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Abstract

A generalization of the multiterminal communication system first studied by Ye-
mamoto is considered. Messages of two correlated sources {X} and {Y} coded by &
common encoder and a separate encoder must be transmitted to two receivers by two
common decoders within prescribed distortion levels AL, Al and A2, A2, respectively.

The region R(E), Bz, AL, AL, AZ, A7) of all achievable rates of the best codes en-
suring reconstruction of messages of the sources {X} and {¥'} within given distortion
levels with error probabilities exponents E; and E; at the first and second decoders, re-
spectively, called "rate-reliability, distortion” region, is found. A number of important
consequent cases are noted.

1 Introduction and Problem Statement

We investigate the problem of two correlated sources common encoding and decoding subject
to fidelity criteria at two receivers (see Fig. 1.). Related problems were studied in [1]-[17].
Our problem is a direct generalization of the problem considered by Yamamato [7].
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Fig. 1. Cascade communication system.

Let { X, Yi}i2, be a sequence of discrete, independent, identically distributed pairs of random
variables RV, taking values in finite sets X and ), which are the sets of all messages of
the sources {X} and {Y}, respectively. Let generic joint probability distribution (PD) of
messages of two sources is

P*={P(z,y),z€ X,y € V}.

For memoryless sources the probability P™(x,y) of a pair of n-sequences of messages
X = (71, %2, ..., Tn) € X", ¥ =(41, 42, .-, ¥n) € V" is defined by
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P(x,y) = g Pz ).

The sets &, ¥? and ', )? are reconstruction alphabets and in general they are different
from X and ), respectively. Let
dl: X x X = [0,00), d: X x X* = [0,00),

di:Yx Y —[0,00), d:Y x Y= [0,00),

' o that
be corresponding distortion measures. Ex;xlsﬂ,ysylayﬂ,mmurﬂ-‘
d(z,2) = di(z,2) = dj(y,¥) = G y)l;— 0. The distortion measures for n-sequences &

of

defined by the respective average of per letter distortions
di(x, %) =3 d (i, 2d), Bl ) = n-‘gce(z;,z?).
=1

(5, ¥Y) =n-’gd:(y..yz), &(y,y%) =n-‘)::1af:(m.y?),

Wherexex'nyey".xlGx‘"-xaeplyleyl".Y’E)’h- -
For considered system we name & code and note (f, f, F, F) the family of four mappings:

frA XY= {1,2,... K (n)},
f:{1,2,... K (n)} = {1,2,...,L(n)},
F:{1,2,..,K(n)} — X" x Y™,
F:{1,2,..,L(n)} —x™ x ™.
Consider the sets
A= {(xy) : F(fxy)) = (¢, ¥), F(F(f(x,¥)) = &, ¥?),

di(x,x’) < AL, di(y,y") < Al}, i=1,2.

For given levels of admissible distortions A% > 0, A2 > 0, A} > 0, A? > 0 error probabilities
of the code are: |
s,-ff,f,F,ﬁ,A;,A;)=l—P'"(A(), i=12
For brevity we denote (Ey, ;) = E and (A}, A}, A2, A2) = A. A pair of two nonnegative
numbers (R, R) is said to be (E, A)-achievable rates pair for By > 0, B, > 0, AL > 0,
A2 >0, A} >.0, A2 > 0, if for arbitrary £ > 0 and n sufficiently large there exists a code
(f, f, F, F) such that

n'logK (n) <R+e, n"logL(n) < R+e,
and

elf, [, F, F, AL AY) < exp(—nEy), i=1,2. . 1)

Following Shannon we call exponents E, E, "reliabilities” at the first and second decoders,
respectively. Let us denote by /P(E,A) the st of all pairs of (E, A)-achievable rates.
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R(E,A) is a generalization of the rates-distortions region R(A) (corresponding to the case
E, — 0, E; — 0). If at the first decoder only the messages of the source {X} and at the
second decoder only the messages of the source {Y'} are reconstructed, then R(A) becomes
the set of all (AL, A2)-achievable rates pairs R;(Al, A?) studied by Yamamoto in [7]. If
It = 0, then R(A) give us the set of all (AL, A} )-achievable rates R,(AL, Al) for the system

presented in Fig. 2.

