академия наук армянской сср АСТРОФИЗИКА

TOM 15

НОЯБРЬ, 1979

выпуск 4

Y.JK 523.855

СПЕКТРОФОТОМЕТРИЯ СЕИФЕРТОВСКОЙ ГАЛАКТИКИ МАРКАРЯН 744

В. Л. АФАНАСЬЕВ, В. А. ЛИПОВЕЦКИЯ, А. И. ШАПОВАЛОВА Поступила 2 марта 1979 Пересмотрена 7 мая 1979

Представлены результаты спектрофотометрии яркой (- 13"5) сейфертовской галактики Мархарян 744. Спектры получены в первичном фокусе шестимстрового телескопа САО АН СССР со спектоографом UAGS и ЭОП УМ-92 в диапазоне 3700-7400 АА. В спектрах отождествлено более 140 линий различных влементов. Среди слабых линий наиболее богато представлены разрешенные линии железа Fell и запрещенные линии желева от [Fe II] до [FeX]. Подтверждено присутствие малоконтрастной широкой компоненты у Н и заподозрено — у Н. (на пределе обнарушения). Бальмеровский декоемент узкой компоненты На/Нз ~ 7. а шировой 🚬 20 и не объясилется только рекомбинациями. Пепрерывный спектр следует степенному захону F. ~ ч^{−ч}, где з ~ 2. По наблюдаемым относительным интенсивностям линий [N II], [S II], [O II] получены электропная плотность N_e ~ 1.5·10³ см⁻¹ и элек-тронная температура T_e ~ 12000 К. При той же температуре в области излучения линий [O III] $N_e \sim 6-10^3$ см = 3. Отмечено близное соответствие Мархарии 744 средней галахтике тила Sy2 по интенсивностям запрещенных линий, их ширинам, конти нууму и др. Кроме того, присутствие широкой компоненты. На и слабых линий раврешенного железа Fe II указывает на признаки Syl. Предположено, что все сейфертовские газактики принадлежат одному классу объектов с различными соотношениями между разреженными и плотными областями газа.

В последние десятилетие было обнаружено большое число галактик сейфертовского типа, которые привлекли к себе большой интерес и нуждаются в подробных исследованиях различными методами [1—3]. В оптическом днапазоне, на наш взгляд, наиболее важны однородные спектрофотометрические исследования сейфертовских галактик (\sim 60) и радиогалактик (> 10) различных типов, выполненные группой Остерброка в Ликской обсерватории [4—7].

558 В. Л. АФАНАСЬЕВ, В. А. ЛИПОВЕЦКИЯ, А. И. ШАПОВАЛОВА

В 1977 г. в САО АН СССР в первичном фокусе БТА начаты спектральные наблюдения галактик с активными ядрами с достаточно высоким угловым ($\sim 2''$) и спектральным (≤ 5 А) разрешением. В данной работе мы представляем результаты спектральных наблюдений яркой ($\sim 13^{\circ}5$) сейфертовской галактики Маркарян 744. Это спиральная галактика типа SAB(rslap, западный компонент взаимодействующей пары NGC 3786—88. Ранее в спектре Маркарян 744 были пайдены узкие эмиссионные линии ([8], $V_{\sim} = 2755$ км/с). Из-за яркого звездообразного ядра (s2e) и весьма сильного ультрафиолета она была включена Маркаряном и Анповециям [9] в списки галактик с ультрафиолетовым континуумом. Позже Маркарян 744 была отнесена к сейфертовскому типу Афанасьевым и др. [10], отметившими наличие ширових малоконтрастных крыльев у Н.

На рис. 1 приведена фотография Маркарян 744 и NGC 3788, полученная нами в первичном фокусе БТА. Хорошо выделяется яркое двездообразиюе ядро, спиральные ветин слабы и в них на западе и востоке от ядра на пределе разрешения видны сгущения. К северо-западу от ядра на спиральные ветви проектируется звезда фона (согласно нашим спектральным даиным). На оригинале отчетливо видны слабые (~ 24"/□') внешние спиральные ветви, почти замыкающиеся в кольцо.

1. Наблюдения и обработка. Расширенные спектры Маркарян 744 получены в 1977—1978 гг. в первичном фокусе БТА со спектрографом UAGS в ЗОП УМ-92 в днапазове и 3700—7400 АА на фотоэмульсиях А-600 и А-600Н (двсперсия ~ 92 А/мм, разрешение ~ 5 А, FWH1 инструментального контура ~ 400 км/с). Щель швриной 0.9—1.1 при наблюдениях ориентировалась вдоль большой или малой осей. Спектральная чувствительность аппаратуры учитывалась по спектрам стандартных звезд Feige 34 и BD + 33 2642 [11]. В табл. 1 приведены данные по журнаху наблюдений.

