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Abstract

Efficient algorithms for computing of the two-dimensional discrete Hartley trans-
formation (2-D DHT) that based on construction of special coverings of the square
lattice is given. The concepts of starts of the transform and image are presented and
comparative estimates, describing the efficiency of the proposed algorithm with respect
to the known ones, are given.

I Introduction

The discrete Hartley transformation plays an important role in digitel signal and image
processing. This transformation was ereated as an alternative form to the complex discrete
Fourier transformation (DFT), to elimate the necessity of complex operation fulfillment [1, 2].
So, given a sequence [ of input data, the DFT ontput is formed by rules:

[ = (L), Ta(f)) = Ta(f) + Ta(f), (1)
where as the DHT ontput is formed by rules:
I = (T(f)Talf)) — Tu(f) + Ta(f), (2)

Here T\(f) and T3(f) denote the real transformations which kernels defined by the cosine
and sine functions, respectively. So, for a 1-D sequence f = {f,; n = 0+ N — 1}, these
transformations are

A 2%
Tiif ~ (X fncos(gpm)ip=0+N -1},
v 3)
N-1 .
T:f — {z f,ain(%ym);p= 0+ N =1},
n=0

where N is the transformation length. Transition from the one-dimensional case to a mul-
tidimensional case leads to essential difficulty of calculation of the DHT. So, in the two-
dimensional case, product np in (3) are the scalar product np = nip; + nap,, for pairs
n = (ny,my), p= (p1,p2). Therefore the 2-D DHT is not separable and cannot be caleulated
using the standard row-column method. As well known many attempts have been made
to overcome this problem [3, 4, 5]. But this problem is very better solved when using the

111



112 General Algorithm of the 2.D Discrete Hartley Trans.

ed further on. Coverings of that kind

coverings such that open 2-D DHT p}-esmt :

;:On:;ztﬁ:; timel:ns:g effectively used for computing of the 2-1? DFT and lmown a;; c}?w?-lgs

mamn‘ g the 2-D DFT [6, 7]. In this paper we shall be proving that coverings o that kind

z:.iy be dfet.:tiw.ly used fc;r construction fast algorithms of the N x N-point 2-D DHT, where
N is an arbitrary natural number.

9 The covering opening 2-D DHT
X be the square lattice of dimension N by N, for N a certain natural number, i.e.
X=Xyn= {(pr,P2); ;1 =0+N- 1,m=0.;-N_,1}_

be the N x N-point 2-D DHT which image H,,, o f of an N x N sequence

Let
(4)

Let Hyw i
= {farna} 18 given by the following:
N-1 N-1 :
Hl"l?’ = z Z -r"h“! C“s(ﬂ-lﬁ +m)l (P‘th) € xu (3)
ny=0 ng=0
where the kernel of the transformation is the real periodic function
Cns(z) = Casy(z) = cas(2mz/N) = cos(2rz/N) + sin(2mz/N). (6)

The 2-D DHT is a real-to-real and non-separable transformation. It is the two-dimensional
analog of the one-dimensional N-point orthogonal discrete Hartley transformation H, de-

termined for a 1-D sequence f = {f.} by the relation:

N-1
Hp=(Hyo[)p= Zn.fnCas(np), p=0+N-L1 (1)

An interesting feature of the DHT is that the inversion formnla for the DHT coincides
with the initial formula (accurate to the factor 1/N), ie.

N-=
fa=1/N Z:IHPCaa(np}, n=0+N-1 (8)
p=0

Therefore, we can write {1-D DHT}~* = 1/N{1-D DHT}. Similarly, for 2-D DHT the
following {2—D DHT}~! = 1/N?{2—D DHT} takes place.

Let o = (T) be & certain family of subsets T C X. We shall assume that the sets T € o
are numbered in a way, i.e. o = (T})icr with a certain set J of indices.

Definition 1 A family & = (7)) is called a covering of set X, if the set-theoretic union of
subsets T' € o coincides with the set X, i.e. UT = X.

A covering o of the set X we shall denote by o = o(X). A covering o(X) is called
irreducible if any family of subsets, obtained from ¢ by throwing away any element T € o,
will not be a covering of X. A covering (X)) such which is a family of non-empty and
disjoint parts of the set X is called a partition of the set X.