Fig. 2. Two-source with common encoder and decoder.

In the present paper R(E, A) is specified. For some perticular communication systems rates-
distortions regions are derived. The results are formulated in the next section, the proofs
are given in section 3.

2 Formulation of Results
Let P = {P(z,y),z € X,y € Y} be some PD on X x ) and
Q=1{Q(z" ¥, 2%y | z,y),z € X,ye V2" € X',y € V', 2% € X, € V*}
be conditional PD on A? x Y! x X2 x )2 for given z and y. Let
a(E)={P:D(P| P") < E}.

Denote by @ (P) = Qp the function, which puts into correspondence to PD P some PD Qp
such that for the given A, if E; < E; and P € a(E;) or E; < E;, and P € a(E;), then
following four inequalities are valid

Epqudi(X,X') =
- 5 5 F PEuQeE st 2R | sl e) < AL, @
zxl gyt 22,2
Epgpdy(Y,Y') < A, ' (3)
Epqpdy(X,X?) < AL, (@)
Epg,dy(Y,Y?) < A}, (5)

and if By < E; and P € oE;) — a(E,), then the conditions (4) and (5) take place, or if
Ey < By and P € a(E;) — a(E;), then (2) and (3) take place. Let M(E, A) be the set of
all such functions ®(P) for given A and E. When E; — 0, E; — 0 we note M(A) the set
of all ®(P) for which (2)-(5) are valid. Let us define the region:

R*(E,®) = {(R,R):

for 0 < E, < By,

Ipepy(X, Y AXL,Y1, X2, Y?), R),

Ips(p)(X,Y A X%, Y?),

Eed&
R > max
= Péa(E;

)
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22
: for 0< B < By,
R max( max Irs(e)(X; Y A XL, Y1, X2, Y?),
Pen(tsni?fo(s.} Ipae) (X, Y A XL, YY),
ﬁ > max Ipe(e)(X,Y A X2, Y%}
Let

R'(E,A) = U R'(E,®).
PEM(B,A)

Theorem: For E; >0, B; >0, AL >0, A2 >0, A} >0, A] >0,
R(E,A) = R*(E, A).

Many particular cases are worth to be specified.
Corollary 1: With E; — 0, B3 — 0, we obtain "rate-distortion region™:

R(A)= U {(RR):
SEM(A)
R > Ip o) (X, Y A XL, YL, X2, Y?),

R > Ipvg(p(X, Y A X2, Y?)}

Corollary 2: When at the first decoder only the messages of the source {X} and at
the second decoder only the messages of the source {Y'} are reconstructed, we arrive to the

result of Yamamoto [7]:
R(A) = Ry(ALA2),
with A
Ri(AL A)) = EH(A){(R. R):
- B2 Ipepp) (X, Y AXLY?), B2 Ip o (X, Y AY?)}.
Corollary 3: If R =0, R(A) becomes
Ra(ALA) ={R:R> min Iper)(X,Y AX,Y")}.

BeM(A)
Corollary 4: When only at the first decoder messages of the source {X} are recon-
structed, then we denote
Ra(AL,A)) = Rs(A3),

with :
Rs(ﬂi) = {R :R> oéﬁi&’fp‘.m(x,YAX‘)}.

Corollary 5: If X¥=X'= &%, Y=)'=)? Al = A2 = Al = A2 = 0, and the

: _ 0, for z =a*, ; 0, for y =", .
d,(l?,ﬂ‘}—{l’ fUI:!-‘-_-E"., d;(ydf]={1. fﬂIy=yi‘ i=1,2,
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the region of E-achievable rates pairs will be
R(E)={(R,R):

Rz mx(’ﬁm Hp(X,Y), R), R> m)Hp(x, Y)}

Corollary 6: f X =Y, V' = X%, J® = X%, our system (see Fig. 1.) is a multiple
description system. Some cases of this system ere studied in [10]-[13]. For our system the
region of (E, A)-achievable rates pairs Ry(E, A) may be derived from the theorem as follows:

