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Let G be an orgraph of order p with minimum half degree §(G). In this paper
we prove that:

1) if p > 9 and 6(G) 2 (p + 3(k — 2))/4, where the integer k > 2, then G is
k—connected or 2-cyclic.

9) if p > 10 and 8(G) 2 p/3, then G is 2-cyclic.

3) if p > 12 and 8(G) = (p— 3)/2 , then G is 2-linked.

1 Introduction and Notaions

In this paper we investigate orgraphs in which any two vertices are on a common cycle (such
orgraphs are called 2-cyclic). The class of 2-syclic digraphs is not characterized completely,
for example, it is not known whether there exists a natural number k such that every k-
connected digraph is 2-cyclic (k must be at least six). Jackson conjectured that every 3-
connected orgraph is 2-cyclic 2] .In [3] it was shown some sufficient conditons for a digraph
to be 2-cyclic.

All terms not defined in this paper can be find in Harary’s book [1] . Without other
specifications, G denotes a digraph of order p with vertex set V(G) and arc set E(G). All
paths and cycles considered here are oriented and elementary. A digraph G is a strong, if for
any two vertices z and ¥, G contains a path from = to y and a path from y to z. A digraph

.G is k—connected if the deletion of less than k vertices always gives a strong digraph. The
m&mnztoyisdenotedbyzy,mdifsuchanmmdststhmmsaythatxdominﬂtm
y and y is dominated by z. We denote by od(z) and id(z) respectively the outdegree and
the indegree of the vertex z and by §(G) the minimum outdegree and indegree of a vertex
in the digraph G. If z,y € V(G) then by d(z,y) we denote the length of the shortest path
from z to y. An oriented graph (orgraph) is a digraph with no cycle of length two. The
connected number of a digraph G , denoted by k(G) , is the maximum value of k for which
G is k-connected. For any real number z, [z] denotes the integer part of z.

For any A, B € V(G) and z € V(G), we define

E(A— B)= {2y € E(G)/z€ A,y € B},
I(z)={y e V(G)/yz € E(G)}, Ofz)={y€V(G)/zy € E(G)},
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I(x,A) = {y € Ajyr € E(G)}, Olz,A)={ye A/ry € E(G)},
iz, A) = I{x, A)l, od(z,A) = |0(z. A},
od"(z) = |V(G)| —od{z) — 1,  id'(x) = |V(G)| —id(z) — 1.
If A= {x}, then we write 7. instead of {z}. The induced subgraph with the set of vertexes

A is denoted by (4). We write A — B if ry € E(G) for each = € A and for each y € B. If
cVG),A— Band B — C, then we write A - B —C.

2 2-Cyclic Orgraphs
We omit the prool of the fullowing simple lemma:

Lemma 1 Let G be an orgraph of order p. Then G contains vertices = and y with od(r) <
(p—1)/2 and od"(y) = (p—1)/2.

Lemma 2 Let G be an orgraph of order p (p = 2) with §(G) = k. Then G is a m—rconnected,
where m > (4k — p+ 2),’3

Proof. Immediate from Lemma 1.

Theorem 2.1 Let G be an orgraph of order p (p > 9) with 6(G) > (p+ 3(k — 2))/4,where
the integer k > 2. Then G is k—connected or 2—cyclic.

Proof. Suppose that G is not k—connected and show that G is 2—cyclic. From Lemma
2 it follows that k(G) = k~1 and § = §(G) = (P+3(k—2)+1)/4 or (P+3(k—2))/4. So
we have the partition
G=AUBU {.‘.'!1,:!’.‘;,..,..17}_..1},

where E(A — B) = 0.

Consider the following cases.

Case 1. 6= (p+ 3(k—2)+1)/4.