Спектрограммы записывались на микрофотометре с цифровым выходом с шагом 0.01 мм. Результаты в почернениях выдавались на перфоленту и затем обрябатывались на ЭЦВМ «М-222- по программам экспр-ссиой обработки спектров галактик [12, 13]. В результате были получены спектры в интенсивностях, с вычтенным фоном неба и равномерной шкалой длин воля, пормированные на участок пепрерывного спектра без ярких линий. Спектры, сиятые в разных спектральных диапазонах, после исправления за чувствительность аппаратуры были совмещены по перекрываюцимся участкам. Точность совмещения континуумов разных дилпазонов — ~ 10—15%. Спектры одинаковых диапазонов сложены вместе для повышения точности. Отметим, что в диапазонах / <4100 А и />7000 А качество спектров заметно ухудшается по аппаратурным причинам (чувствительность фотокатода, концентрация решетки и др.).

Рис. 1. Фотография NGC 3786 (Маркарян 744) — NGC 3788, полученияя в первичном фокусе БТА в фотографических лучая. Экспозиция 20 мин, масштаб на оригинале 8.5″/мм. Стрелкой отмечена галактика Маркарян 744.

К ст. В. Л. Афанасьева и др.

No	Дата наблюдений	Энсполиции (мин)	Эмульсия	Расширение (мм)	Изобрање- ния	Дизназов (А)
1	13.01.77	5	A+600		1	56007504
2	20.04 77	15		0.5	1.5	35505300
3		7			*4	3900 5800
4		15			-4	5600 7590
5		14	4.4	_	44	56 KI-7501
6	21.01.77	16		0.2	2	3550 5300
7		11		-	+	3900 5900
8		20		-	-	5600-7500
9	18.03.78	12	A-600H	0.5	2	5600 - 7500
10		Ĵ				5600 7500
11		2		-		3900-5500
12		0				3900 - 5500
13		15	19 10			3650-5300

Tabiuna 1

2. Результаты, а) Отождествление эмиссионных линий. В спектре Маркарян 744 присутствуют ярко выраженные признаки сенфертлиских галактик типа Sy 2: отношение [N II] Н ~ 1. отношение [O III] зиол Н -4, сильные линии [S II], [O I] и т. д.: псе запрещенные линии имечот характерные шприны ~ 15 А, незначительно превышающие инструментальный контур. С другой стороны, на хорошо продержанных спектреграммах пыделяются малоконтрастные, но широкие крылья Н. (~ 200 А) — признак галактик типа Sy 1. В свяли с атим представляет питерес исследование более слабых линий ятой галактики.

Для поиска слабых линий нами использованы все спектры из тэбл. 1, а также суммарные спектры, полученные сложением в разных комбинациях. Линия считалась обнаруженной, если она была видиа в большинстве спектров (не менее 4-х из 6-тя) и обязательно присутствовала в суммарных спектрах. Наиболее уверенно отождествлены слабые линии в диалазонах и 6000—7000 AA и и 4400—5100 AA, где суммарный спектр состоял на шести спектров.

При иденгификации найденных линий нами использованы таблицы Мур [14], каталог Мейнела и др. [15], данные о вероятностях атомных переходов из Гарстанга [16, 17], Визе и др. [18]: результаты наблюдений Теккерея [19] в Аллера и др. [20] пекулярных звезд 5 Саг и RR Tel; данные Нетцера [21], Боксенберга и др. [22] по NGC 4151; Дорошенко и др. [23] по NGC 1275, Филлипса [24] по I Zw I, и О'Коннел и др. [25] по Маркарян 477 и 699.

560 В. Л. АФАНАСЬЕВ, В. А. ЛИПОВЕЦКИЙ, А. Н. ШАПОВАЛОВА

Результаты отождествления представлены в табл. 2, где: 1 — наблюлаемые длины воли (неуверенные случай отмечены двоеточием): 2 — длины воли, исправленные за красное смещение: 3 — интенсивности в единицах $I_{\rm H_3}$ 10: 4 — предполагаемое отождествление; 5 — примечания, содержащие двиные об интенсивностях соотвествление; 5 — примечания, содержащие двиные об интенсивностях соотвествление; 5 — примечания, содержащие двиные об интенсивностях соотвествление; 5 — примечания, соисслика на литературу. Наши погрешности в определении интенсивностей линий составляют ~ 15% для $I = I_{\rm H_3}$, ~ 50% для $I = 0.5 I_{\rm H_2}$ и для $I = 0.1 I_{\rm H_2}$ интенсивности могут отличаться в 2—3 раза. Большинстве линий, по-видимому, представляют собой бленды, и в табл. 2 приведены относительные интенсивности их пиков, кроме H₁. [N II] 10: 6548, 6584 АА, где бленды были разделены.

На рис. 2а-в, приведены записи спектров Маркарян 744 и относительных интенсивностях (не исправленные за спектральную чувствительность аппаратуры) вместе с соответствующими отождествлениями из табл. 2.

Рис. 2. а) Запись спектра Маркарян 744 (№ 13) в относительных нитенспялостях. Оригинальная дисперсия 92 А/им. Номера спектров — согласно данным табл. 1.

6) Записи споктров Мархарли 744 (№ 12, вверху) и суммы 6-ти слеятров (2+3+6+7+11+13, викау) в отиссительных витенсквисствх. Указаны местополовилие и отиссительные интенсивности ликий витури индивидуальных мультиплетов Fell.