Ru(E,A) = U { R.R):

for0< By < B,

R Z m“(“%}rﬂﬂfﬂ(x’\x’:xz|xa| X‘)| ﬁ)i

R> Pg:}-g’)fmm(x A X2 XY),

for 0 < B3 < By,

R> mﬂx(}él;{ﬂg’}fﬂg(p){x AXL, X2 X3, XY,

1 3
PesBE iy PR X A X, X)),

2 y4
R> 2 jmax Ipe(r)(X A X% X'}

Moreover, if R = R, we obtain the following (E, A)-achievable rates region
Ry(E,A) = {R:

for 0 < E; < By,

* 1 4
R> mn(?iﬂﬁ).iﬂn(%vﬂ} Ip..(p] (x AXY, .X", Xa, X ],

j 4
Aoex min | Teer(X A X% XY),

for 0 < B3 < B,

> max L 1 3 X‘ ;
R> (P%)‘eﬁn“,fﬁ.m(XI\x ,X“,X A

; 1 y8
pealB i 0 ThiB o) [P0 (X AKX}
Corollary 7: When E; — 0, E; — 0, then R4(E, A) becomes
Ri(A)= U {(R,R):

deM(A)

R > Ipeapy(X N X', X% X5, XY), R 2Ipepipy(XA X2, XY)
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and R} (E,A) becomes
1] = i f - 1 v2 w3 vy,
m(A)_{R.Rg.m?m.rp_.m{,\nx,x,x.x}}
es 0b-

When X°= X!, X¢= X2, then R4(A) coincides with the set of all A-achievable rat

tained by El Gamal and Cover [10]. :

Remarks: 1. For ordinary one-way source the region R(E, A) was found by Haroutunian
and Mekoush in [8]. The system presented in Fig. 2, will be an ordinary one-way SOUrce
{X,Y} if one common distortion measure for the messages of source {X,Y} is conside
instead of two separate distortion measures for the messages of each sources {X} B-ﬂd{y}

2. For the system presented in Fig. 2 one can consider two separate error probabilities
of the code with given exponents E, and E, for the messages of sources {x} m‘i {Y;}'
respectively. We can obtain only the following outer and inner bounds of (E:x; E,, AL Ay)
achievable rates region

1 s 7, Qe d . 1 1
Ro(Ee By A0, A) = {R:R2 | max . min Trer(X,¥ AX YOh
Ipep) (X, Y A X3, ¥4))-

1 A1) = ‘R> max min
Reo(Bsy By, AL 8)) ={R: R 2 Pea(max(Es,5,)) $EM(A)
of the theo-

The demonstrations are similar to the proofs of the converse and positive parts
rem, respectively.

3 Proof of Theorem

We use the typical sequences technique [2]. In the proof of positive part of the theorem we
apply the following modification of covering lemma from [2], [13], [14], [17]:
Lemma: Let for fixed type P, conditional type @ and & > 0

K(P,Q) = exp{n(lpg(X,Y AX",Y") +¢)},
L(P,Q) = exp{n(Ipg(X,Y A X*,Y?) +€)},
M(P,Q) = exp{n(Ipo(X,Y A X1, Y | X2,Y?) +£)}.
Then for n large enough there exist collections of conditional types
(TraX.Y |43, 1=TEFQ), {TralX,Y | xhyi).k = TKEQ),
TR ) e ey I i ol
The proof of lemma is similar to the proof of lemma from [17]. '
We begin the proof of the theorem with the assertainment of the inclusion
R'(E, A) C R(E, A). (6)

Denote by P(X,Y,n) tlllesetofa]ltypesP.Letusprment &A™ x Y™ as a union of all disjoint
ﬁ’?(}{,i’) (for brevity also called types), which are the sets of all pairs of vectors of joint
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rxy= U BXY)
PeP(X.Yn)

Let some £ > 0 be given. A union of all To(X,Y) for P ¢ a(E;+¢), 1= 1,2, has probability
small enough
P U TpXY)N<S E  PHXY)<
PgolE+s) Pia(E+z)

< (n+1)*P exp{-n(_min  D(P| P} < )

< exp{—nE; — ne + |X||Ylog(n +1)}.
Hence, to obtain the error probabilities small enough it is sufficient to construct encoding
functions f and f such that the vectors of the types P € a(E; + ¢) and P € a(E; + &),
respectively, will be decoded with distortions small enough.