Give now the fundamental concept of coverings opening the 2-D DHT. Suppose & = (T')
is & certain covering of the square lattice X. We shall call card o the cardinality of o.

oy
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If the 2-I) DHT is splitted on card o one-dimensional card T-point orthogonal transfor-
mations A(T) (which are only depended on the sets T € o and are not necessary Hartley
¥pe trausformations), then we shall say that the 2-D DHT is apened by the covering o, or,
that the same, 7 is a covering opening the 2-D DHT.

Let us give more strict definition. We shall call g, = {g.: n € T} a restriction of a
sequence g on the set T. Let f be an N x N sequence.

Definition 2 H,, . is called opened by a covering o, if for every set T € o there exists &
1-D orthogonal transformation A = A(T) such that

(Hyen of),=Acf (9)

for & certain 1-D sequence -4
The totality of the one-dimensional transformations {A(T); T € ¢} is called a set of
elements of the H,, ,, by the covering o and is dencted by R(H,, ;o).

The set of irreducible coverings opening the 2-D DHT is non-empty.

3 General algorithm for 2-D DHT

Let o = (T) be a covering of the square lattice X, ., which opens the 2-D DHT. The general
#lgorithin for computing the 2-D DHT of an N x N sequence f is splitted onto the following
steps:

Step (1) Construction of the set of elements R(Hy ;o)

Step (2) Construction of the 1-D sequences f,, for all T € o;

Step (8) Calculation of the 1-I transforms A(T) o f,, forall T € &.

Theoremn 3.1 Assertion .1 To compute the N x N-point 2-D DHT, it is enongh to fulfill
cardea 1-D transformations of the corresponding set R(Hy n; o).

Next we construct an jrreducible covering of a special type and consider the general
algorithm application for this case.

4 Property of the 2-D DHT
Let us consider a representation of the 2-D DHT snch which is analogons to the vectorial

representation of the 2-D DFT[6, 7]. To this end, given a sample (p;, pa) and all f = 0= N —1,
define the following sets and quantities:

Viupat = {(m,m2); mpy + ngpy = tmod N} (10)
Imwe= Y fnma (11)
v:l]ﬂol'

Owing to the periodicity of the function Cas, we obtain the following
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Property-Property of the 2-D DHT. 1 Let (p1,72) € Xuiw and let k be an arbitrary

integer, then N-1
, Herm= 3 In aCas(kt), (12)

[ denotes I(mod N), for L an integer. ) : :
whe;s rc-l'ogsﬂ; ::I ly(:',lfor (pl).Pz} € X fized, the following empty m!.crser:hm Vopaita .n Vorma =
0 take place, for all ty £ €[0,N- 1] C’omequcﬂﬂ.y the family {_Vphps..ﬁ = 07{\"—— 1} is
the partition of the square lattice X. Therefore, by simple calculations we are obtaining:

N-1

8 sk = 3 (3 frum) Casllt) =
=0

t=0 Vpy.pat

-1

L

= NZ-‘ NZ_: fnh",Cﬂslﬂ-l(kp]) + na(kp2)] = Hig ppa = HEH‘

. my=0ng=0

z f"l.mcﬂ&‘{k{nlm + “'21’1)] =

Ve pat

The above 2-D DHT property leads to the following result. Given a sample (p;,pz2) of
trix is written in the form

X, the cyclic group 7' in X with this genera
T=TMM={(EE,Fﬁ);k=U+N—1}. (13)

Theorem 4.2 Assertion 4.1 Suppose g is an irreducible wverihg of the square lattice X

such that is composed of the groups (13). Then o opens the 2-D DHT.

Thus, for a two-dimensional sequence f given, the 2-D DHT transformation on the each
group T}, p, is determined by the corresponding 1-D sequence of V,

(14)

f-r s {f.l,"m sy ,,.ﬂ.n—:}'

5 Construction of the irreducible covering

Before passing on to the common case of N, we consider separable the cases when N is a
prime number, when N is a power of 2 and when N is a power of an odd prime number.

Theorem 5.3 Given a prime number N, totality of gronps
Tynw = ({Tl.px)m.a.l.ﬂ._pTﬂ,I} (15]
is the irreducible covering of the square lattice X, ...