Таблица 2

A.,	2_(1+s)	$\overline{I}/I_{\mathrm{Hp}=30}$	Отовдествление	Прижечания*
1	2	3	4	5
3760	3727	29	3727 (O [I] IF	14.8 (<i>B</i>)
3782	3748	5.8:	3747 Fell 14: 3748 Fell 154:	
3794	3760	5.81	3759 Fe II 154; 3760 [Fe VII] 3F; 3760 O III 2:	0.56 [Fe VII] 3F (N); 1.36 (B)
3820	3785	4.71	3783 [Fe V] 3F; Fe 11 14;	
3854	3820	3.9	3820 [Fe V] 3F; 3822 Fe II 14; 3825 Fe II 29:;	
3900	3865	5.9	3864 Fell 127; 3867 Oll 12:	
3906	3870	2.5	3869 [Ne 11] 1F:	13.6 (B);
3928	3892	1.1	3892 [Fe V] 3F; 3889 He 12;	0.18: [Fe V] 3F (B)
3970	3934	1.2	3936 Fe II 173:	
3983	3948	0.7	3945 Fe II 3:	
4010	3975	0.7:	3974 Fe 11 29;	
4039	4003	3.1	4002 Fe [29; 4003 [Fe V] IF;	
4060	4025	2.4	4026 He I 18; He II 3; 4025 Fe II 127;	W, Hel 18 (B);
4085	4048	5.3	4049, 4051, Fell 172; (?)	
4106	4069	1.8	4068 [S II] 1 F;	1 89 (B):
41131	4076	-	4076 [S 11] IF;	0.88 (B);
4124	4087	1.4	4087 Fe 11 28; 4089 Si IV 1?	
4163	4125	2.8:	4124 [Fe V] 2F; 4123 Fe II 28;	w [Fe V]? (N);
4196	4158	2.8	4158 [Fo 11] 37F;	100 C
4209	4171	0.51	4173 Fe 11 27;	
4281	4245	2.5	4244, 4245 [Fe 11] 21 F;	0 65 (<i>1</i> /); 0.47 (<i>B</i>);
4250	4251	1.5	4249 [Fe 11] 36F: 4249 [Ni 11] 4F?;	
4316	4277	1.6	4277 [Fe 11] 21 F:	0 55 (N); 0.65: (B);

* В жругами скобкан ссмаки: (В) — Боненксберг и др. [22]; (N) — Нетцер [21]; (D) — Дорошенко и др. [23-

-	2	3	4	S
4326	4287	0.5:	4287 [F3 II] 7F	0.2 (N); 0.77:(B);
4335:	4297	2.7:	4297 Fe II 28	
4358	4319	0.5	4320 [Fe II] 21F	0.38 (N); 0.47 (B);
4377	433.)	1.5	4340 H ₁ ; 4339 He II3;	3.78, H ₁ (B); 3.4:H ₁ (D);
4403	4363	2.1	4363 [O III] 2F; 4359 [Fe II] 7F;	3.36; [O III] 2F (B); 2.7;[O III] (D);
4456	4416	1.4	4414 [Fe II] 7F; 4416 [Fe II] 6F, 7F; 4417 Fe II 27;	0.13. [Fe II] 6F. 7F (N); 0.94 (B);
4472:	4432	0.8	4432 [Fe II] 6F	
1654	4451	0.6	4452 [Fe II] 7F	0.26 (N); 0.17 (B);
4508	4469	1.4	4470 [Fe II] 6F; 4471 He I 14;	0.16 He I 14 (N); 0.71 (B); 1.2 (D);
4516	4475	1.2	4475 [Fe II] 7F; 4473 Fe II 37;	0.2 [Fe II] 7F (N);
1530:	4492	2.5:	4493 4489 [Fe II] 6F; 4489, 4491 Fe II 37;	0.15 [Fe II] 6F (N);
1553-56	4512-15	1.5	4510 4515 [Fe II] 6F; 4515 Fe II 37; 4511 [KIV] 2F;	4.13; Fe II, 37, 38 (B);
1563	4523	2.0	4523 Fe II 38;	(D);
1580	4539	1.1	4541, Fe II, 38; 4542 He II 20;	0.2, He II, 20 (N); 0.3 (B);
1550:	4550	1	4550, Fe II, 38; .	
1596	4555	0.7	4556 Fe II 37	
1614-16	4573-75	2.1	4574 [Fe III] 3F; 4576 Fe II 38;	
1620-28:	4579-87	1.8	4580 Fe II 26; 4584 Fe II 38; 4583 Fe II 37;	? Fe II (N); 1.1 Fe II 38 (D);
1653	4610	2.9	4607 [Fe III] 3F; 4609 O II 93:	0.25? (N); 1.5, O II 93 (D);
1672-80	4632-40	1.4	4629 Fe II 37; 4640 [Fe II] 4F; 4634 N III 2?	vw (N);
1700	4658	0.5:	4658 [Fe III] 3F	0.21 (N); 0.71 (B)
1728	4686	1.6	4686 He II 1;	3.0 (N); 1.47 (B); w (D);
1740:	4698	0.9	4699 [Fe VII] 2F; 4701 [Fe III] 3F;	

