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SPGCismﬁnmﬂahdvdththehelpofthisnuﬂon. A number of open problems is also
suggested.

1 Introduction

If G = (V, E) is & graph, a(G) and w(G) denote stability number and clique number of
G respectively. Ani-stehleset(i-clique)meansnstableset(clique) of size i. Partitioning of
verti.casofsgi:athintoistnbleaets(cliq\m)iscalledi-oolorinx(i-ming}of(}'. k(G)
isthecl.iqueooverinsmlmberofG,thatistheminimmofiforwhichmi-mveringmdm.

¢ this paper, subgraph means induced subgraph, and {v} is replaced by v.
V(G) and E( dmotetheaetao!mﬁoeamdedgﬁofamph@respecﬁveiy, ie. G =
(V(G), E(G)). G denotes the complementary graph. For V' C V(G) the graph induced by
V‘i.sdenotedbyGW’).de’\V'wi]lmemG(V(G’)\W).

Cars1 (an odd cycle without diagonals), where 2k +1 2 5, is called a hole and its
oomplementisgﬂledananﬁhdc.AgmphissaldtobeaBagegmphifitdoeanotoontain
holes and antiholes.

Let {V4, Va} be & partitioning of vertices of a graph G = (V(G), E(G)), i.e. V(G) = ViUV,
and VN Vo = 0. Asubaatofedgmb'of@joinhgtheverﬁwofﬂmdlfgiscalledm
edge-wtaeiorsimphramuetandisdenntedbyﬂ”s(lﬁ,%).

We say that a cutset (V4, V3) aeparatesthnwrtioeauandu,iiue% and v € V; (or vice

versa). A cutset (V3, V3) is called a , if a(G(W)) + a(G(V3)) > a(G(V)), otherwise
it is called nonaugmental (in the sequel we will replace a(G(V1)) by a(W41)).

Tn 1961 Claude Berge [2] introduced a concept of perfect graphs which play the central
role in this paper: & graph G is called perfect if a(G’) = k(G") for every subgraph G' CG,
otherwise it is called imperfect. A graph is called minimal imperfect if it is not perfect, but
sl]ipt;;;:mpar gubgraphs are perfect. Berge also suggested two conjectures concerning perfect
graphs: :
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If a graph G is perfect, then its complement G is also perfect.

(Strong Perfect Graph Conjecture) A graph G is perfect iff G does not contain holes
and antiholes.

The first conjecture is proved by Lovész [8], while the second is still open. The Strong
Perfect Graph Conjecture (SPGC) is equivalent to the following: if G is a minimal imperfect
graph, then it is either a hole or an antihole. If SPGC is not true, then there must exist a
minimal imperfect graph distinct from Cay; and Caesy. Such a graph is called a monster
(P.Duchet).

In [9, 18] the following properties of a minimal imperfect graph G are proved:

Pl |V(G)| = aw + 1, where a = a(G),w = w(C).

P2. Every vertex of G is contained in exactly w w-cliques and a a-stable sets.

P3. For every w-clique Q there exists a unique a-stable set S such that QNS = @ and
vice versa.

P4. No matter which vertex is removed, the remaining subgraph can be uniquely parti-
tioned into a w-cliques and w a-stable sets.

P5. The incidence matrix of the o-stable sets (w-cliques) and the vertices of G is non-
singular.

A graph satisfying properties P1 — P5 is called a (a,w)-graph. (a,w)-graph by itself is
a very interesting object for investigation (see for example [4, 6]).

In order to find criteria for existence of an a-covering in a graph, in [12] a concept of
critical component was introduced. Below the existing results concerning critical edges and
critical components are summerized.

An edge e of a graph G is called critical, if a(G \ ) > a(G). A chain of a graph G
is called critical if it consists of either critical edges or a single vertex. Further we do not
distinguish a critical chain from the subgraph induced by the vertices of that chain.

Definition 1 A mazimal subgraph of a graph G, the vertices of which are connected by
eritical chains, is called a eritical component of G.

