академия наук армянской сср АСТРОФИЗИКА

TOM 15

НОЯБРЬ, 1979

ВЫПУСК 4

V.1K 523 855

КРАТКИЕ СООБЩЕНИЯ

НАБЛЮДЕНИЯ ГАЛАКТИК МАРКАРЯНА НА РАДИОТЕЛЕСКОПЕ РАТАН-600. II

В мае 1978 г. на северном секторе радиотелескопа РАТАН-600 на частотах 2.3, 3.66, 7.7 и 14.4 ГГц были продолжены наблюдения галактик с ультрафисантовым избытком в излучении Из списков 4—11 [1, 2] были выбраны 20 галактик, которые проявляют определенные оптические особенности (являются сейфертовскими галактиками, мибо объектами типа QSO) или являются уже завестными радиоисточниками.

Методы наблюдений описаны в [3]. В качестве опорных источников в настоящей серии наблюдений использовались 3С 286, 3С 161, PKS 1830-21 в NGC 7027. По данным радиоизлучения этих источников были построены калибровочные кривые для перехода от измеренной антенной температуры к плотности потока.

При наблюдении использовались уточненные координаты газактик Маркаряна [4—6].

Результаты наб подений. Наиболее полные данные получены на частоте 3.66 ГГц, так как радиометр на атой частоте более чувствителен (флуктуационная чувствительность при времени интегрирования 1 с, в т ≈ 0.017К). Результаты наблюдений 20 галактик представлены на втой частоте в табл. 1. Галактика Маркарян 668, с которой отождествлен на вестный радиоисточник ОQ 208 [7], зарегистрирована на всех четырех частотах Даниые об атом источнике отдельно обсуждались в нашем сообщении [8]. Переменный радиоисточник Маркарян 348 [3, 9—11] достаточно херошо регистрировался на частотох 3.66 и 7.7 ГГц. Результаты наблюдений атого источника, совместно с результатеми другого переменного источника Маркаряи 538 [3, 10, 11], обсуждаются инже.

Галактики Маркарян 506, 510, 705, 734, 771, 849 и 854 наблюдались методом «скольжения». Значения верхних пределов потоков для них получились 20—25 мЯн. Остальные галактики наблюдались в моменты их прохождения через диаграмму антенны. Усредненные величины верхних пределов потоков в этом случае составляли 30—40 мЯн.

При оценке среднеквадратичной ошибки определения плотности потока в единичном наблюдении учитывалась ошибка, обусловленная шумами системы, а также нестабильностью калибровочного сигнала от шумового генератора

В столбцах табл. 1 даны: N — порядковый номер галактики в списках Маркаряна: S — усредненная величина плотности потока на частоте 3.66 ГГц в мЯн: D — расстояние до галактики в Мпс. При вычислении постоянияя Хаббла принималась 75 км/с Мпс: L_s — радиосветимость в Вт. Гц ср.

Как видно из таблицы, на частоте 3.66 ГГц, кроме галактик Маркарян 348 и 668, радноизлучение обнаружено также от следующих галактик

Маркарям 796. Радиоисточник по прямому восхождению (2) смещен относительно галактики на -2^*5 . Здесь, вероятно, регистрировался рядиоисточник ОР 173, который согласии [12] отождествлен с атой галактикой. Отметим, что Маркарян 796 является южным компонентом двойной системы. Радиоисточник по 2 ближе к северному компоненту атой системы.

Маркарян 992. Радиоисточник по а смещен относительно галактики на 0°4. Вероятно, регистрировался отождествленный с этой галактикой радиоисточник В2 0121+31 [12]. Этот радиоисточник близок также к галактике Маркарян 991 (смещен по ч на 1°8). Однако, согласно нашил данным, ответственной за радиоизлучение скорее всего является галактика Маркарян 992.