Then p = 46 — 3(k — 2) — 1 and a+ b = 46 — 4k + 6, where o = |A| and b = |B|. We
can assume, without loss of generality, that a < 26 — 2k + 3. Hence, by Lemma 1, we have
a=26—2k+3 and b = 26 — 2k + 3. By Lemma 1 we have that induced snbgraphs (A) and
(B) are regular tournaments and

A— {mllxﬁs savy x.l—l} — B.
Therefore, E(B — A) # 0 and G is 2—cyclic.
Case 2. 6§ = (p+ 3(k - 2))/4.
Then p = 46 —3(k—2) and a+b = 46 — 4k + 7. Withont loss of generality, we can assume
that a < 26 — 2k + 3. By Lemma 1 0 = 2§ — 2k + 3,b =26 — 2k + 4.
A= {Ill Ty ey xl—l} (1)

and induced subgraph (A) is a regnlar tournament. It is easy to see that for every vertex
z € A there are at least k — 1 vertices from B which dominate z and for each vertex z; € B

Exn A) k 2 )
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id(zl,B)zé—k+1. (3)
prove , need the following remarks: 8
7 e {iris e then B = B],UB:, BlnB: = E{B} — Bl] _—

emark 1. 11 the subgraph (B) is not strong, ! . -
0 :;m[:za—zus. |Bz| = 1,the subgraph (B1) i a regular tournament Az1, 72, Wy,
' — A) #0. ¥
7 ?:n:nf,fi [hﬁ;:éubgmph (B) is exsactly 1—connected, then B = BiUBU{z}, BiNB2 =
E(B,— Ba2) = 0, z¢ ByUBy and |Bi| £ 2, |B,1_?_ 26—2k+1. e
We assume that G is not 9—cyelic and we will ghow that this leads to a contradicton:

Let the vertices u and v are not on a common cycle. But as G is (k— 1)—connected, We
have d(u,v) 2 &, dlv,u) 2 k and if k > 3, then
o) nI(v)= Ifw)nO(v) = 0.

Consider the following subcases:

Subcase 2.1. u€ Aandv € B. : :
Then for some i,1 <i < k—1, there is a path from z; to v whith does not contain the

vertices from A. If E(v — A) + 0, then there exists a cycle containing u and v. Now we can
assume that E(v — A) — (. Then, by (2), k=2,a = 96 — 1, b = 25 and the vertex v 15
adjacent to all vertices of AU {x:}. I 210 € E(G), then it is easy to find a path from v to %
not containing z;. So we can assume that zyv ¢ E(G). We have vz, € E(G). Therefore, from
E(v — A) = 0 and from Remark 1 follows, that subgraph (B) is strong. Since id(v, B) = 6
and od(z;, B) > 6, then the set B contains a vertex z for which z,z,zv € E(G).

Assume that E(B — {v,z} = A) # 0. Let E(w— A)#0andw € B - {v,z}. In (B)
each path from v to w contains the vertex z. Hence, by Remark 2, od(v) < 2, we obtain a
contradiction.

Assnme now that E(B — {v,z} — A) = 0. Then, by E(v— A) =0, we have z — A. As
in case E(B — {v,z} — A) # 0 it follows that z; — O(v, B). Since

E(O(v, B) — I(v, B) — {z}) #9,
then E(O(v, B) — z) = 0. Hence I(v, B) — {z} — z and for each y € O(v, B)
|E(y — I(n, B) - {zh)| 2 2.

Let 11ys, yaya € E(G), where 11,12 € O(v, B) and ys,ys € I(v, B) — {z}.Therefore the
cycle uzyyiysvyayezu contains the vertices v and v, which gives a contradiction.

Subcase 2.2. u,v € B.

If the subgrapf (B) is not strong, then by Remark 1, the vertices u and v are on a
common cycle. So we can assume now that the subgraph (B) is strong. From E(u, v)=0
and from k > 2, it follows that E(u — A) # 0 and E(v — A) # (. Since (B) is strong, then
u,v & O(;), foreach 3,1 <i < k— 1L By Lemma 1 there is a vertex ;1 < j<k-1,with
od(z;,B) = 6 — (k—2)/2 and let j = 1. Thus there is a w € O(z, B) that wv € E(G). If
in (B) there is a path from v to u which does not contain the vertex w, then the vertices u
and v are on & common cycle. So we can assume, that in (B) each path from » to u contains
the vertex w. Therefore, the vertex w is a ent vertex for the vertices u and v. By Remark 2,
it is clear that u € O(=z;), which gives a contradiction.