1t is clear, that if ¢ = (u,v) is a critical edge of a graph G, then for each a-covering
of G (if any exists), vertices u and v are covered by the same clique of that a-covering.
Hence, if a graph has an a-covering, then its critical components are complete. Converse
is not true. Indeed, we can construct a counterexample by connecting all the vertices of
arbitrary imperfect graph G with K(G) > a(G) + 1 to the vertices of an empty graph with
a(G) + 1 vertices. It is obvious that obtained graph is imperfect and has no critical edges,
therefore, its critical components are complete. Based on this kind of observations, in 1975,
S.Markossian [12] suggested the following conjecture.

Conjecture 1 Graph is perfect iff the critical components of all its subgraphs are complete.

Now let us suppose, that Conjecture 1 is true. How one can use it to prove the SPGC?
For this reason we need to prove this.

Conjecture 2 Critical components of a Berge graph are complete.

Thus, Conjectures 1 and 2 together are equivalent to the SPGC. It is proved in [13], that
Conjecture 1 alone is equivalent to the SPGC. Later, Andrés Sebo ellegantely strengthened
this result in [20], by the following
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em 1 Thsm'ﬁmlmm;omﬁ of a monster are complete.
holes and antiholes, and only they, are minimal imperfect

Theor
1 that
1t follows from Theorem *ical componet. It is also clear, that holes and anti-

aining an incom lete cri 0 . i
ey wl:nous u:z:mal grl:;phs containing an incom critical component, since their
o erfect Nowmcanaska.question:aretheholesandantihoiestheonly
5 i dm s s
minim hs containing an incomplete critical oﬂm]_)unent"? 1f Conj '
it pmvzldg?:mtm answer to the question above. Section 2 18 devoted to Conjecture 2 and
other pro concerning critical components of & graph. :
-tical edges and critical components for exploring new approaches to the
i decided to go further and generalize

to be i
SECO powd 0 ical edges and components in different directions. In Sections 3 and 4

9  Critical edges and critical components

mmﬂwimmwbjmofommmmthedmofmmmdpaphaanaiﬂngm
incomplete critical component. For convenience, Jet’s call this class of graphs MICC (for
Minimal, Incomplete Critical Component containing graphs). If Conjecture 2 is true, then
MICC coincides with the class of holes and antiholes. (Indeed, by definitions, the only non-
Bergegmphsinmccmholesandantiholm; from the other hand Conjecture 2 claims
thm;tkmxveismlhrgesraphinMICG-}Th“"-ifc°"3°"t““’2i’P‘°"°d"""'“'ﬂ”““'°a
new definition for a Berge graph: if the critical components of all subgraphs of a graph are
complete then it is a Berge graph.

Let us now suppose, that Conjecture 2 is not true. Then there exists a Berge graph in

MICC. 'I'hroughomthissect-ionthisgmphwﬂlbedmotedbyf\’. It is obvious that existence

ofNiaequivqlenttoConiwture2. It worths also to mention that unlike Conjecture 1, .

Conjecture 2 is not equivalent to the SPGC, i.e. if there is no N graph then SPGC and

Conjecture 1 may not necessarily be true.
Meking an attempt to prove Conjecture 2, the authors explored some properties of the
graph N which seem to be very interesting because of theit gimilarity to the ones of (a,w)-

 graphs ({11, 12, 13)).
Let Pos1 = {v1,72,- -+ »Um; Umi1} DE B critical chain and S; be the (a—1)-stable set such
that S; U and S; U vy are a(N)-stable sets.

Statement 1 A non-tirvial incomplete critical component of the graph N is either a critical
chain of length at least w(N) or a critical cycle.

Proof. LetHbeaninmmple‘bem'itic&lwmpunmtofNa.ndPM1= U, U2, - - - y Umy Um:
be & minimal incomplete critical chain in H. Then B85, il

N'= N({g Si}U {Prs})

has an incomplete critical component, hence, by minimality of N, N' = N. Thus,
V(N) = V(N') m(a(N) 1)4+m+1=ma(N)+1
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Let @ be a clique in N. Since (v;,Um+1) € E(N), without loss of generality we may
assume, that v,..; & Q, which leads to

Q= '[Ql{fs.- Shna}|<m.

