)u^*$, i = 0, ..., q. Set

$$Z_i = N(u_i^*) \cap V(C), \quad \hat{Z}_i = N(u_i^*) \cap V(T), \quad i = 0, ..., q.$$

By lemma 4, $\sum_{i=0}^{q} |\hat{Z}_i| \leq q(q+1)$. Since

$$|Z_i| + |\hat{Z}_i| = d(u_i^*) \ge \delta, i = 0, ..., q,$$

it follows that
$$\sum_{i=0}^q |Z_i| \geq \sum_{i=0}^q (\delta - |\stackrel{\wedge}{Z}_i|) = (q+1)\delta - \sum_{i=0}^q |\stackrel{\wedge}{Z}_i| \geq (q+1)(\delta - q).$$

In particular, $\max_{i} |Z_i| \ge \delta - q$. Since $|U_{i=0}^q Z_i| \ge \max_{i} |Z_i|$, it follows by lemma 2 that

$$c \ge \sum_{i=0}^{q} |Z_i| + |\bigcup_{i=0}^{q} Z_i| \ge (q+1)(\delta - q) + \max_{i} |Z_i| \ge (q+2)(\delta - q).$$

Theorem is proved.

The following example of a graph shows that the theorem 1 is best possible. Let G be a $(\delta - q)$ -connected graph, S be a minimum vertex cut of G with $\langle S \rangle = K_{\delta - q}$ and $H_i = K_{q+1}, i = 1, ..., \delta - q + 1$ be the components of G - S, where every vertex of H_i is adjacent to all vertices of S. It is easy to see that $|C| = (q+2)(\delta - q)$ and |Q| = q, where C denotes a longest cycle of G and Q a longest path of G - V(C).

References

 J.A. Bondy and U.S.R.Murty, Graph Theory with Application, MacMillan & co., London and Amer. Elsevier, New York, 1976.