1	3	3	4
4760	4718	1.5	4720 [Ne IV] 1F;
478-1	4741	0.8	4741 A IV 1F:
4788	4745	0.5	4745 [Fe 11] 20F;
4822	4779	0.6	4778 [Fe] 3F; 4775 [Fe] 20.7
4841+	4799	0.91	4798, 99 [Fe 11] 4F;
4852:	4509	0.9	4808 [Fe VI] 2F:
4861	4818	1.3	4815 [Fe 11] 20F
4596	4852	2.3	4853 [Fe 11] 20F; 4851 [Fe VI] 2F:?
4905	4861	10.0	1861, H ₃ ;
4924	4889	0.7	4881 [Fe 11] 2F
4938	4893	2.6	4890 Fe 11 4F; 4894 Fe V11] 2F
4950	4906	1.4	4905 [Fe II] 20F: 4906 [Fe IV]-:
4972	4928	0.4	4930 [Fe III] 1F;
498U:	4936	1.2:	4936 [Fe III] 1F:
49 90:	4946	1.7	4944 [Fe VII] 2 F; 4947, 4951 [Fe II] 20 F;
5004	4059	15.2	4959 [O 111] 1F;
5017	4972	1.7	4973 [Fe II] 20F; 4969, 4974 [Fe VI] 2F;
503 2	4987	-	4987 [Fe III] 2F; 4989 [Fe VII] 2F
5052	5007	45	5007 [O III] 1F
5078	50 32	05	5033 [Fe III] 2F;
5104	5059	1.2	5060, 5064 [Fe III] 1F, 2F:;
5131 :	5085	1.0:	5085 [Fe 111] 1F:
5156	5110	1.8	5108 [F II] 18F; 5112 [Fe II] 19F;

Таблица 2 (продолжение)

 3	_
0.24 (B);	
0.65 (<i>B</i>);	5
vw (D)	
0.3 [Fe 11] 20F (N); w (D)	DE1
w (N);	
(4), 12(0).	J BCI
w (N); 1.3 (D);	A
1C (N); 10 (B); 10 (D)	-
w (N)	AA
w [Fe II] 4F (N); 0.59: [Fe VII] 2F (B); 08 (D);	Ą
w [Fe 11] ?0F (N); 0.88 [Fe 1V] (B); 1.1 (D);	3
	A
	MIX.
64 9 (B): 12 (D):	1PK
	Ą
vw [Fe111] 2F (N);	нк
153 (B): 36 (D)	1
	4
[Fo II] 19F (N); w (D);	

1	2	3	4
51921	5148		5147 [Fe VI] 2F;
5206	5159	1.2	5158 [Fe II] 18F, [Fe VII] 2F; 5159 [Fe II] 19F;
5246	5199	1.9	5198 Fe II 49; 5199 [N I] 1F
5266	5219	1.8	5220 [Fe 11] 19F;
5308	5261	1,8	5262 [Fe II] 9F; 5265 Fe II 48;
5327	5279	2.2	5278 [Fe VII] 2F; 5276 Fe 11 49; 5280 [Fe II] 16F;
5342:	5294	1.7	5297 [Fe II] 19F; 5296 [Fe II] 17F:
5356	5308	1.4	5309 [Ca V] 1F
5368	5315	2.91	5317 Fe II 45, 49;
5384	5336	1.91	5334 [Fe II] 19F; 5336 [Fe VI] 1F;
5412	5364	1.4:	5363 Fe II 48; 5362 (Fe II) 17F;
5424-28	5375-79	0.71	5376 [Fe 11] 19F
5460:	5411	4.9:	5413 [Fe II] 16 F, 17F; 5414 Fe II 48; 5411 He I12;
5474	5425	2.9	5425 Fe II 49; 5424, 5427 [Fe VI] 1F;
5485	5436	4.6:	5433 [Fe II] 18F; 5435 Fe II 48:
5608	5558	3.0	5566 [Fe II] 18F;
5728	5677	2.3	5678 [Fe VI] 1F
5775:	5724	1.0	5721 [Fe VII] 1F;
5806	5755	1.7	5755 [N II] 3F;
5872:	5820	1.8	
5890	5838	1.9	
5930	5877	2.8	5876 H+1 11;
5960	5907	1.0	5907 [Mn VI] 2F;

1.1 [Fe VII] 2F (N); 0.48 (B); 1.4 [Fe II] 19F, 18F (D); 0.9 [N I] 1F (B); 2.8 (D); w (N); 0.25 [Fe II] 19F (N); 2.0 [Fe II] 1≤F (D); 0.3 [Fe VII] 2F (N); 4.8, Fe II 48, 49 (B); 0 3 (N); 0.77 (B); w (D); w (D); w [Fe II] 19F (N); 2.7 Fe II 48 (D); 0.25 (N); w (B); 1.7 (D); 0.8 He II 2 (N); 0.48 (B);