From the minimality of Pn,+; we have that {v;,..., %y} and {23, ...,V } are cliques in ¥
and we conclude that m = w(N). Thus, every critical chain of length less than w(N) induces
& complete subgraph in N.

Let e = (u,v) be a critical edge in H which is not in P,.;, but has a common vertex
with it. Clearly, Pn.; cannot contain both vertices u and v simultaneously, otherwise the
v; and vyeyy+) would be connected by a critical chain of length less than w(N) and would
be adjacent. Suppose v = v;, where 1 < i <w(N)+ 1. If i # 1,w(N) + 1, then the vertices
¥2,. .+, V() &re connected with the vertex u by critical chains of length less than w(N),
hence, at least one of the sets {u,vy,..., v} and {u,vs,...,vv)+1} induce a clique of
size w(N) + 1 (here we assumes that w(N) > 2, otherwise N contains a hole: see Corollary
9, Section 4). Obtained contradiction proves that either v = v; or v = t4n41, which ends the
proof of the statement.

Corollary 1 |V(N)| € w(N)a(N) +1.

Corollary 2 Critical components of the graph N containing no more than w(N) vertices
are complete.

Our analysis involves a class of graphs CZ,,; known as webbs. G = C%_,,is a graph
with |V(G)| = aw + 1 vertices indexed v;,vs,. . ., Va4 in such a way that v; is adjacent to
v; iff (i — j| < w)(mod w). It is easy to see that a(G) = a and w(G) = w. One can observe
many properties of webbs that are similar to the ones of holes and antiholes. For example,
Pni1 = {t1,...,Yms1}, where m = aw, is a hamiltonian critical cycle of C¥,,;. Another
one is the following: if S; is the (o — 1)-stable set such that S; Uw; and S; Uv,; are a-stable
sets, then

P6. for each 1,1 < i < m, the following equality holds:
PriaNS; = {v;/j <i,(j —i=0)(mod w)} U{v;/5 >i+1,(j —i=1)(mod w)}

Statement 2 If Py, is an incomplete critical component of the graph N, then property P6
is satisfied for Ppii.

Proof. Let k <i < k+w, w = w(N) and Q; denote the w-clique {,...,Vu} (1 <1<
m —w + 2). We know that

Ew
V(N)= { U Sj} U Qks1 U Virwsa.
=kt

Therefnm, IS‘ anI =1ifi+l <L Ob\fio'l.lsly, S( n Q,‘...z = Vigwls gince Q{.ﬂ =
{U,H.] Sy ﬂi+u} is a clique. Continuing in the same manner we can show that anQ.‘.'.(;_l)u.,.g =
Vitlwt1. Thus,

Vig2y+»+ 9 Um1 Si= U,‘fj)i-l—l,(j i=1}(m°dw) .
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Usingsimjluspecuhtiomandgoinsinthﬂ”
.....vi.-n}n31={9:/i

oppasit“directionfmmw,wecmnhowr.hat

(w <i,(i—j =0)mod W)}

Statement i8 proved.
Corollary 8 If (i —#= 1)(mod w)

Corollary 4 If i—J = 0)(med w) and v
are the endpoints of Pm+1-

and j >i+1, then v and v; are nonadjacent.
and v; are adjacent, then the vertices v; and vj

e = d
‘aninwmpletemhcdmmponmfofthegmphl}(,m {m:a.n
ff:t(;m:::j- éfE};’R:)I, ;mk —a(N) andeisa critical edge, i.e. PniaUe s a Hamiltonian

' j k. From the other hand, by

- Since 1 and Um41 8T€ adjacent, then a(Pns1) £ Vb
gt:ot:im 2 |(Pms n51)+u vy| = k, hence, a(Pms1) = k. All the edges (vi,vi41) remain
critical in Prm+1, therefore, from minimality of N follows that Pni1 = N. Based on Statement
2, it is also essy’t.o verify, that {v1, Vut1s - -+ Vows1} 158 (a(N)+1)-stable set in graph Pni1\e.

