Mauthematical Problems of Computer Science 17, 1997, 57-62.

A New Fast Modular Exponentation Algorithm
G. H. Khachatrian, A. B. Andreasyan, K. P. Zelenko

Institute for Information and Automation Problems
of NAS of RA and YSU

The modular exponentation is the basis of many well known public key cryptosystems.
In this paper a new fast exponentation algorithm is considered. A comparision of the
algorithm with known ones is also presented.

1 Introduction

The fast exponentation problem is a key issue in the public key cryptography. Many
well-known cryptographic systems are based on the computation of x" where x is an
element of GF(P) and n is an integer of 512 bit length and longer.

The exponentation is also used in many methods to find the prime numbers (for
example in Rabin-Miller's method to find the 512 bit length prime number it is necessary to
do about 500-600 exponentations) in digital signature systems, etc.

There are many known methods for computation of exponentation. All the methods are
based on the multiplication in GF(P). Computational complexity of the exponentation can be
estimated by the following formula

C(n)= M(n) + S(n),

where M(n) is the number of multiplications, S(n) shows how many times the
intermediate result is squared. Note, that in all these methods for the fixed n, S(n) is
constant. Therefore, for the fast exponentation it is necessary to reduce the number of
multiplications. When precomputed results are stored, it is also important to reduce the number
of squarings for precomputed values.

In this paper we consider a method which allows to reduce the memory size and the number
of squarings for precomputed results by performing, in average, the same number of
multiplications. In the Section 2 the comparison of the complexity of different methods of
exponentation computing is discussed. The proposed algorithm for the fast exponentation is
described and evaluated in Section 3.Its usage in modular expo- nentation and experemental
results are considered in Section 4. The final conclusion is formulated in Section 5.

2 Comparison of different methods of exponentation

2.1
The well-known method of exponentation is the binary one [1]. For large pseudo- random
numbers n this method takes (in average)

57

58 A New Fast Modular Exponentation Algorithm

E(M(n)}=|% (1)
bit length of n, and S(n)=nl .

o teosione where In=|1og3] +1 is the
multiplications, i} =Llog; e v e

For the full estimation let's denote the necessary memory
method V(n)=1.

22 ' :
Straightforward, generalization of the binary method is a h-ary method. In this algorithm

2" precomputations must be done, where h is the bit length of the window. The average
number of multiplications (including precomputat%ons is
B(M@) = B42* -2 2)

h
and the number of squarings (including precomputations) is S(n) = In and V(n)=2".

23

There is a method based on the Lempel-Ziv(LZ) data compression algorithm([7]. This method
parses the string from the least to the most significant bit by the L.Z-algorithm[3], i.e. a binary
“compression” tree is created, where the path n; is a substring of the exponent from the root to

node i, and node i contains the partial result x™ .
The exponent is calculated from the most significant bit on the basis of partial results
obtained in the process of parsing. The estimation of complexity of this method is equal to

Cn)=L-h2 +k+k2+h
where
: y Mm)=k+k2 Sm)=L-h2+h
(including precomputations), k is the number of nodes in the tree, h is the tree depth and L =
log(n), As itis shown in [7] h = log(L) - loglog(L) and k = L/log(L).
Considering the last equations one can obtain
_ _ M(n) - 3L/2log(L), S(n) = L + 1/2(log(L) - loglog(L)), V(n) = L/log(L)
This method is effective, when the exponent is compressible.

24
There also.exists a method based on the LZ-algorithm[2] , which uses the following
representation of n
J n= (d, 0% d, 0%d,...d,0") 3)

whe'n: 0 denotes the series of k; zeros. The set of d, has to satisfy the following
conditions: g :

- the first symbol of every d, is 1; i

- d, must have the tree code structure
X" must be calculated as

i (((xdl),lu!dsl £)2""“___)2""“'_‘:1',

where]dil=|.logdi_|+l.'['h= set of d, may be chosen by different ways. If

]
]

G. H. Khachatrian, A. B. Andreasyan, K. P. Zelenko 39

D=(1,2,...2"" =1, 2" +1, 2" £3,...,2" -1}
we have the case proposed in [2]. Itis easy to see that the total number of symbols in the set
D 3.2*%,

In this case, including the precomputations, the average number of multiplications is
equal to

1

E(TM(n)) = %-ﬂ"'-l g (4)

and the total number of squarings is S(n) = |n/+3-2"* — 2 and the memory size is
V(n)= 3-2*2-1. (3)

If nis the random sequence of independent binary variables and p is the probability of
occurrence of the symbol 1, as ' it is determined in [4], then the average number of
multiplications is equal to
! b1

E(M() = 5= 77+

3 The proposed method .
As it was mentioned above the necessary memory size for the 2.4 algorithm is equal to (5).
In order to decrease the memory size we propose to choose the set D by the following way
-each d, must begin and end by 1, thatis
D=(L, 3,5, w21 (6)

for example, for h=4 the following set is obtained (1, 11, 101, 111, 1001, 1011, 1101, 1111).
This algorithm uses h -bit length window, sliding on the exponent bits. The representation
of n inthe formula (3) is considered , where D is chosen as described above.
In general, for-the h- bit length window we will have 2" elements and, accordingly, 2" -1
precomputations must be done and stored. So, in each step of computation the window of the
length h is considered and precomputed result of the content of window is used. The next
window which should be considered must be the one starting with "1" . If n is a random
sequence of binary independent distributed variables with Pr(n,;=1) = p and Pr(n,=0)=q
,where q =1-p, then the average distance between starting points of different windows will be
equal to the mathematical expectation.