For instance, for N = 3, we have the following irreducible covering o = (13,0, 73 3, T1.2, To,1)
of X as shown in Fig. 1. A

Owing to Theorem 5.3 if ¢ is an irreducible covering of the X, ,,, then card gy, , = N+1.
The proof of this fact becomes simple enongh if we use some known facts from group theory
connected with the concept of the group orbit [8].
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Figure 2: Reargement of samples of the groups of a4 4

Really, for N a prime, the set ¥ = X, .\ {(0,0)} is the multiplicative group in the
arithmetic modulo N, The set G = {1,2,3,...,N — 1} is just such a group. Therefore,
each set T, ., \ {(0,0)} can be considered 2s the orbit of the element (p;. p) relative to the
#ction group  onto Y. Inasmuch as any two orbits either intersect or coincide, then Y is
the union of paired disjoint orbits, i.e.

Y= z (Tﬂ,m \ {(0! 0)}’)1 (16)

(p1.p2jed

for & certain set of indices J C Y.

Further, since cardY = N? = 1, and eard (T, ;, \ {(0,0)}) = N — 1 for all points
(p1,p2) € Y, we obtain from the expansion (16), that N* — 1 = (N — 1){card J). Hence
carde = card J = N + 1.

Theorem 5.4 Given a power of two N = 27, (r > 1), totality of groups

NN = ((Tl"")n=0+ﬂ—1' (T’*"-l)p;so-:-m:—x) (17)
15 the irreducible covering of the square lattice X, .

So, for N = 4, we have the following irreducible covering o = (Ti 9, Ti 1, Ty 2. Ty.3, To1: Taa)
of Xy4 as shown in Fig. 2.

Theorem 5.5 Given a power of an odd prime N = L7 (r > 1), the totality of gronps

T = ((Tl-") m=0+N-1" (TL"")n-oa.-mL-x) (18)
is the irreducible covering of the square lattice X, .

In the general case, the construction of the irreducible covering o is implemented in the
following way. Define first the set By = {n € [0, N — 1]; g.c.d.(n, N) > 1} and let B(p) be
the function equal to the number of the elements s € By such which are co prime with p and
ps < N. Further denote by ¢(N) Euler’s function, i.c. the mumber of the positive integers
which are smaller than N and co prime with N.
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Theorem 5.6 Given an arbitrary patural number N > 1, the totality of groups
s = (Trivi) e (19)

with the following set of generatrices ,

7="UamUU emU( D) 20
pa=0 PEBN m

PIEBN g.c.d.(py pa)=l, p1P2EN

is the irreducible covering of the square lattice X -

Thus, from Theorem 5.6 and the general algorithm for computing the 2-D DHT proposed

above, we are obtaining the following

Theorem 5.7 Let N > 1 be an arbitrary number, t.hen R
(a) the irreducible covering o of the square lattice X, » has the cardinality

carda, , = 2N — #(N)+ > Blp); (21)
PEBy

(b) to compute the 2-D DHT, it is sufficiently to fulfill 2N — o(N)+Z{B8(p); p € B,}
N-point 1-D I?HTs‘

Corollary 1 The cardinality of the irreducible covering a,, , of the square lattice and number
of N-point 1-D DHTs necessary for computing of the N x N-point 2-D DHT equals to:

(a) N+1, for N a prime;

(6) 3N/2, for N a power of 2;

(c) (L+1)L™, for N =L" a power of a prime number, andr > 1;

(d) L1L2+L1+Iq+1,farN=L1Lq,whercL;;éLe>1amp!‘imnumbers.

1t is easy to verify, from definition of Euler’s function, that ¢(N) = ©{8(p); p € Bn},
so that card o < 2N. Herewith, the equality in this unequelity takes place only when L; = 2
and Ly = 3 (or when L, = 3 and L = 2), for cases under consideration.

We shall call M, the number of real multiplications necessary for computing of the
N-point 1-D DHT.

Corollary 2 Given an arbitrary natural number N > 1, for computing of the N x N-point
2-D DHT, it is enough to fulfill M, ,, = (carda, )M, real multiplications.

Give now some comparative values of valuations M, , with known ones.