For any type P let us fix ® € M(E, A) and denote ®(P) = Qp. According to the lemma
there exist the coverings {Tpg,(X,Y | x{,¥f), | = 1,L(P,Qp)} eand {Tpq,(X,Y | x},¥}),
k=1,K(P,Qp)} for Tp(X,Y). Let

ck{Pr QP) — TP'QP{xty l xil YD_

= Htg.k TP,Qp{X:Y I xl'iyl‘)! k= leR Q}’)s

Di(P,Qp) = Trgs(X,Y | xi,yi)—
= U Teae(X,Y | xt,¥i), 1 =1,L(P,Qp).
For every | = 1, L(P, Q) a covering
ATogp(X,Y | X4, Y1, Xl s Yim)sm = 1, M(P, Qp)}
for Tpq(X,Y | x?,y?) exists. Let
Sim(P,Qr) = DuP,Qr) N{Trgp (X, Y | 3, ¥, X} s Yiim)—
=V Tege (XY | xE ¥ X s Yijp)}s M= 1, M(P.Qp).

For Ey < E; we define a code (f, f, F, F) as follows: the first encoding is
(1,m), when (x,y) €S,m(P,Qp), P € a(E: +¢),
fxy) = 1, when (x,y) €Di(P,Qp), P € a(E;+¢€)— a(E +&),
U, when (x,y) €7p(X,Y), P ¢ a(E;+E¢),

the second encoding is
fm)=1, fO)=1, fI)=1,
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decodings at the first and second outputs, respectively, are
F(l,m) = (K ¥lm)s FO)=1", FI) =V,
F()=(d,¥9), F") =
to the definition of the code (f, f, F, ), the lemma and the ineq

(3) for P € a(E; +¢) we have
dy(x,x') =0~ T n(z, z! | x,x")d}(z,2") =

=X E E P(sry}QP(zl!'y ’xI’UZ | z,y]d}(z,z‘) =

==ty

= EF-Qrd;{X’ X" < A.:!

and, similarly,
di(v,¥") = Brg,dy(¥,Y') < A

For P € a(E; +¢) from (4) and (5) we have
-d(x,x%) = Bpg,di(X, X?) < A},
dy(y,¥") = Brgpdy (Y, Y?) < Aj,

We see that when

K(n) > exp{n(max( max (Ipg,(X,¥ AX%Y?)+

pealbire)
+Ipge(X,Y AX Y | X2,Y?) +2), L(n)))} =

= exp{n{max(mmgixﬂlfp,qp{x, Y AXL, Y X2, Y?) + 2, L(n)))},

L(n) 2 exp{n(, max  Irge(X,Y A X3 Y%) +e)},

the error probabilities are small enough. -
For E; < E; we define code (f, f, F, F) as follows:

{l! m). when (xly) ESJ,,,.{.P, QP}: Pe a(-EJ + s)l
fxy) = k, when (x,y) €Cx(P, @), P € a(E; +¢) — a(E; +¢),
U, when (xvy) €Tp(X,Y), P ¢ a(E; +¢),

f(lim) = ls f(k.] = l"1 f("] e I”:
F(l,m) = (s Vi) F(k) = (x},¥), F(U) =1",

F() = (xd,¥7), Py =1.

ualities (2) and

(8)

©)

(10)
(11)
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According to this definition of the code (f, f, F, F ), the lemma and the inequalities (2)-(5)
we obtain that (8)-(11) take place for E; < E; and

! 1yt
K(n)> “"P{“fmfp&%,"m Ipge(X.Y A X1, Y? X2, Y?) + 2¢,

1 1
PealBr +emalBr+e) Irgp(X.Y A X1, Y?) +€))}

L(n) > exp{n(, mex _

The error will be possible at the first and second decoders only if the type P of (x,y) is not
in a(E; + &) and a(E; + £), respectively. According to (7) the error probabilities are small
as it is specified in (1).