Lm)=p-h+ plg(h+1)+4*(h+2)+..4¢"(h+). (7)
By simplifying (7) we get .
L(n)=p-h+ p{?—_% +q(1+2:q+3:q*+..41-q"" +...)]

L@=h+L=p+L-1 (8)
P 'y
The average number of multiplications will be equal to

A New Fast Modular Exponentation Algorithm

60
_ ol e
E(M(n)) T L{n} + 2 l
and
nl ©)

l b=l
- 28]
E(M(n)) h+li‘p-1+ < b
1 and substuuungpand qin(9)

(10)
average number of

Whenp=q-.lfztheavemgedistance“dllb:equaltoL(nFM

Inl
weobtgin E(M(n)) = ﬁ+2*'-1

qu.menmeavensedimcewﬂlbeinmedbyqlpmdthe
multiplications will be decreased by one.)

Aswe see, the average number of multiplications is the same as in 2.4, but the total nu_mbt?r
of squarings is equal to S(n) = |n}+1. Since we keep only odd degrees of x, then memory sme]ls
V(n) = 2. They can be easily computed if we increase the memory size by one and store xb :
This will speed up the precomputations, that is each of the i-th exponent will be obtained by
multiplying x* .
s xl =X‘-1 _x! islrzh-t (11)
optimal average number of multiplications for !:he
corresponding length of window, the function (10) should be minimized over h.' Sqlvmg
(10) for the n=256, 512, 1024, 2048 we get , that h=4, 5, 6, 7.The number of bits in the

window can bé taken 4 for 256, 5 for 512, 6 for 1024, 7 for 2048.

In order to obtain the

DESCRIPTION OF THE ALGORITHM:

This algorithm uses h -bit length window, sliding on the exponent bits
(started from the most significant bit). The value of h is determined by the bit length

of the exponent . Then x * and x*, where d,={1,3,5....,2"-l}, are precomputed by (11). For

accumulation of the intermediate results, the additional memory initialized with 1 is used. The
first bit of the exponent must be 1.

1. Check the next bit of n.
Ifit is equal to 0 then square the intermediate result and go to step 1.

2. Ifremaining bits of n are less thanh, then h=h-1 and go to step 4.

3. Read the h bits of n and find corresponding binary representation of dj
Then perform | logd, | squarings, multiply the intermediate result by the x* and perform (h -

|logd, |) squarings.
Return to step 1.
4.1fh> 0 gotostep 3.
5. End:

i=1,2h-1,

4 Modular exponentation and experimental results.

For computing X" mod P the above described algorithm is used. The number of squarings is
equal to the number of bits in the exponent plus the number of precomputed values. Since, in

G. H. Khachatrian, A. B. Andreasyan, K. P. Zelenko [

squaring operation multipliers are the same, then it can be done nearly twice faster tha
multiplying with different multipliers.

Let suppose that the number of bits in argument, exponent and modulo are equal. Th
number of bits in intermediate result afier each operation exceeds twicely that of the modulo |
and, 50 it must be partially reduced by modulo P. The classical and Montgomery’s partia
reduction [5] are used in modular exponentation. Execution times are shown in Table 1. The
implementation is written in ANSI C [6] to be portable to any computer system. The arithmeti
parts are obtained with optimized assembly code for Intel 486 processor.

Length of | Binary h-ary Proposed | Proposed
the method | method | method method
argument | classi-cal | classi- | classi-cal | with
in bits cal Mongo-
mery's
256 0.131 0.104 0.097
0.113
512 0.725 0.565 0.440
0.616
1024 4.994 3.824
4.174 3.051
2048 39.000 31.552 |28.576 22.768

Table 1. Execution times (in seconds) for modular exponentation (number of bits in the
argument, exponent and modulo are equal , b=2", on a 50 MHz 80486 based PC).

Basically in cryptography the number of bits in argument is more than 256. For this case it is
more effective to use Montgomery's partial reduction.

5 Conclusion

The theoretical and experimental results show, that the proposed fast exponentation algorithm is
faster than the h-ary one. It requires the same number of multiplications and less memory size
compared with the algorithm given in [2]. In modular exponentation the proposed method with
Mongomery's partial reduction is shown to be the best known.

References

I. D.E. Knuth. The Art of Computer Programming vol. 2 Fundamental Algorithm, Addision-
Wasley Mass. 1968.

62

7.

A New Fast Modular Exponentation Algorithm

LE Bocharova, B.D.Kudryashov * Fast tation based on Lempel-Ziv algorithm™
Information Theory PP 259 -

Sixth Joint Swedish - Russian International Workshop on

263, 1993. :

J. Ziv, A. Lempel A Universal Algorithm for Sequential Data Compression 1EEE

Trans, Inform. Theory vol. IT-23 pp. 337-343, 1977. G
ased on Dala Compression

LE.Bocharova , B.D.Kudryashov “Fast Exponentation B:
Algorithms” Seventh Joint Swedish-Russian International Workshop 0
pp 36 -39, 1995.

Antoon Bosselaers, Rene Govaerts and Joos Vandewalle * Comparison of three modular
reduction function” Advances in Cryptology ,Proc. Crypto \93 CRYPTO’ 93 pp.176-186..
«American National Standart for Programming Languages-C,” ISO/IEC Standard 9899:1990,
International Standart Organization, Geneva, 1990.

Y. Yacobi “Exponentation faster with addition chains” Proceeding of Eurocrypt'90

n Information Theory