Let N be a prime number, then M, , = (N + 1)M,, Compare this estimation with the
known estimation M}, , = N?+2N —3 which was obtained by Boussakta and Holt by using
an index mapping scheme for computing the N x N-point 2-D DHT[9]. For that, using the
estimation M,, = N — 1 introduced with the Fermat number transformation [10], we have
obtained

My,=(N+1)(N-1)=N-1<M, . (22)
What is more, as for the one-dimensional case, for computing of the NV x N-point 2-D DHT, it
is enough to fulfill no more than 1 multiplication per point, whereas in the scheme proposed
by Boussakta and Holt operations more that 1 multiplication are used.

- ——— ai——
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Figure 3: Stars of the covering and image

Pass on now to the case N = 27, r > 1. From Corollary 2 it directly follows that the
following valuation of the number of multiplications takes place

M,,, = 3N/2M,, < 3N*/4(r - 3) + 3N, (23)

for the N % N-poiat 2-D DHT, Here we use the well-known fact that for computing of
the N-point 1-D DHT, it is enough to execute M, = N/2(r — 3) + 2 multiplications [11].
Comparing this estimation with the number of multiplications M2 = 2N3(r — 2) + 4N
obtained in the Bracewell algorithm [3]., we have M2 /M, . = 4/3. In other words, the
number of multiplications is reduced by 4/3 times.

Similarly one can show the advantage (by multiplications) of the proposed algorithm in
comparison with the known algorithms of computation of the N x N-point 2-D DHT, for
any integer N > 1.

6 Stars of transform and image

For visual representation, we shall imagine the covering o in the form of star, on each branch
of which the samples of the certain cyclic group T € o are disposed as it is shown in Fig. 3(a).
All elemeiits of the group T}, ,, € o are ordered one after another in accordance with the
parameter k determing them, (kp, ks), when k increases from 0 to N — 1. We will refer the
number (py, p,) to the branch with elements of the group T}, .. The zero point (0,0) is the
generic point of the groups 7' € o, from which we count the elements of each group T along
the corresponding branch of the star. Also, we can consider that the points of the groups
T € o are disposed on the concentric circles of radii r = k, k= 1,2,...,N — 1, described
from the center (0,0) on the plane A2. We shall call the star of covering o this kind of star
for the covering o and denote it by S,.

laking the star S, instead of the rectangular fundamental period X w3592 Which the image
[ is written on, we pass on now to the consideration of f to the star S; which is like to the
star S,. Namely, we can represent Sy as the star S, each branch (include the original point
(0,0)) of which is moved aside along its radius, as it is shown in Fig, 3(b).

That is, Sy is the start without the center and has (eard o — 1) points more than the
star 5,. We shall call Sy the star of image f corresponding to the covering o, or, briefly the
star of image. So, we wish present the given image f as the spatial figure with the base
on the plane, being the star Sy. And, on each branch of Sy, the image f is described by
the corresponding 1-D signal fr, T € . Just in that the whole sense of the Step (2) of the
general algorithm. The presentation of the image N N in the form of the star S; is fulfilled
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Figure 4: 2-D Hartley transform algorithm

by means of the transformation
Xe: £ = {fopasi (P2:P2) €Jt=0+N-1} (24)

iated with the covering o of X, . This trensformation is called vectorial 6]

Thus, to calculate the 2-D transform of the given image (N x N), it is necessary to do
umu} to re;mt image f in the form of the spatial figure with bese Sy on the plane, by
means of the transform (24); SR ; f

(2) to fulfill the 1-D trensforms over the corresponding signals /. lying on the branches
of the image star Sy, and write the obtained values on the knots of the same branches of the
transform star Sz; ] v [

(3) to rewrite the information of the star S. on the square lattice X  in thef_ollovr:n,;
way: k-th knot of the (p;, pa)-th branch of the star corresponds to the knot Tkpy. Fpz) of X.

Setting stars of image and transform, we can represent the general algozithm in the form
of the block-cheme given in Fig. 4

Thus the above shows that the 2-D discrete Hartley fransformation of dimension N x N,
where N is an arbitrary natural number, can be effectively computed by means of the stars
were presented of the given image and covering which opens the transformation.
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