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Abstract
For a binary source and Hamming distortion measure the rate-reliability-distort
function is derived and analyzed.

ion

1 Introduction

Shannon defined [1,2] rate-distortion function (RDF) as a minimal rate that can be &chJeVEd
for source data transmission with distortion smaller than a required level. The properties of
RDF can be found in the book of I. Csiszdr and J. Kérner (3] and in the work of

[4-
Haroutunian and Mekoush introduced [5] the rate-reliability-distortion function (RRDF).
The discrete stationary memoryless source {X;}Z2; is & sequence of independent copies
of & random variable X with finite alphabet X and probability distribution P* = {P"(z),

z € X}. The probability of source message X = (23, ...,7n) € &A™ will be P*(x) =_l!‘11 P(z;).

The roproduction alphabet is the finite st . Let d : X x U — [0,00) be the single-letter
distortion measure. The distortion between source message x and reconstructed vector

u= (ty,..,U) EU™ i8
: d(z,u) = n‘i gd(&, ;).
Block encoding and decoding of length n are respectively
fi&*—{1,2,..,L(n)}, F:{L,2,..,L(n)} = U".
Let A ={x :F(f(x)) = u,d(x,u) < A}. The probability of error is
 elf,FAn)=1-P™(A).

Dinthion: A mtbee 5 0 o (BLA ) bisnble ae -
mdsuﬁcimlyh:gemh&mméodl (f, F) i s o) e
nlogL(n) < R+e
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and
e(f,F,A,n) < exp{—nE}.
For fixed E > () and A > 0 denote
R(E,A)=min{R: Ris (E,A)— achievable}.

Note that the rate-reliability-distortion function R{E, A) is a generalization of rate-distortion
funetion R(A), which is limit point of R(E,A):

gf?n R(E,A) = R(A).

RRDF is the minimal rate at which the messages of a source can be encoded when the
probability of exceeding given distortion level A is less than or equel to exp{—nE}, where
n is the blocklength and E is called reliability.

Let P = {P(z), = € X} be some probability distribution (PD) and

Q={Qu|z),ze Xuel}
be a conditional PD. Denote
a(E)={P: D(P | P*) < E},

where D(P | P*) is divergence

= P(z)
D(P || P) —Ex P(z)log @)

The mathematical expectation of distortion with respect to distributions P and @ is

Epqd(X,U) =) P(z)Q(u | z)d(z, u).

Shannon’s classic result states that R(A) is of a form

R(A) = Ipg(X A D), )

min
Q:Epgd(X,U)<A

where mutual information is

Ing(X AU) =,Z. P(z)Q(u | z) log %

The following general result was stated in [5].
Theorem 1: For any E >0, A >0

R(E,A) = max Ipq(X AU). @)

min
Pea(E)Q:Epgd(X.U)<A
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2 Two Properties

It is well known that RDF is a non-increasing and convex function of A- N
the same properties for RRDF. Y

Property 1: R(E,A) is a non-increasing and convex function of A. ¢
Proof. The first part is evident. Let for fixed E the points (Ar, Ry) and (82, F2) belong to

the curve R(E, A) and A; < Ag. We shall prove that for every 3, 0 <A< 1.
R(E, Ay) = R(E, A0 + (1 = N)Ag) € AR(Ey, Ay) + (1 — N R(E, B2)-

Denote for fixed distribution P

R(E,4) =Q'£P.qnj(la‘lfl-0}$ﬁ Ipq(X A D).

The function R(P,A), as a RDF for P, is convex of A. Then
R(B,A,) = e R(PAA; +(1—2)Ag) <

e (VR(PA) + (1~ VAP A) < mae. RP A + (1) g RIP 2o

o /\R(Ell A‘l) + (1 o ’\)R{‘Eﬂh Aﬂ)t

where (a) follows from the facts that R(P, A;) > R(P, Az), because A; < Ay, and the point
Ry = AR(P,A;) + (1 — A)R(P, A;) divides the segment [R(P, A); R(P, Az)] by proportion
A/1 — A. Concequently, R, is not larger than the point that divides the segment [P%
R(P, Al);p% R(P, Az)] by the same proportion.

It is natural to examine the properties of RRDF with respect to reliability E. It is
expected that higher reliability will result larger transmission rate, which asserts the following

property.
Property 2: R(E,A) is a non-decreasing function of E.

3 Function Reu(E, A)

In this article we specify R(E,A) for an important class of sources. For binary source
& ={0,1} with generic PD P* = {p",1 — p*} and Hamming distance

de)={ T o rw

we denote RDF and RRDF by Rpg(A) and Rgp(E, A), respectively.
Let Hp-(X) and Ha(X), A > 0, are binary entropy functions

Hp-(X) = —p"logp® — (1 —p*) log(1 — p°),
Ha(X)=—AlogA—(1 ~A)log(l —A).
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Sirnilar notations of entropies are in force for other PD. It is known (see [6]) that

HoulA) { (0~ HalX), 0S4 <miniyl )

A > min{p",1—

Nouw we assert
Theorem 2: Forevery E>Qand A >0

Hpy(X)— Ho(X), p" ¢ m,07), 0SA< %min{mlﬂ’},

Reu(E,A) ={ 1= Ha(X), 7" € [ay,02], A < max min{p,1-p},
0, A> pax minip,1=p},
where
ol e exp{E} - \Jexp{2E} — 1 exp{E} +/exp{2E} -1
mi exp{E +1} ' exp{E + 1}
and
D(Pg | P*)=E.