End of proof.

It follows from Statement 3,
Thus, we proved
Theorem 2 A non-trivial incomplete critical m;p?nentofthegimth is either a critical
chain of length at least w(N)) or a Hamiltonian eritical cycle.

IhoasaHa.miltonianm’it.icalcycle, it is called N-webb, because it contains a webb
G280 71 95 & spanning subgraph. Chvatel [3] hes proved that a monster M cannot
i a webb with the stability number a(M). Since we

contain & spanning subgraph that is
‘be]iavet.hm:noNgrsphmdsts,weahouldalmthinkthatthemtmmtsimﬂarto the
Chvﬁtal’stheoremistmefortheNg;raph. Unfortunately, we could not prove this fact so

we must put it as a conjecture, which is weaker than Conjecture 2.

thatintheg;mtheve:yuiticalcycleisHsLmiltoﬂan.

' Conjecture 3 There is no N-webb.

Statement 4 If Pns1 i8 an incomplete critical chain of N intersecting with a w(N)-clique
Q but not contaning it, then the intersectioin of Pm41 and Q consists of either one or two
end-subchains of P41 (end-subchain means a subchain containing an endpoint of the chain).

Proof. It is enough to prove the statement only for m = w(N). Let QN Ppyy =
{Viy---, %} = @ and Umi1 € Q' (the latter is a valid assumption since, by the condi-
tions of the Statement and by Statement 3, § cannot contain both of vy and vm41). Then
QnS, =0,=1,...,1. K € @ and i > 1 then v € @', otherwise @ N Si—; = O,
anthasnovu-t.icesfwmatleastI+IS,~B,whichwntradictstothefact,thatQisa
w(N)-clique.

Statement 5 If an incomplete critical component H of N contains a w(N)-clique Q, then
Q is a critical subchain of H.

2 i e
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Proof. Let Fuuy41 be a critical chain from H such that v; & Q and v, € Q. Existence of
such & Flwyys is garanteed by Statement 4. Now, from the same staterent it follows that
Q={va...,.Vm=1}.

Definition 2 Graph is called cuttable, if it contains o nonaugmental cutset, otherwise it's
called uncuttable.

Statemnent 6 N is an uncutiable graph,

Proof. Statement is trivial for N-wnbhs.

Clearly, if the cutset hes a critical edge, then it is augmental. Hence, if the cutset (1], 13)
of N is nonaugmental, then an incomplete critical chain Pri1 of N is completely contained
in one of the sets V; or V). Let’s say, Pn.y C Vi. For any pair S, S’ of a(N)-stable set of
N [VinsS| =|Vi N8| = a(N(1})). Hence, the graph N(V;) contains an incomplete critical
component. which contradicts to the definition of N.

Corollary 5 For any clique Q of N there ezists an o N )-stable set not intersecting with Q.

One can see that (@, w)-graphs satisfy to all the properties proved for the N graph above.
It will be interesting to check validity of the other properties of (o, w)-graphs for N:

- For any critical edge there are exactly w — 1 w-cliques containing it.
~ For any v € V(N), N \ v has a w-coloration.
- For any v € V(N), N \ v hes a a-covering.

In the next section we will see (Statement 11), that only the last property is enough to
show that N is & (o, w)-graph.,

At the end of this section we formulate two conjectures concerning critical edges and
monster. These conjectures are weaker than SPGC and Conjecture 1, but seem to be very
difficult to prove as well.

Conjecture 4 Monster has a critical edge.
Conjecture 5 Monster with a removed critical edge is perfect.

Within the context of last two conjectures, it also would be interesting to investigate the
monsters with minimal number of edges since for such a monster M, one of the following
properties holds:

1. M has a critical edge, removing of which makes the graph perfect.

2. For any edge e € E(M), the graph M \ e contains a hole or antihole.

It must be mentioned that there are Berge graphs and perfect graphs satisfying 2. For
example the graph in Fig.1 is a perfect Berge graph satisfying 2.
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Essential edges and-essential components.

