Mathematical Problems of Computer Science 17, 1997, 52-56.

Practical Implementation of the Lossless Compression Algorithm

G. H. Khachatrian and A. B. Andreasyan

Institute for Informatics and Automation Problems
of NAS of RA and YSU

In this paper a combination of the LZ78 method with a new scheme of model contexting is
introduced. In the proposed scheme the hashing function is also used. This approach specds

up the searching process and has an improvement over model contexting.

1 Introduction

Most of the existing compression applications are based on the schemes proposed by Ziv and
Lempel [1], (2] In [1] (denoted to be a LZ77) it was proposed to replace each matching by the
(C;,CCr) where C;; is the pointer to the start position of matching , which has the length 1(Cy;)
= log(n— L.)J, where L, is the length of a lookahead window, n is the size of the buffer, Cpp is
the length of matching and Cys is the first unmatched symbol in the lookahead window. :

In practice the algorithm described in [2] (denoted to be a LZ78) is often used. LZ78 starts
encoding with empty dictionary (buffer). As the encoding continues , fairly long matchings are
collected in the. buffer and each matching is replaced by the pointer and by the length of the
matching (it will be denoted by the pair (p,1)). Testing shows that this method is more effective

in compression scheme than LZ77.
There are some schemes for coding of the symbols by the context modelling. These

schemes use some previous symbols of the text to predict the next symbol. This approach

allows to obtain good compression ratio for the textual files. Disadvantages of these schemes are
the large memory requirement and the low speed. These schemes allow on-line encoding too.

! In this paper a combination of the LZ78 method with a new scheme of model contexting is
introduced. In the proposed scheme the hashing function is also used. The hash value of the
previous symbols .is computed and depending on that value, the current symbol in the
cormspondmg part of the memory (denoted to be a hash box) is searched. This approach speeds
up the searching process. If the current symbol is found, it is coded by the dynamic Huffman
tree, otherwise it is added to the symbol chain.

2 Description of the algorithm

A pmp?s?d compression algorithm is based on LZ78 approach and model contexting. We usea
lu_ce.l dictionary (ring buffer of size N+F, where N is the size of buffer and F is the size of sliding
window) and']et M is the size of memory (which will be denoted by the term “model”) for
model contexting. Note, that N=2*, where k depends on the resource of the coder. Proposed
on-line encoding and decoding algorithms have the following form:

2.1 Encoding Algorithm
52

i

Practical Implementation of the Lossless Compression Algorithm

un
Lad

a. Crel the current matching (p,) by LZ75.

Check the corresponding hash box. If the box is not empty and | > threshold encoder outpur
is “0"(if the hash box is emply bit is not set) and at the beginning | is coded by the adaptive
Huffman tree ,then p is coded by the method described in 1.2. Otherwise (1< threshold) only a
current symbol have been coded

If the current symbol exists in corresponding hash box , encoder output is “1" and the
currend symbol is coded through dynamicl Huffman tree. If not, encoder output is “0" and
the current symbol is coded by the adaptive Huffman tree.

b. Update the local dictionary and the corresponding hash box.
2.2 Decoding Algorithm

1. Initialise the local dictionary and model by performing step 1 of the encoding algorithm.
2. repeat forever

a. If decoder reads “1" then the current stream of binary bits is decoded by the hash box
through dynamic Huffman tree. If decoder reads “ ()" -then the current stream of binary bits is
decoded by the adaptive Huffman tree.

If the decoding value is greater than 236 it means that | has been encoded and follows p.
Otherwise the-current symbol is encoded. *

b. Update the local dictionary and the corresponding hash box by performing step 2.b of the
encoding algorithm.

Note, that when the compression ratio is more important than the speed then the second
searching is implemented (lazy evaluation). The current symbol enters into the local dictionary
and the search is continued with one shift. If longer matching is found, the previous symbol is
coded by the adaptive Huffman tree or by the model, and current long matching is coded. If not.
the previous matching is coded. Updating of the local dictionary is done by the identity
heuristic[3].

We perform the coding by the following way. Let (1,p) be the current matching where p is a
pointer to the start position of the matching and 1 is the length of matching and let n be the
pointer to the current updated position in the local dictionary. First | is coded by the adaptive
Huffman tree. Pointer to the start position is coded by the following way

—n)mod(N -1
(_p_nh—nz‘-(—]-'—'k‘Z'-i-r i=l,q (l)
e N : !
where i is defined by N. > corresponds to the nodes of Huffman tree, assigned for coding of

k. To speed up the search in process N is choosen to be equal to 2, where j>q. It follows from
(1), that all matchings, for which k*2' < p-n<k®*2"', have the same Huffman code. So the
pair (1,p) is replaced by the code (C;(1),C,(k),r), where C,(1) is a regular Huffman code of I, C,(k)
is a Huffman code for k.

3 Fast parsing of string by the hash function

For the fast parsing a hash function is used. As the arguments of the hash function symbols from

54 G. H. Khachatrian and A. B. Andreasyan

current position.As a hash function of (a,bc), the
2

o one Or more

the file arc taken beginning. from the
ing transform is used
LT (a*2’ +b*2%+c) mod 8191

ere a, b, ¢ are the symbols of the file. Each hash value can correspond t
:c?sitions il.:;a local dictis:nr:ry. These dictionary positions are ord_md_ by nsc.?m}mg e T
In order to parse the string, the hash value is computed and {ft_hls value is foun e
table, then the symbols from the corresponding position of the dlctfonary are wmpﬂll; i
symbols starting at the current position. So we can find some strings of different th:: e
which we choose the longest and the nearest one. After coding of the current string »
table is updated. When the local dictionary is filled hash values are reph?ccd by
The proposed model has the following construction. Let M be the size of memory

the new values.