Proof: From (1) and (2) we can derive

max (Hp(X)— Ha(X)), 0<A < max min{p,1-p},
Rpu(A) = { LI ? A> ma.:&(m;i{p 1-p}.
Pén(E) i

Let 0 <A 5,-‘2"(’.&, min{p, 1 — p}. Our task is simplification of
x|

Jmex (Hp(X) — HA(X)) = max Hp(X) — Ha(X).

Note that if PD {1/2,1/2} € a(E), then

gﬂ,ﬁp(xhl.
which takes place, when
. 1-p
D(P | P*)=plog—+ (1 —p)log—— < E.
(P P*) plog 2 (1-p) oy
The last. inequality reduces to
1 1 1
- — _ )=
2[log2p_+1032{1__r))_5'

1
- =
pr(1—p7) > 27%E

(3)

(4)
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Therefore, if the last inequality holds, then

max Hp(X)=1
P:D(P||P*)<E

The condition (4) may be rewritten as a quadratic inequality
pni — 9-2E+) < ),

which is equivalent to
exp{E} — \/exp{2E} — 1 exp{E}+ \Jexp{2E} — 1]
p‘E[ﬂh‘h]:[ exp{E+1} H exp{E+1}

: ic PDs

Tt means that the value of Rpu(E, A) is constant and equals 1 — Ha(X) for all generic
from [a, o], which with E — 0 tends to the segment [0;1].
Now let us consider the case, when p* ¢ [a, @,]. We show that

e Hp(X) = Hpy(X), where Py = {ps,1—ps} and D(Ps || P')=E,
assuming pg the nearest 1/2 value which results from equation D(Pg | P) = E.
The reference (5) will be true by the following argument.
Lemma; The function

(%)

P 2 1-p
D(P || P')=plosp—_+(1 Plogi—z

is a monoton function of p for P from a(E). n 5
Proof: Let.P1={p1,1—p1}mdP,={pg,1-p¢}aresnmebinaryPDsndpl <p =P
It is required to prove the inequality D(P; || P*) = D(P; || P*). The set a(E) is convex by
P, that is if P’ € a(E) and P” € a(E), then D(AP' + (1 — A\)P" || P*) € a(E), because

DOP +(1=NP" || P*) S AD(P' || P*) +(1-ND(P" | P") S AE+(1-NE = E. (6)
Wemnrepmaentﬂ=AP'_+(1—A}H(0<4\<1)andasi.n(ﬁ),writ,edown
D(P, | P*) S D(AP* + (1= NP, || P*) S AD(P || P*) + (1= X\)D(R || ) <
S(1-ND(R, || P*) < D(P, || P*).
Therefore, lemma is proved and (5) yields, which gives us (3).

Theorem 8: Rpy(F, A) is concave function of E.
Proof: First note that

Lim Roa(E, A) =lim ( Jmax. Hp(X) — Ha(X)) =

= Hp-(X) — Ha(X) = Rgg(A)

and for fixed A > 0 and P* there exists a value Ey such that if E > Ey, then Rgp(E, A) is
constant and equals 1 — Hx (X). Since 1 — Ha(X) is the maximal value of binary Hamming
RRDF, it remains to prove the concavity of Rag(F, A) at the interval (0; Eq).
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Let 0 < E; < B3 and
R(Ey,A) = Hp, (X) — Ha(X), R(E3, A) = Hp, (X) — Ha(X)

where D(Pg, || P*) = Ey, D(Pg, || P*) = E;.
For a0 < A < 1 we have

ROAE; - (1 - NEy, B) = Hp(X) — Ha(X) =

Pedmm—a{‘g-ajﬂnl
(=) )
= HP;S;—!’J—};;, (X) pir HA(X) = H'\PJ,"PU-—'MP:,(X) T Hﬂ(xl 2

2 A, (X) + (1~ N Hpg, (X) = Ha(X) =
= AHp,, (X) + (1 = \)Hpy, (X) = AHa(X) — (1 - \)Ha(X) =
= A(Hey, (X)  Ha(X)) + (1~ N){Hp,, (X) - Ha(X)) =
= AR(E;,A) + (1 - A)R(E3, A),
where (a) follows from inequality
D(APs, + (1 - NP | P*) € AD(Ps, || P*) + (1~ \)D(P, | P*) =
= AE; + (1 - \E.

and (b) follows from the concavity of entropy. So the Theorem 3 is proved.
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