Маркарян 1032. Радноисточник по α смещен относительно галактики на $3^{\circ}0$. Здесь, вероятно, регистрировался радиоисточник B2 0217+32 [12]. По данным работы [13] этот радионсточник в интервале длин волн 6—75 см имеет очень пологую спектральным индексом — 0.39 ± 0.03 . Нетрудно рассчитать, что ожидаемый поток этого источника на частоте 3.66 ГГ $_{\rm U}$ (8.2 см) должен составлять примерно 600 мЯн, что хорошо согласуется с нашим результатом.

Переменные радиоисточники Маркарян 348 и 538. Согласно [9—11] эти объекты являются переменными радиоисточниками. Поэтому, для изучения переменности этих объектов, мы намеряли их радиопотоки двумя сериями наблюдений, в июие 1977 г. [3] и в мае 1978 г. Результаты этих наблюдений для частот 3.66 и 7.7 ГГц приведены в табл. 2. Разные

Tabsuua 1

	Tabauga 1				
Λ'	S _{3.66} (nRn)	D (Mnc)	L_{μ} 10^{-10} (B $ au$ / Γ g cp)	Тип голантия	Примечание
348	200 40	56	5.7	перемен. сейферт.	
506**	< 20	164	< 4.9	сейферт.	
510***	< 20		_		
538	70 ± 35	40	1.0	перемен.	-
611	< 40	100	< 3.6	сейферт.	
618	< 40	140	< 7.1	сейферт.	
668	2480 - 160	308	2100	сейферт.	Радионсточник OQ 208
705	25	112	< 2.8	сейферт,	
734	<25	197	< 8.8	сейферт.	
771	< 20	252	<11.5	сейферт.	7
796	150 = 30	85.6	9.9	_	Радиоисточния (вероятно, ОР 173) смещен относительно га- лаятиям на — 2°5.
813	< 35	524	<86.4	QSO	AUXINAM Na -2 J.
822	<35		_		
849	< 20	316	<18.0	сейферт.	
854	<25	_	_	сейферт.	
871	< 35	140	< 6.2	сейферт.	
877	·< 30	456	< 56.1	QsO	
991	< 40	144	< 7.5	сейферт.	Радмоисточник (вероятно, В2 0121 + 31) смещен относительно галявтики на —1°8.
992	160 - 30	2600	9726	QSO	Радиомсточник (пероятно. В2 0121+31) смещен относительно талактики на 0°4.
1032	600 <u>±</u> 6∪	-		ссйферт.	Радмонсточник (вероятно, В2 0217+32) смещен относительно галоктики на 3°0.

В нашем сообщении [3] в этон графе вместо числа 21 напечатано 24.

Мархарян 506 ранее наблюдали Р. А. Шрамек и Г. М. Товмасян [9], которые также оценили лишь верхний предел плотности потока

Маркарян 510 впервые наблюдал Дж. Сулентик [10]. Однако, нак било отмечено в работе [11], из-за ошибок координат Маркарян 510, Сулентиком в действительности наблюданся другой источник. Наше наблюдение Маркарян 510 подтверждает дамечание работы [11].

значения верхних пределов потоков и ошибок измерення обусловлены неодинаковым числом наблюдений источника и частично изменением чувствительности системы в разные периоды наблюдений.

Из приведенных в табл. 2 данных следует, что поток радионзлучения Маркарян 348 в течение одного года одновременно изменился на двух частотах: уменьшился на 29% и более чем на 48% на частотах 3.66 и 7.7 ГГц соответственно. Отметим, что по результатам работы [14] ата галактика на частоте 23 ГГц показывает переменность радиоизлучения в течение исскольких дней.

Таблица 2

Радиопотоки (мЯн) Мариаг	Маркарян 348	
Дата измерения	S _{3.60}	S _{7.7}	5200
нюнь 1977 г.	280 _{1,} 40	390 4 80	80 ± 10
чай 1978 г.	200 40	200 + 100	70 ± 35

Недостаточная точность наших измерений за 1978 г. не позволяет судить о поведении источника 538 за период с 1977 г. по 1978 г.

В заключение авторы выражают благодарность наблюдателям и операторам РАТАН-600 за оказанную помощь в наблюдениях, а также Дж. А Степаняну и В. А. Липовецкому за предоставление результатов сптических спектральных наблюдений до их публикации.