4 Model contexting

In the case, when matching length is shorter than the threshold value model contexting is
used. A well-known k-th order Markov model can be represented by the following way : the 0
order (level) is intended for all 256 ASCII characters , the 1-st order is intended for a]l. the
characters following 0 order and o onThe symbol belongs to the k-th level if the previous
symbol belongs to the (k -1)-th level. In order to the use of the k-th order model the frequency

occurrences of the k-th level symbols must be kept. This approach gives a good compression -

for textual files, but too much memory and a long time are required to find the current symbol.
for model contexting. The first section of the memory consists of 8191 bytes cnn‘espon:.‘mgs to
the modulo of hash function. This section of memory is divided into k=(8191+1)/2°=2" (2" is
obtained from the experimentally) parts. The size of each part is equal to 256 bytes, which
corresponds to the ASCII characters . Other section of the memory M - 8191 - 1 is divided into
2* zones. The size of each zone is equal to (M-8192)/2® , where the frequency of occurrences of
the current symbol and pointer to the next symbol, which have the same hash value and follow
the same symbol are stored. The set of this symbols will be refereed as the hash box. Each
starting part corresponds to the appropriate zone of the memory.

When 1 < threshold (for this case threshold=5,which is obtained by the test) and the current
symbol exists in the hash box, then it will be coded by the dynamic Huffman tree code.
Otherwise (when current symbol is absent in the hash box) it is coded by the adaptive Huffman
tree code. First, for the current symbol the hash value is computed and divided by 2

h=((a* 2 +b* 2" +c)mod8191)/256 3)
where a,b,c are the previous three symbols. Then in the corresponding starting part, it is checked
if the symbol “c” has the hash box. If yes, then the current symbol is searched in the hash box. If
current symbol is not found then it is added to the hash box. When the corresponding zone is
filled ,the content of the hash box is rotated, i.e. the first symbol is replaced by the last one.

To be decoded correctly encoder must use overhead bits. “0” overhead means that the
current symbol is absent in the hash box or hash box is not empty. "1” overhead means that
current symbol is found in hash box.

- The experimental results show, that by this method the obtained average compression ratio
is of 0.4375, i.e. each ASCII character is coded by the 3.5 bits in average. The proposed model
can be applied to the binary sources too.

e =

e T e gl it

Practical Implementation of the Lossless Compression Algorithm

Lh
L

5 Compression for “executable” files

The performance of any data compression method highly depends on the data being compressed.
As a sample three kinds of files are considered, namely textual source,
binary source and special kind of binary source - the “executable” file.

For the last type of the files onc may apply a small memory size. The following approach is
implemented. Except the local dictionary, where the matchings are stored, two additional
dictionaries are kept 100. In the first dictionary (denoted to be a position buffer) the current
number of each matching is kept, the length of which is greater than some threshold, taken to be
equal to 3. In the second dictionary (denoted to be a length buffer) the length of this matching is
stored. A new symbol in adaptive Huffman tree table is introduced. Let it has the number 256 +
F +1.

The 2.1 Encoding Algorithm and 2.2 Decoding Algorithm will be in the following form:

1. Initialise the local, position and the length dictionaries.

2 repeat forever
a. (et the current matching (1p).

If | = threshold, then p is searched in the position dictionary and [is searched in the length
dictionary.

If p and | are found, then symbol(256 +F +1) is coded by the adaptive Huffiman tree code
and the current number is coded by the prefix code.

If not, then the (l,p) is coded by method described in the section[1].

b. Update the local, position and the length dictionaries.

1. Initialise the local, position and the length dictionaries by performing step 1 of the
encoding algorithm.

2. repeat forever
a. Decode the current stream of binary bits.

If 256 +F +1 is obtained, then the (l,p) pair is obtained from the length and the position
dictionary, otherwise by the méthod described in the section[1].
b. Update the local, position and the length dictionary performing step 2.b of the encoding
algorithm.

This method is effective for the executable binary files.

This method allows good compression ratio having small buffer.

6 Experimental results

Table 4.1 shows compression results

*txt *.doc Dictionary | *.exe
size (bytes)

39823 48655 1024 37302

0.2512 0.2997 0.4634

38706 43902 2048 36747

0.2442 0.2704 0.4563

37630 40119 4096 36435
= 0.2374 0.2471 0.4525

36961 37674 8192

0.2332 0.2321

56

given.

G. H. Khachatrian and A. B. Andreasyan

36515 35632 16384
0.2304 0.2195
36283 32918 32768
0.2289 0.2028
For the comparison the compression Tafio obtained by the pkzip.exe 2.04
pkzipex | 36944 32852 36630
e 204 0.2331 0.2024 0.4549
arj.exe 36594 33976 35967
230 0.2309 0.2093 0.4467
References

£

and arj.exe 2.30 are

J.Ziv and A.Lempel “A Universal Algorithm for Sequential Data Compression”, EEE
Transactions on Information Theory, vol.IT-23,pp 337-343,May 1977
J.Ziv and A.Lempel * Compression of individual sequences via variable-rate coding”, IEEE
Transactions on Storer “ Data compression methods and theory”, Computer Science press,

1988

. Theory, vol. IT-24,pp.530-536,Sept. 1978

Storer “ Data compression methods and theory”, Computer Science press, 1988

Storer “ Data compression methods and theory”, Computer Science press, 1988

Theory, vol. IT-24,pp.530-536,Sept. 1978

Storer * Data compression methods and theory”, Computer Science press, 1988

Ve - R R