5

(D); 0.2 (N); 0.65 (N); 1_12 (B); 0.71 (B);

1.53(B); 0.18(B) 2-10

<u>1</u>	2	3	4
6044	5950	0.9	5991 Fe 11 46
6085	6031	1.7	
6100	6045	2.3	6044 Fe 11 46; 6045 Fe 11 200;
6130	6075	2.7	6074 He 11 8:
6142:	6087	-	6086 [Fe VII] 1F
6150	6095	1.5	6096 [Fe 111] 10F
6158+	6103	1.2	6102 [KIV] 1F; 6103 Fe II 200;
6184	6129	2.5	6130 Fe 11 46;
6206	6150	2.3	6148, 6149 Fe II 74; 6150 Fe II 16;
623942	6184-87	1.3	6185 Fe II 46; 6189 [Fe II] 44F;
6294	6239	1.0:	6238, 6240 Fe II 74;
6301	6245	2.2	6248 Fell 74; 6300 [O 1] N. S.;
6357	6300	6.3	6300 [O I] 1F
6368	6311	2.1	6310 [S III] 3F;
6394	6337	1.5	
6421	6364	3.6	6354 [O 1] 1F
64251	6368	2.3:	6369 Fe II 40;
6432	6374	2 3:	6374 [Fe X] 1F;
6446	6388	0.8	6384 Fell"; 6389 Fell 203;
6464	6406	2.3	6407 Fell 74;
6474	6416 -	0.4:	6417 Fe 11 74;
649296	6434-38	1.1	6433 Fe II 40; 6435 [A V] 1F; 6440 [Fe II] 15F;
6504	6446	1.2	6446 Fe 11 199:

1	2	3	4
6512	6454	1.6	6456 Foll 74;
6535	6477	2.9	6474 [Fo 1] 44F:
6546	6488	2.8:	6487 Fell 203; 6491 Fell;
6554	6496	1.1	6493 Fell-1
6574	6516	2.4:	6516 Fe II 40; на врыльях На;
6584	6527	1.9:	6527 [N II] 1F; на крыльях На;
6607	6549	18.1	6548 [N II] 1F:
6622	6563	70.4	6563 H ₁ ;
6643	6584	54.4	6584 [N II] 1F
6660	6601	3.6:	6600 [Fe VII] 1F: на врыльяя Н.;
6672:	6613	3.4:	6614 [Fe III] 10F;
6686	6626	1.3:	6627 Fe II 210;
6702	6642	3.8:	
6747	6687	2.3	
6760	6700	2.6	
6777	6717	15.1	6717 [S II] 2F;
6791	6731	13.1	6731 [S II] 2F
6817	6757	1.1	
6840-43:	6779-81	2.5	

II. Л. АФАНАСЬЕВ. В. А. ЛИПОВЕЦКИИ, А. И. ШАПОВАЛОВА

1	2	3	4
6933-36	6871-74	2.3	6872 [Fe 11] 31 F; 6874 [Fe 11] 43F;
7008-10:	6946-48	2.2	6945 [Fe II] 43F;
7072:	7009	-	7006 [A V] 1F;
7236	7172	2.4:	7170 [A IV] 2F: 7240 OH. N. S.;
7285	7220	3.0	7222 Fell 73: 7221 [FelV]F:
7320	7254	3.0	7256 [Ni II] 7F:
7330-35	7261-69	5.3	7263 [A IV] 2F; OH, 7337, N. S.;
7394—97	7328-31	9.8	7330 [O II] 2F; 7332 [A IV] 2F;

*68 В. Л. АФАНАСЬЕВ, В. А. ЛИПОВЕЦКИЯ, А. И. ШАПОВАЛОВА

В спектре Маркарян 744, как у многих сейфертовских галактик наблюдается широкая область нонизаций. Здесь присутствуют как линии с низким потенциалом нонизации [O I], [N I], [O II], [N II], [S II] и др., так и линии с высоким потенциалом нонизации типа [Ar IV], [Fe VII], [Fe X] и т. д. Большинство слабых линий отождествлены нами с линиями железа: разрешенными (Fe II) и запрещенными (от [Fe II] до [Fe X]).

Рис. 28. Записи спектров Маркарян 744 (N_{0} 9, вверху) и сумым 0-ти спектрол (1+4+5+8+9+10, виняу) в относительных интенсивностях. Остальное, как их рис. 28,6.