Subcase 2.8. u € {2;,%2,...,Tg—1 } and v € B.

Since E(u,v) = @, then there is a vertex z, such that uz, zv € E(G). Hence k = 2 and
E(v u A)= . Therefore the vertices u and v are on a common cycle.
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Subcase 2.4. u,v € {z;,73,.... 741 }.
hen k f 3 and
: Olu, B)nOfv, B)| 2 2.
Let y,z € O(u, B) N O{w, B) and y # z. By (2) there exist vertices y;,2; € A, such that
yih, 271 € E(G). By (1) we can assnme that y; = 2. Therefore, by (2), k=3 and

[E(y — A)| = |E(z— A)|=1.

There exist two vertices 2, € A — {z} and w € B — {y, z} such that w2; € E(G) It is
clear that E({u,v,y.z} — w) = 0 and id(w, B —~ {y.z}) = &. Since od(y, B) > § — 1, then
there is a vertex iy, € B — {2} such that yy,, yaw € E(G). So we have a cycle uyypwz;vzz:u
containing u and v.The proof of the Theorem 1 is completed.

Nuotice thet for k = 2 there is an orgraph of order 8 , which is not 2-connected and is not
2-cyclic.

Theorem 2.2 Let G be an orgraph of order p (p = 10) with 8(G) > (p — 5)/2. Then G is
S-ryclic.

Proof. Suppose that G is not 2-eyclic. Let the vertices = and y are not on a common
eycle. From Lemma 1 and 2 we have that G is 2-connected. Therefore E(z,y) = 0 and

O(z)nI(y) = O(y) N I(z) = 0. (4)

Consider the following cases:

Case 1. E(O(z) — I(y)) # 0.

Let =y, € E(G), where 7, € O(x) and y; € I(y). Therefore, each path from y to »
contains the vertices z; and y;. Thus the set {z,, 3} is.a cut-set and we have the partition

V(G)=AUBU {z;,m},

where E(A — B) = 0,y € A and = € B. Hence from Lemma 2 we have that p < 13
and 8(C) = [(p—4)/2]. As a+b = p— 2, where a = |A| and b = |B|, then without loss
of generality we can assume that a < (p — 2)/2. Therefore, by Lemma 1, there is a vertex
# € A, such that od(z) < (a+ 3)/2 and od(2,A) < (a —1)/2.

Assume that p = 12 or 13. Then §(G) = 4,a < 5 and od(z, A) = 2. Therefore the
subgraph (A) is a regular tournament and A — {zy,y,}. which contradicts to y,y € E(G).

The proof in the case p = 10 or 11 is left to the reader.

Case 2. E(O(z) — I(y)) = 0.

By Lemma 1, there is a vertex z € O(z) for which

—

2+ |I{y)] + [|0(=)|/2] < od’(2) <n+1+1, (5

where p=2n-+i,i=0o0ri=1.
We divide this case into the following subecases.
Subcase 2.1, p= 2n.
From (5) it follows that

n+fn 2)/2] od'(z) n+l




26 g. Kh. Darbinian and 1. A. Karapetian

Hence n = 5, id(y) = od(z) = 3 and the subgraphs (A) and (B) are regular tournaments,
i D = V(G) - (0@) VI U {zv})
wz € E(G), where u; € O(z) and v; € I(y)-

| ST = d yur, g
Then |D| =2, O(z)— D I(y) and y D.up € O(z) and vz € I(y), contains