Taking into account arbitrariness of g, continuity of obtained expressions with respect to
E, and E;, we obtain (6).

Now we shall prove the inclusion

R(E,A) C R'(E,A). (12)

Let £ > 0 is fixed and a given code (f, f, F, F) has (E, A)-achievable pair (R, R) of rates.
For n large enough, E; < E; and P from a(E; — ¢ ) the following inequality takes place

AN AN 76 (X,Y)| 2 exp{n(Hp (X,Y) - €)} (13)

(for the proof of (13) see Appendix).

To each pair of vectors (x,y) € A; N.A; the unique quadruple of vectors (x',y?,x? y?)
corresponds such that (x',y') = F(f(x,y)), (3,y?) = F(f(f(x,y))). These six vectors
determine types P and @, for which

Iy ,xﬂ yz) ETPQ(xl Yl xﬂ Yﬁle};

Ipg. (XY A X% Y?) +¢).

or, which is equivalent,
(x‘lyJ € TP,Q(er I x WY ,xi yﬂ)

The set of all vectors (x,y) € A1 N.A2N7p(X,Y) is divided into classes corresponding to
these coditional types @. Let us select from them the class, which for given P contains the
greatest number of pairs (x, y). Corresponding conditional type @ we denote by Qp = ®(P),
and the class itself we denote by

(A: A2 7p(X, Y))(B(P)).
Using polynomial upper estimate [2] of the number of conditional types @ we have

[A1NA2NTp(X,Y)| <
> (14)
< (n+ )PP |4 0 AN TR(X, Y))(@(P))
Let D;2(P,®(P)) be the set of all quadruples of vectors (x',y’,x? y?) for which for
given ®(P) € M(E, A) there exist vectors

(’GY)GZ;’.Q(X:Y lx Y 'xﬂ y’)
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such that F(f(x,y)) = (,¥"), F(F(F(x,¥))) = (x*y?). According tot
the code
|D1,2(P, 2(P))| < K(n).

he definition of

We see that
[(A1NANTR(X,Y))(2(P))| =

Trem) (X, Y | X, y" %, y?)| < (15)

< z
(x! ¥ x2,y2)€D1,2(F,2(P))
< K(n)exp{nHpa(X, Y | X1, Y, X2, Y?)}.
From the last inequality and from (14) we obtain that
|4 NANTR(X,Y)| <
< K(n)exp{n(Hpo(X,Y | X1, Y, X2,Y?) +€)}.
Teking into account the last inequality and (13) we receive that
K(n) > exp{n(Ipe)(X, Y A X', Y, X% Y?) - 2)}.
Since K (n) > L(n), then using (15) we obtain that for E; < E; and P from a(E; —¢)
R > max(Ipepy(X, Y A X', Y2, X2, Y?) — 2), R).
Remark that

Dy2(P, ®(P))| < L(n).
(,7)30373), (1,71 33¥2)€D1,2(PS(F))

For the same ®(P) as in (14) similarly to (15) we have
| AT, V) (@(P))| <

< L(n) exp{nHper)(X,Y | X*,Y?)}.
With (13) we obtain :
L(n} > exp{n(Ipap)(X,Y A X*,Y?) - 2¢)}.
Therefore for Ey < E; and P from a(E; —¢ )
B> Ipap)(X,Y A X2 Y?) — 2. (16)

Now note that for n large enough, By < E; and P from a(E; — £)— a(E; — €) we have

|42 7p(X,Y)| > exp{n(Hp(X,Y) - )} (17)
(for the proof of (17) see Appendix).
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Similarly to choice of the class (A; NA2N7p(X,Y))(®(P)) in (14) we shall choose
(AsNTo(X,Y))(®(P)). Then

AN TR(X,Y)| <
i 1 [18}
< (n+ 1)FPIRIX] 4, N To(X, Y))(S(P))].