Среди разрешеных линий Fe II наиболее богато представлены линии мультиплетов 37, 38, 48, 49, 40, 46, 74 н др., которые часто блендируются с другими линиями. Суммарные интенсивности бленд в среднем меньше, чем интенсивности вышеуказанных мультиплетов Fe II в сейфертовских галактихах NGC 4151 [21, 22] и J Zw 1 [24]. Один из сильных мультиплетов Fe II, 42 не обнаружен, хотя не исключена возможность, что линии 13. 4924, 5018 AA присутствуют в блендах с [Fe III] IF (). 4930 A) и [O III] / 5007 А. а линия 5169 А попадает в область линии поглощения, которую мы предварительно приписали Mg Ib. Среди запрещенных линий железа богато представлены мультиплеты: [Fe II] 6F, 7F, 16F, 17F, 18F, 19F, 20F, 21F H Ap.: [Fe III] IF, 2F, 3F; [Fe V], [Fe VI] IF, 2F: [Fe VII] IF, 2F, 3F: [Fe X] IF. Эти линин тоже часто блендноуются, их интенсивности обычно в несколько раз больше, чем у NGC 4151 [21, 22] и. в среднем, соответствуют вероятностям переходов. Отметим, что отождествляются практически все линии [Fe VII] IF, 2F, 3F, кроме сильной линии 2.6086 А, присутствие которой лишь подозревается. Уверенно отождествлена линия [Fe X] IF (1. 6374 А), хорошо видимая на

всех спектрах. Кроме железа, в спектре Маркарян 744 идентифицированы линин Не I, Не II, [Ar IV] (// 4740, 7171, 7332, 7263 AA) и некоторых других алементов.

6). Ширины и контуры линий. При построении контуров линий Н. и Н. выбирались 4 лучших спектра, сглаженных по четырем точкам (~4 A).

Для определения бальмеровского декремента и получения контуры необходимо разделить бленду $H_* + [N II]$. С этой целью мы воспользовались стандартной методикой, описанной в [26]. Предполягалось, что контуры запрещенных линий — гаусснаны, принималось теоретическое отношение интепсивности $[N II] - I(i \, 6584)/(i \, 6548) \sim 3$ и результирующий контур H_* считался достаточно гладким. Результаты разделения бленд $H_* + [N II]$ и [S II] приведены на рис. 3. Хорошо видно, что линия H_* имеет узкую компоненту и широкую подложку, которая обычно наблюдается у галактик типа Sy 1. Здесь мы не приводим контуры H_* , отметим только, что на наших спектрограммах присутствие широкой компоненты у H_* можно лишь заподозрить.

Если разделить широкую и улкую компоненты H-, как показано на рис 3, то бальмеровский декремент узкой компоненты соответствует ~ 7 , а широкой компоненты (учитывая наш предел обнаружения) $\gtrsim 20$. Отметим, что спектры, приведенные на рис. 3, получены при ориентации щели вдоль большой и малой оси, соответственно, но в разное время (в 1977 г. и в 1978 г.).

Изменения широкого компонента (приблизительно на 40%) почти не вызывают сомления и, вероятно, связаны с крупномасштабными движениями газа.

В табл. 3 приведены данные о наблюдаемых ширинах ярких линий Маркарян 744 на половине интенсивности (ΔV_{12}) и на нулевой интенсивности (ΔV_0) выраженные в км/с. Там же даны средние значения ширии по запрещенным линиям для Маркарян 744 и для Sy2 по результатам Коски [7]. Видно, что средние значения ширин запрещенных линий у Маркарян 744 такого же порядка, как у Sy2. Ширина динии H_{*} на нулевой интенсивности составляет ~ 9000 км/с, что блиако к среднему значению для галактик типа Sy 1 [6].

В пределах ошибок измерений, лучевые скорости Маркарян 744, определенные по ризрешенным и запрещенным линиям, совпадают (z = 0.009, как в [10]).

в) Покрасненис. Мы определили коэффициент покраснения «С» обычным образом [27], используя наблюдаемые отношения интенсивностей линий Н Н Н;, значения теоретического рекомбинационного бальмеровского декремента, рассчитанного в [28] для случая В поля излучении

Рис. 3. Контуры линий На., [N II], [S II] в ядре галактики. Макарян. 744 в относительных интенсивностях а) — 1968 г.: 6) — 1967 г. Сплошиме линии — наблюдаемые контуры, лунктириме — контуры отдельных компонентов после их разделения.

 $(T_s = 10^4 \text{ K}, N_s = 10^4 \text{ см}^{-3})$ и стандартную кривую межзвездного покраснения [29]. При этом получили $C \sim 1.2$ по отношению $I(\text{H}_s)/I(\text{H}_s)$ и $C \sim 3$ по $I(\text{H}_s)/I(\text{H}_s)$. Если нанести наблюдаемые отношения интенсивностей H₄/H₃/H₁ на соответствующий график Остерброка ([6], рис. 2), то галактика Маркарян 744, в пределах ошибок, попадает в область галактик типа Sy 1, причем отклонения от линии покрасиения столь велики, что их невозможно объяснить ошибками наблюдений. Как и в работе [6] и др., мы полагаем, что наблюдаемый бальмеровский декремент Маркарян 744 нельзя объяснить только рекомбинациями с последующими каскадиыми переходами. Повтому вопрос о величине покраснения остается открытым, и в последующем анализе мы не будем исправлять интенсивности амиссионных линий за покрасиение.