3

ition 3 Edgee = (v,1) of a graph G s called essential, if each cutset of G se‘pamﬁﬂy
?ﬁfu l’11..::1::“6 udg augm(mtd. If u and v are not adjacent and each cutset separating them
is augmental, then the co-edge {u,v} is called essential, ,

Critical edge is essential, but the converse is not true. For example, if a 5-hole (Cs)
contains one diagonal, then the diagonal is an essential edge but not critical. Moreover,
graph in Fig.2 contains no critical edges, but it does have an essential edge — (5,6).

Definition 4 A chain of a graph G is called essential if it consists of either essential edges
or a single vertez. Amaa:'malaubymphofagmph G, the vertices of which are connected by
essential chains, is called an mmﬁdmmpmeniaf&

Unlike critical component which may contain non-critical edges, all the edges of essential
components are essential. A critical component is contained in one essential component,
which may consist of many critical components.

Ifs.graphhnsswcoverins, thenforanya—cowrinsthevertieasofanessenmledge
are covered by the same clique. Therefore, for any a-covering i
covered by the same clique. Henoe.ifagra.phh.asaa—wvering, then
are complete. The converse is not true: the graph in Fig.3 has 4
5);(3,6) and the vertex 7, but

component.are also
its essential components
complete essential components, that are the edges (1,4); (2,
it is imperfect.

There are even graphs, which contain no essential edge and no a-covering. As an example
one can consider the Rosenfeld graph, which consists of two 5-holes and a 5-stable sef, all
the vertices of which are adjacent with the vertices of the 5-holes.

Nevertheless, the following Statement, which sounds very similar to the Conjecture 1,is

true.

Statement 7 Graph is perfect iff the essential components of all its subgraphs are complete.

Proof. The "only if’ part is trivial. We will prove the "if* part by induction. Let us assume
thntthestatemmtistruefnrtheg:mphawhichhavelessthmnvertiees,mdlethea
n-vertex graph. If G is complete, then the statement is true. If G is not complete, then it
hasmmthmmmenﬁalwmponm,whichmemsthatthmisnnomgmmtalcutset
(Vi, Va). It is easy to see, that an essential components of G(V;) is an essential component for
G as well. Hence, by the induction assumption, each of G(V4) and G(V5) has an a-covering.
Theunionofthesetwominsafurmama-mvminsforc.

Corollary 6 If for each subgraph of a Berge graph the critical and essential components
mincide,thenitiaaperfedgmph.

Proof. If Fhe statement is not true then, there exists a monster M with coinciding critical
and essential components. From Statement 7 we have that M contains incomplete essential
component which contradicts to Theorem 1. /
Perfectness of the graphs, each hole of which contains at least two diagonals, was inde-
pendently proved by Markossian and Karapetian [14) and Meyniel [17] (a greph satisfying

this property is called a Meyniel graph). It is proved in [15], that a Meyniel graph, with

PR T R EPPLPEET .-
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an edge removed, is perfect as well. This result has been strengthened by A.Hertz in | [16]
who showed that & Meyniel graph without the edges of any its subgraph is perfect. Hence,
critical and essential edges of a Meyniel graph coincide.

From Statement 7 and the fact that SPGC and Conjecture 1 are equivalent, we have
also, that SPGC is equivalent to the following

Conjecture 8 If the critical components of every subgraph of G are complete, then the
essential components of every subgraph of G are also complete.

If & graph has an o-covering, then it has no essential co-edges. The converse is not true.
See a counter-example in Fig.2. If a graph has an incomplete essential component, then it
las an essential co-edge. Tt would be interesting to check, whether this condition is also
necessary for existence of an essential co-edge:

Conjecture 7 Essential components of a graph are complete iff it has no essential co-edge.
Below we present two simple statements in this regard.
Statement 8 If G has no essential co-edges, then for any subset of vertices V', such that

o
Ipha(V')=a(V'), subgraph G(V') also has no essential co-edges.