Let Dyy1 (P, ®(P)) be the set of all pairs of vectors (x%,y2) for which for given P and &(P)
there exists vectors (x',y') € X" x V'™ and
(x,¥) € Tear)(X,Y | X%, ¥%)
such that F(f(x,y)) = (x',y"), F(f(f(x,¥))) = (x%,¥%). It is clear that
Dy (P, ®(P)) < L(n).

We see that [(A2NTR(X,Y))(®(P))| <

< i3 Trem(X,Y | 32,y?) <
(x* y)EDy,1 (P#(P))

< L(n) exp{n(Hper)(X,Y | X%, Y?)}.
Taking into account (17), (18) and the last inequality we receive that (16) takes place also
for P € a(E; — £)— o(E, — €). By analogy with the case E; < B3, P € a(E, —¢) we can
show that for n large enough, E; < E; and P € a(E; —€), the (15) takes place. Hence for
PealE,—¢)

R > Ipapy(X,Y A X', Y', X%, Y?) - 2¢. (19)
For n large enough, B3 < E, and P € a(E; — &) — a(E; — &) the following inequality takes
place

A N7p(X,Y)| 2 exp{n(Hp(X,Y) —€)} (20)

(the proof of (20) is similar with the proof of (17)).
Similarly choice of the class (A; A2 N7p(X,Y))(®(P)) in (14) we shall choose
(AiN7p(X,Y))((P)). Then

|4 NTe(X,Y)| <
(21)
< (+ HFIPIFIF (4, N TR (X, V) (@(P))].-

Let Dy2(P, ®(P)) be the set of all pairs of vectors (x,y") for which for given P and ®(P)
there exists vectors (x?, y?) € X*" x J?" and 1

(X,y) € 'I..P,O(PJ(XlY | x‘l,yl}
such that F(f(x,y)) = (*,¥"), F(F(f(x,¥))) = (x*¥?). It is clear that
Dyjo(P, ®(P)) < K(n).



30 E. A. Haroutunian and A. R. Kazarian

show tha
s ¢ (A N T, V) @(P))] <

= (,;.,s;avg,(p,«p), [Tracn(X,Y | x,¥Y)] <
< K(n) exp{n(Hpamy(X, Y | X),Y)}

Using the last inequality, (20) and (21) we receive that

K(n) > exp{n(Ipep)(X, Y A X', Y?) — 26)}.
Therefore for P € a(E; — €) — a(E, —€)

R> Ipep)(X, Y AXY,Y?) — 22

By analogy with the case P € a(E; — &), E, < E; we can show that for the sam
in (19), for E, < E,and PE a(E; — €) the (16) takes place. ¢ ctaind]

Since all used functions are continuous with respect to E; and Eg, the union of
sets of rates pairs (B, R) by mappings $(P) belonging to M(E, A), give us inclusion (12).

e ®(P) 8s

3.1 Appendix
The proof of the inequality (13). We can write
|4 N ANTe(X,Y)| = 1Te(X, V)| - [ UZNTR(X,Y)|-

For P € a(Ey —¢€), Ex < E; we have
[AUZNT (X,Y)| < Fﬂ@ﬁﬂf{ (X6Y)

< (exp(—nE,) + exp(—nEy)) exp{n(Hp (X,Y) + D(P || P7))} <

. < exp{n(Hp (X,Y) —e}.
Then for n large enough
[N 4N Te(X,Y)| 2 exp{n(Hp(X,Y) - €)}.
The proof of the inequality (17). It is clear that
Mo 7e(X, Y)| == [Tp(X,Y)| - [B N To(X, Y)|
For P € a(E; — &) — a(B, —€), E; < E; we have
PZNTr(X,Y))
[Z=N7e(x,v)| < —ﬁ;(-;)— <

< exp(-nEy) exp{n(Hp (X, Y) + D(P || P*)} <

< exp{n(Hp (X,Y) —¢€)}.

And then
| A2 \To(X,Y) | > exp{n(H(X,Y) - £)}.
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