Observations of Markarian Galaxies on the Radio Telescope RATAN-600. The results of a new series of observations of galaxies with ultraviolet continuum carried out on the radio telescope RATAN-600 are presented.

12 mars 1979

Бюряканская астрофизическая обсерватория В. А. САНАМЯН Р. А. КАНДАЛЯН

AHTEPATYPA

- Б. Е. Маркарин, В. А. Липовецкий, Астрофизика, 7, 511, 1971, 8, 155, 1972; 9, 487, 1973; 10, 307; 1974; 12, 389, 657, 1976.
- Б. Е. Маркерян, В. А. Липовецкий, Аж. А. Степанян. Астрофизика, 13, 225, 397, 1977.
- 3. В А. Санамин, Р. А. Кандалян, Астрофизика, 14, 623, 1978.
- 4. S. D. Peterson, A. J., 78, 811, 1973.
- 5. G. Kojotan, R. Elliott, H. M. Tormassian, A. J., 83, 1545, 1978.

- 6. Г. М. Товмасян, Э. Ц. Шазбявян, Р. А. Кандалян, Сообщ. Бюрэкзиской обс. (в печати).
- 7. J. D. Kraus, B. H. Andrew, Ap. J., 159, L41, 1970.
- 8. В. А. Санамян, Р. А. Кандалян, Астрофизика, 14, 687, 1978.
- 9. R. A. Sramek, H. M. Toumassian, Ap. J., 207, 715, 1976.
- 10. J. W. Sulentic, A. J., 81, 582, 1976.
- Г. М. Товмасян, Вопросы физики и зволюции Космоса, ред. Л. В. Мирзови, Изд-во АН Арм, ССР, Ереван, 1978.
- R. A. Kandaltan, J. A. Stepantan, The Thesis of Report at 11 European Conterence of Young Radio Astronomers, Manchester, 1978.
- I. I. K. Pauliny-Toth, K. J. Kellerman, M. M. Davis, E. B. Famalont, D. B. Shaffer, A. J., 77, 265, 1972.
- 14. V. H. McCutchen, P. C. Gregory, A. J., 83, 556, 1978.

УЛК 523.035.25

НАБЛЮДЕНИЯ ОБЪЕКТОВ ХЕРБИГА—АРО НА ЧАСТОТЕ 3.66 ГГЦ

Объекты Хербига-Аро (НН) [1] в радиодиапазоне мало изучения. Имеются лишь некоторые сведения об их излучении в линиях межзвездных молекул [2—4], а в непрерывном спектре они почти не исследовались. Между тем, атл объекты имеют ряд пекулярных особенностей в оптическом диапазоне и, вероятно, связаны с областями, где протекают процессы звездообразования [5—7].

В связи с атим в мае 1978 г. на северном секторе раднотелескопа РАТАН-600 ил частоте 3.66 ГГц нами наблюдались некоторые объекты НН (НН1 и цепочка НН (7, 8, 9, 10, 11), с целью обнаружения их радиомазучения в непрерывном спектре.

В качестве опорных источников наблюдались PKS 1830—21, 3С 286, 3С 161 и NGC 7027. По данным радиоизлучения атих источников были построены калибровочные кривые, с помощью которых осуществлялся переход от антенной температуры к плотности потока.

Цепочка объектов НН (7, 8, 9, 10, 11) полностью попадает в диаграмму направленности антенны на частоте 3.66 ГГц, однако от нее на уровиз шумов радиометра не выделялся сигнал $\gg 80$ мЯн.

Объект НН1 наблюдался методом скольжения [8]. В этом случае величина выходного сигнала не посвышала 20 мЯн.

С другой стороны, нетрудно оценить ожидаемый поток радиоизлучения от НН1 в предположении, что в нем распределение электронов обладает сферической симметрией и радиоизлучение имеет тепловой характер.

Пусть электронная концентрация $n_e = n_0 = \text{const}$ внутри сферы радиуса R и $n_e = 0$ вне этой сферы. Найдем ту граничную частоту Y_0 , габ