Proof. It is easy to check, that if deleting of a set of vertices doesn’t change stability number
of & graph, then obtained graph can not contain new essential edges or co-edges.

Corollary 7 If the essential components of G are complete, then they are also complete for
any subgraph G' of G with the same stability number a(G') = o(G).

Let us now consider the relation between essential edges and ”cuttability” of a graph. It
is clear, that all the edges and co-edges of an uncuttable graph are essential. We will call
a graph a-critical (see Section 4 and [12)), if it contains only critical edges. An o-critical
graph is uncuttable, A minimal imperfect graph G is also uncuttable. Indeed, if it contained
a nonaugmental cutset (V3,13), then the combination of a-coverings of G(V;) and G(V4)
would be an a-coverings for G which contradicts to definition of G. Moreover:

Statement 9 A (a,w)-graph is uncutiable.

Proof. Let’s suppose that there is a cuttable (o, w)-graph G and let A be the incidence
matrix of a-stable sets and vertices of G. It is well-known, that A is a non-singular matrix
of size n = aw + 1.

As G is cuttable, it must contain a nonaugmental cutset (V, V3). Consider the following
equation:

Az = ke 1)

where k = a(V;) and e = (1,...,1) is a n-vector.

Obviously, y = (11,2 - .¥a), % = k/a is a solution of 1. But it is also easy to see that
the characteristic vector of V] is also a solution of 1, which contradicts to the fact that A is

non-singular.
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Let's give & combinatorial proof of Statement 9. '

I (W, Va) is nonaugmental, then Vi has only k1 < k<a vertices from each ov!;tabgz
set. The number of a-stable sets i8 equal to n- Taking into amoqnt that every vertex
oontainedinmctlyaa-stahleseta,wehnwthntmdinalityof%mequ&lto

nk k

which is not an integer. A contraduction. \ y =9
Ifngmphh.asauniquea—wmins,itdoesn'tmmyetthaieachchqueofﬂ:nswvmmgi5
a.nessentialwmpunentufthsg;raph. However,thisist.mefors.{a.u}-graphmt.h a rem

vertex.

Statement 10 IfG is an (e, w)-graph, then for each vertezv € V(G), essential components
of the subgraph G\ v are the cliques of the unique q-covering of G\ v.

Proof. Let’s éonsider an equation:
Bz = ke (2)

where k a positive integers, 1 <k<ae= {1525 1 and B is the incidence matrix of the
u—stnblssetamdvertiomofG\u. Thsdimensionofﬂis{n—a,n—l), where n = ow+118
the number of vertices of G. As the rows of B are linearly independent, the set of solutions
of2isaplainofdjmen!i0nq—-1. Let {Qh...,Q,}bethsa-coveringofG\uandabct‘-hﬂ
characteristic vector of the clique Q;. Obviously, vectors 2y, - - ., Zo &re linearly independant
andenchkzgisasolutionofz

Now let z be the characteristic vector of some nonaugmental cutset (V4, V,) such that
a(Vi) = k. Sincekz1,....kz.,isanaﬁnianhaaisforthesolutionaoff&,zmbemprmented
as a linear combination of vectors z;: z=Mz+...FAaZa We know, that z is a 0-1-vector,
a.nddiﬁemntvecmrsz.-mdz,dunothavetwol—satthaaamemnrdinnte, which leads us to
the conclusion, that A; = 0,1, hence, V; either contains a Q; completely or is disjoint from
it. Statement is proved.

We don't know any combinatorial proof of Statement 10.

Statement 11 If a graph G is uncuttable and for all v € V(G), the subgraphs G \ v have
an a-covering, then G is a (@, w)-graph.