	_		Теблица
λ.	Ион	∆V _{1/2} (км/с)	(км/с) 71,0
3727	[0 []]	7.20	1610
4861	Ha	700	2900?
4959	[0][]	820	2150
5007	[0][]]	740	2230
6563	H.	900	9000
6548	[N 11]	\$50	1370
6584	[N II]	560	1490
6717	[S 11]	-190	1210
6731	[S []]	470	1200
Среднее по запрещен- ным линиям		620 - 140	1600 420
Cpegnee Sy 2		570 - 120	

г) Физические условия. Для получения информации о физическом состоянии газа, излучающего эмиссионные линии, мы использовали интенсивности запрещенных линий из табл. 2. Наблюдаемые отношения интенсивностей запрещенных линий определяют геометрическое место точек в плоскости (N_e , T_e) и изображены на рис. 4. В табл. 4 указано, какие отношения авроральных и небулярных линий нами использовались и даны ссылки на литературу, откуда взяты формулы для теоретической запениюсти этих отношений от N_e и T_e . Область пересечения [N 11], [S 11], [O 11] соответствует средним значениям алектронной температуры T_e (12000 1000) К и электронной плотности $N_e \sim (1.5 \pm 0.5) \times 10^3$ см⁻³.

Наблюдаемые относительные интенсивности [O III] указывают на ялектронную плотность порядка 10⁴ см⁻³ для $T_c = 10^4$ К н $N_c \rightarrow 0$ при $T_c \sim 25\,000$ К. Принимая среднее значение $T_c = 12\,000$ К, определенное

572 В. А. АФАНАСЬЕВ, В. А. ЛИПОВЕЦКИЙ, А. И. ШАПОВАЛОВА

для области пересечения [N II], [O II], [S II], мы получаем $N_{e} \sim 6 \times 10^3$ см⁻³.

Рис. 4. Крияме равных наблюдаемых отношений авроральных и небулярных линии разных нонов на плосности $N_{\sigma}, \ T_{\sigma}.$

Таким образом, в ядерной области Маркарян 744 существуют, по крайней мере, три зоны разной плотности: 1) N ~ 1.5 · 10¹ см⁻¹ – область излучения линий [N II], [O II], [S II]; 2) N, ~ 6 · 10⁵ см⁻¹ – [O III]; 3) N, > 10⁶ см⁻³ – область, где образуются крылья бальмеронских линий водорода.

		Tabiuya 1
Ион	Относительные интенсивности	Антература
ទេរក្រ	/ (6717) / (6731)	[30]
[S 1I],	1 (6717 + 31)/1 (4069 + 76)	[31]
[0 []	/ (3727) / (7320 + 30)	[31]
[N 11]	1 (6548 84), 1 (5755)	[32]
[0 []]	/ (4959 - 5007) / (4363)	[32]

д) Континуум и линии поглощения. Непрерывный спектр Маркарян 744 в области († 3900—7300 АА следует степенному закону: $F. \sim v^{-v}$, где 2 ~ (2 ± 0.3). Большая погрешность в определении 2 связана с ошибками калибровки и привязки диапалонов. Полученное значение наклона континуума близко к среднему для сейфертовских галактик типа 2.

В спектрах Маркарян 744 уверенно отождествляется D-линия натрия (Nal, и 5190/5196 AA) и можно предположить наличие полосы Mglb. Эквивалентные ширпны атих линий составляют ~ 3 A. На наших спектрах мы не нашли линий поглощения II и К кальция и G-полосы.

3. Обсуждение результатов. Рассмотрим сравнительные характеристики сейфертовских галактик различных типов и Маркарии 744.

В табл. 5 представлены средние наблюдаемые относительные интенсивности основных линий в сейфертовских галактиках и Маркарян 744. Хорошо видно, что интенсивности запрещенных линий азота, серы и кислорода ближе всего соответствуют средним значениям у галактик типа Sy 2.

			,	40,111 <u>1</u> 1
Ион	2	Sy 1 [6]	Sy 2 [7]	Mr 744
[0 11]	3727	0.11	2.3	2.9
[0 111]	4363	0.025	0,17	0.21
He II	4686	0.323	0.22	0.16
Ha	4361	1.0	1.0	1.0
[0 111]	4959	0.161	2.7	1.5
[0 111]	5007	0.436	8.1	4.5
Hel	567.1	0 181	0.19	0.28
[Fe VII], [Ca V]	6087	0.055	0.14	_
[01]	6300	0 03	0.80	0 03
[0]]	6361	0.02	0.29	0 36
[N II]	6549	80.0	1.65	1.81
Hi	6503	3.6	5.7	7.04
[N H]	6584	0.25	5.0	5.44
[\$ []]	6717	0.086	1.39	1.51
[511]	6731	0.061	1.30	1.31
		,		

В спектре Маркарян 744 богато представлены линни запрещенного железа в разных стадиях ионизации от [Fe II] до [Fe X] (табл. 2). Как показывают расчеты Нетцер [21], в заселении верхних уровней [Fe II] важную роль играют как алектроиные столкновения, так и флуоресценсия кситинуума. Учитывая присутствие других запрещенных линий, по аналогии с [25] можно предположить, что [Fe II] возникают в областях иналой полтности ($N_c < 10^5$ см⁻³).