: - where 21,22 €

Therefore the cycle zugziV2yth 22V1T, where 21,

the vertices z and y,which gives a contradiction.
2. p=2n+1l -
ff‘;b;a;‘:r:::bt:in a :ont.radiction by using Lemma 1, 50 assume n < 6. We shall consider
the mpﬁ_n = 6 and n = 5 mparately Suppoas first that n = 6. Then p= ik a_nd! hy Lemma
1 od(z) = id(y) = 4. We have |D} = 3. et O(z) = {71,727, 7a}, 1) = {yn, 2 ¥3: 4}
and D = {21,272, 23} It is easy to see that two vertices from O(x) (resp. I(y)) dominate

(resp. dominated by) the all vertices of D . Let
{z1, 72} — D — {y,y}-

It is easy to see that yz € E(G) for some i, 1 < i < 3. Then E({y1, 1} — =) = 0. Hence,
|o(y)nD| £ 1. Analogously, |I(z) N D| < 1. Therefore, we have

|0(z) N O(y)| = 3 and |I(y) N I(z)| = 3.

using case 1, we have

Let yr1, yl;: € E(G). Then the cycle 222212yT122th @ contains the vertices z and y, but
this contradicts to the assumption that the vertices z and y are not on a common cycle.
The case when n = 5 we leave to the reader. The proof of Theorem 2 is completed.

We will use the following.

Lemma 3 Let G be an orgraph of order p (p = 7) with §(G) = (p— 3)/3. Then
1) if p# 12 and p # 18, then for every two vertices = and y d(z,y) < 4.
2) ifp=12 or p= 18, then for every two vertices = and y d(z,y) <4 ord(y,z) £ 3.

The proof of the Lemma 3 is left to the reader.

Theorem 2.3 Let G be an orgraph of order p (p > 10), with §(G) > p/3. Then G 1s
2—eyclic.

Proof. If p < 15, then the Theorem 3 follows from Theorem 2, so assume p > 16. If G
is 4—connected, then the Theorem 3 follows from Lernma 3, so we can assume that G is not
4—connected. Hence from Lemma 2 it follows that p = 17,18 or 21 and G is 3—connected.
Therefore we have the partition

V(G)= AUuBU{z,y,z},

where E(A— B)=0.

If p= 17 or p = 21, then the subgraphs (4) and (B) are regular tournaments and
A — {z,y,2} — B. Since E(B — A) # 0, then it is not difficult to see that G is 2—cyclic.
Now assume that p = 18. Withont loss of generality, we can assume that |[A| = 7. Then the
subgraph (A) is regular tournament and A — {z,y,2}. Now we note that the rest of the
proof of the Theorem 3 follows by similar arguments, as in the case 2 of the Theorem 1.
These details are left for the reader. The completes the proof.
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% Other Cyclic Properties in Orgraphs

In this section we consider other properties which imply that the considered digraph is
2-—eyelic. The digraph G is pancyclic if it has cycles of every lenght n, 3 < n < V(G

We say thet a digraph G has property (T) [3] if, for any three vertices 7,y, 2 in G there
exists & path from = to y containing z.

We say that a digrapf G is k-linked if for every family of 2k (not necessarily distinct)
vertices Ty, T2, ..., Tk, Y1, Y2, -+, Yk there exist k internal vertex disjoint paths from z; to 3,1 <
1<k

Problems connected with the k-linked digraphs and digraphs with property (T), in par-
ticular, are considered in [3].

Points (1) and (2) of the following theorem are proved in [4] and (5], the point (3) is
proved below.

Theorem 3.4 Let G be an orgraph of order p with 6(G) > (p—3)/2. Then
1) if p = 10, then G is pancyelic ( (4] ).
2)if p = B, then G has proprety [T] ([5]).
3) if p = 12, then G is 2—linked.

Proof of Theorem 4.3. Suppose the contrary. Then there are vertices a,b,c and d for
which there are no internally disjoint paths from o to b and from ¢ to d. According to Lemma
2 and 1 we have k(G) = 4.

Let us define

A=0(a)-{c,d}, B=I(b)—{ed},
C=0(c)={a,b}, D=I(d)~ {a,b}.

Consider the following cases. 3

Case 1. 2(A — B) #0.