Proof. SinneGisuncuttabls.foranycliqueofGtheree:d.etama-atableset not intersecting
with this clique, otherwise, G would have a nonaugmentel cutset. This fact together with
the condition that for every v € G, G\ v has an a-covering, are enough [7], for G to be an
{a!w]_graph'

ThefollowingcoqiectmsoundssimﬂartoSta.tement 11 but seems to be more difficult:

Conjecture 8 If a graph G is uncuttable and essential components of the graphs G \ v are
complete for all v € V(G), then G is an (ox,w) graph.

- e i et el
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4 Critical sets and a-critical subgraphs

Another natural generalization of a critical edge is the following:

Definition 5 A subset of edges E' of a graph G is called critical, if it is @ minimal set
of edges deleting of which makes the stability number grow, ie. a(G \ E') > a(G) and
alG\E") = alG) for each E" C E'. An edge is called quasi-critical, if there is a critical set
containing it.

It is easy to see, that if E' is a critical set, then the subgraph G(E') is an induce subgraph;
ie. G' = G(E') is & minimal induced subgraph with the property a(G\ G’) > a(G) iff E' is
& critical set. Such minimal subgraphs is called critical subgraphs.

How do the essential and quasi-critical edges relate to each other? An essential edges
may not be quasi-critical. For instance, all the edges of the graph in Fig.4 are critical except
(2,4), which is essential but not quasi-critical.

From the other hand, there are quasi-critical edges that are not essential. Moreover, it is
possible that all the edges of a critical set are not essential. For example, even cycle without
diagonals has no essential edges, but as any non-empty graph, it has critical sets.

Every edge (u,v) of an (a,w)-graph is quasi-critical. Indeed, there is unique pair of
disjoint a-stable set S and w-clique @ such, that u € @ and v € S. Now one can check that
the set of edges going from u to S is critical.

Statement 12 If the essential components of a graph are complete, then after deleting of
any non-quasi-critical or non-essentiol edge they remain complete.

Due to simplesity we omit the proof.

Conjecture 9 If the essential components are complete, then essential edges are quasi-

T is called a transversal of a class of sets C = {4;}, if

1. TN A; # @, for any j.

2. For any a; € T there exists such an A;; that A, NT = a;.

Maximum number of pairwise disjoint sets from the class C is called independence num-
ber of €' and denoted by a(C). 7(C) denotes the transversal number of C, that is the size
of the minimum transversal of C.

It is clear, that a(C) < 7(C).

The set T C V(G) is called a — transversal for a graph G, if T is a transversal for the
class of all a-stable sets of G.

Theorem 3 For each quasi-critical edge of a graph G which is not an a-transversal, there
exists an odd cycle containing it.

Proof. Let E' be a critical set, e = (u,v) € E', and S be an a-stable set of G disjoint from
u,v, Further, let S’ be the (a+1)-stable set in G\ E’, and R be a subgraph of G\ E' induced
by the set S U S'. We want to show, that the vertices u and v are in the same connected
component of R. As S’ has more vertices than S, R must contain a connected component
H, which has more vertices from §’, than from S. Let V' = (S’ V(H)) (S V(H))and
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i i itical set. From
= 7y, It’s clear, that V'I=a+1,wh1chmennsthatE(R’)mam i
t}:eotgérvh}aml'lt.zinuealledgelsofﬂ'be}.ongtoG(.S‘)de'nE(G{S')), then E(R) = £>

ich implies u,v € V(H)- . _
wm;how!mffP;:chaﬁ(liiHoonnedingumdu.ThsnPU{u,u}manoddcydemG-

Theorem 3 generalizes some of the results from [1, 3, 12].

+ E' be a critical set, and S' be an a-stable set disjoint from V(E')-

rollary B [12] Le
= ol edge in E', which is contained in a hole or a triangle.

Then there ezists an
Corollary 9 [3, 18] If two critical edges are incident, then there ezists a hole or @ triangle

Corollary 10 [1] Critical edges of a bipartite graph have no common vertices.
Statement 13 In a bipartite graph an edge is quasi-critical iff it is an a-transversal.