Let uv € E(A — B). It is easy to see that k(G) = 4 and p < 15. Therefore the set
{n,b,e,d} is & cut-set for the vertices ¢ and d. We have the partition

V(G) =X UY U {a,b,u,n},

where E(X +Y) =0 and a € X,b € Y. Note that |X| < 6 and [Y| < 6. Without loss of
generality we may suppose that | X| < |Y|. Hence, if

14<p<15 then [X|=35, (6)

and if
12<p<13, then 3<|X|<4 (7)

We distingnish two subcases.

Subease 1.1. The subgraph (X) is a regular tournament.

Then X — {a,b,u,v}. By (6) and (7) we have E ({u,v} — d) =0and od (a.Y — {ya}) >
3. Consequently, there are vertices = € X — {c} and y € Y — {d} such that ay, yr € E(G).
Since E(u — XU{a,b,d}) = 0, then od(u,Y —{d,y}) > 3. Hence, by E(XU{u,v} — d) = 0,
there is a vertex gy € Y — {y,d} for which uy;,y:d € E(G). So we have two vertex disjoint
puths ayzb and euyyd, but this contradiets to our assumption.

Subcase 1.2. The subgraph X is not a regular tonurnament.
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, at, least twWO vertices
4 (7) |X|=4andp= 12 or 13. By Lemma 1, there are al
ﬁmﬂ;n;rgcf }d:a.;ni:(laus '!he vertices a,b,u and V. Let z € X — {c} and.:rr — gﬁéﬁ; 51}*;
From this and from E(a— {v,b}) = @ follows that od(a,Y — {d}) 2 1. It is not o
i € B(G) and y € Y — {d}, then in the subgraph (X U {a,b.y} — {c}) there i
We amum;;imt t.h.St E(c— {w v}) # 0.Let cw € E(G), where w € {u,v}- We ga\;e
Ew— F) = @, where F.S {c,b,d,::,z,xl}.:r.'l e X —{zchz E .{n,u} a'nd |F| 2 5
Therefore there i‘s avertex th € Y {y, d}for which wy; € E(G). It is not difficult to see
that yud € E(G) and ged € E(G) for some ¥2 eY — {y,ymd}t Therefore

B(X U {w,p,d} = v2) = 0
i — =0 then
d ' EE G ,WhﬁfemEY—{yuﬂhw‘d}- Sme(xu{w-yhb‘ﬁ} 9‘3] 1]
E :: .—f’ EG} B.El.d }yd € E(G). So we have the path cwyd. This path and the path P from
: vertex disjoint, this gives & contradiction.

to b in the subgraph (X U {a,b,va} — {c}) are
> Th:unpm‘;f in ?hepwe when E(c — {w,v}) =0can be given similarly. We leave it to the

er.

Case 2. B(A— B)=0.

We show first that |B| =n—3
Then, by Lemma 1, there is & vert

nti> od'(a) > 1Bl +2+[41/2

where p = 2n+i and i =1 or 0. Assume that |Bl =z n—2
ex a € A, for which

From this and from |A] 2n—3itfol].awut.hat |B| =n—2, [A] —n—3=3sandp=13
Therefore a — {¢d}, (4) 18 a regular tournament and A — H U {c,d}, where |H| =2 and
: H =V(G) - (AUBU{a,b,c,d}).
Itisaaaytuae?thBtE{t:—OB} # 0 and for each u € B E(u— A) #0. Let cu,uv € E(G),
where u € B and v € A. Hence, it is not difficult to see that E(H — B—{u})=0. Therefore
E(H-—-AUBU{b}-—{u}}=0

which gives a contradiction. This contradiction proves that |B|=n—3.
Analogously we have
- 4| =|C| = D] =n—3.
From |A] = |B| = n— 3 it follows that a — {c,d} — b, which contradicts to [C| = \D| =
n.— 3. The proof of Theorem 4.3 is completed,
Let us note that there is an orgraph G of order 8 with 6(G) = 3 and there is an orgraph

G of order 12 with 8(G) = 4 which is not 2-linked.
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