Proof. Necessity immediately follows from Theorem 3. ’

Sufficiency. Late=(u,u]beana—uanmsalandSbea.na-etablesetoontaimng
v. Let vy, 2, . Uss v be all the vertices of S adjacent to ». Then the set of edges U =
{( 1), (1, %9), - - -, (uy ), (1, v)} contains & critical set U’ (possibly U’ = U). As e is a2
c-transversal, it follows that (u, v) el

Evenifaﬂqusai—miﬁmledgesma—trmsmds. it is not sufficient for a graph to be
bipartite. For example, all the essential edges of the graph in Fig.5, are quasi-critical, while
the graph is not bipartite. But the following is true:

Statement 14 A graph is bipartite iff for its any subgroph a quasi-critical edge is an a-
transversal.

Proof. The "only if’ is the content of Statement 13. The "if* part follows from the fact
thatinholmandtrinnglasewryedgeisquasi itical but not an a-transversal.

Let{E;}beadamofallcritimli!EtBuft.heEmth. A transversal T of this class is
called an a-critical set . Thaspanningsubg;rath={V,T)ofGiscalledaa-critimf
subgraph , Obviously, a(H) = a(G) and for any e € H,a(H \ e) > a(H). If a graph has
ma-ouvering,thenthesubsetofa!ltheedgesofitscliqmisatransve:sa.lfortheclm
of critical sets of the graph. If a transversal T' of that class is not an a-covering, then by
Corollary 9 the graph contains a hole.

Definition 6 The subset of edges E' of a graph G is called independent, if for any edge
eEE’tIsmuiatlacﬁﬁcalsetE.mchME,ﬂE‘=e.

Clearly, if T' is a transversal, then it is independent. Not all independent sets could be
extended to & transversal. For example, for a four-cycle without diagonals, two incident
edges are independent, but there is not & transversal containing them.
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Definition 7 A subset of edges E' of a graph G is called strongly independent, if for each
edge e € E' there ezists a critical set E, such that for each critical set E;
LENE. ={e} 2 E; ¢ {Uep E}\F.

It is easy to see, that a set can be extended to a transversal iff it is strongly independent.

Conjecture 10 If the essential components of a graph are complete, then the set of edges
of any essential component is independent (strongly independent).

One of the main goals of our investigation is to find criteria for a graph to have an
a-covering. But "unfortunately”, completeness of essential components, non-existence of
essential co-edges, strongly independence of the essential edges all together are not enough
for existence of an a-covering (e.g. see the graph in Fig.3).

If {F;} is the class of all a-critical sets of the graph G, then each element of {F}isa
transversal for the class of critical sets {E;} of G. It is easy to see, that each element of {E:}
also is a transversal for {F;}. This classes are uniquely determine each other, as one is the
set of all transversals of the other. We have

o({E}) <T({E}) (3)

a({F}) < T({F}) 4

If G has a critical edge e, then e belongs to each o-critical set F}, therefore a({F;}) =
7({F;}) = 1. If G is an o-critical graph, then in 3 and 4 we have equalities. But there
exist graphs, for which we have strict inequalities in both 3 and 4, e.g. for K; \ e (K, is the
complete graph having n vertices) we have:

a({B}) =5,1({B}) =6

o({F}) =1,7({F}) =2
It can be shown, that the strict inequality holds for each K, \ e, n > 6.

Statement 15 If G is bipartite, then a({E;}) = 7({E;}).

Proof. It follows from Kénig's Theorem, that for a bipartite graph each a-critical set is a
maximum matching having n — a(G) edges (where n = |V(G)|), i.e. 7({E:}) = n—a(G).
Conversely, there exist n—a(G) disjoint critical sets in G. Indeed, let S be an a-stable set of
G. Then the set of all edges joining a vertex v & S with the vertices of S contains a critical
set. These critical sets are disjoint and their number is n — a(G).

The similar statement for (4) is not true, but it is not difficult to show, that for r-regular
bipartite graphs it is true. It would be interesting to find other classes of graphs, for which
the inequalities (3) and (4) hold as inequality.
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