574 В А АФАНАСЬЕВ, В. А. АНПОВЕЦКИИ, А. И. ШАПОВАЛОВА

У Маркарян 744, как у других сейфертэвских галактик типа Sy 2, имеются две зоны низкой плэтности: область с $N_* \sim 1.5 \cdot 10^3$ см⁻³ где излучают линин [N II], [S II], [O II] и область с $N_* \sim 6 \cdot 10^3$ см⁻³, где возникают линин [O III] и другие, возможно, в частности, запрещенные линии железа. Ширипы узких компонентов разрешенных линий и ширины запрещенных линий соответствуют средним для галактик типа Sy 2.

Непрерывный спектр Маркарян 744 подчиняется степенному закону в ниде , где $4 \sim 2$, как в среднем у Sy 2. Поскольку Маркарян 744 является спиральной галактикой, можно ожидать, что в состав континуума входит звездная составляющая. Но мы не обнаружили звездных линий поглощения, типичных для S-галактик. Исходя из этого, можно предположить, что на звездную составляющую континуума накладывается дополнительное ультрафиолетовое излучение нетепловой природы, которос заливает линии поглощения. В атом случае наше отождествление Mg Ib полосы является соминтельным.

Нами подтверждено наличие, обнаруженной в [10], широкой компопенты у линии 11. — типичный признак Sy 1 галактик. Бальмеровский декремент (H, H.) подложки больше 20. поскольку мы практически ис наблюдаем крыльев у H... Кроме того, в спектре Маркарян 744 нами обпаружены довольно слабые лицик разрешенного железа Fe II, которые также характерны для Sy I.

Таким образом, в спектре Маркарян 744 определенно выражены как особенности галактик типа Sy 2, так и типа Sy 1. По сравнению с другими сейфертовскими галактиками промежуточного типа, например Марка ряи 6, NGC 4151, широкая компонента водородных линий Маркарян 744 иначительно уступает по мощности остальным и становится трудно обнаружимой. Ближе всего этот объект соответствует типу Sy 2. В саязи с этим, можно думать, что в спектрах многих сейфертовских галактик типа Sy 2 также присутствует широкая компонента у водородных линий, но она изходится ниж, уровня обнаружения. Поатому, в рамках двухкомпонентной модели, все сейфертовские галактики можно рассматривать как единый класс объектов с различными количественными соотношениями между плотными и разреженными областями газа.

Приведенные соображения указывают на важность проведения спектральных наблюдений галактик типа Sy 2 с высоким уровнем обнаружения для поиска малоконтрастиых широких крыльев у водородных линий.

В заключение выражаем благодарность И. С. Балинской за помощь при обработке спектров.

Специальная астрофизическая обсерватория АН СССР

СЕПФЕРТОВСКАЯ ГАЛАКТИКА МАРКАРЯН 744

SPECTROPHOTOMETRY OF THE SEYFERT GALAXY MARKARIAN 744

V. L. AFANAS'EV, V. A. LIPOVETSKY, A. L. SHAPOVALOVA

The spectrophotometric results are presented for the bright (~13"5) Seyfert galaxy Markarian 744. The spectra are obtained in the prime focus of the 6-meter telescope at SAO USSR AS with the spectrograph UAGS and the image tube UM-92 in the range in 3700-7400 AA. More than 140 lines of different elements are identified in the spectra. Among weak lines the allowed lines of iron Fe II and forbidden lines from [Fe II] to [Fe X] are represented most richly. The presence of low-contrast broad component in H. is confirmed and is suspected in H, (at the limit of detection). The Balmer decrement of the narrow component Is H, H. ~ 7 and of the broad component $\gtrsim 20$ and they are not explained only by recombinations. The continuum spectrum follows the power law $F_{c} \sim \infty$, where $a \sim 2$. The electron densities $N_{c} \sim 1.5 \cdot 10^{2} \text{ cm}^{-3}$ and electron temperature $T_{c} \sim 12000 \text{ K}$ are deduced from the observed relative intensities of the lines [N II], [S II], [O II]. For the same T_{c} , $N_{c} \sim 6 \cdot 10^{3} \text{ cm}^{-3}$ is deduced from the relative intensities of the lines [O III].

Close relation between the Markarian 744 and an average galaxy of Sy2-type is noted in intensities of forbidden lines, their widths, continuum etc. Besides the presence of the broad component H and weak allowed lines of iron Fell indicates the features Sy1. It is suggested that all Seyfert galaxies belong to one class of objects with different ratios between the quantities of rarefield and dense gas.

АНТЕРАТУРА

1. D. W. Weedman, Ann. Rev. Astron. Astrophys., 15, Palo Alto Calif., 1977, p. 69.

- 2. J. B. Oke, J. R. Astron. Soc. Canada, 72, 121, 1978.
- 3. S. van den Bergh, J. R. Astron. Soc. Canada, 69, 105, 1975.
- 4. D. E. Osterbrock, A. T. Koski, M. M. Phillips, Ap. J., 206, 898, 1176.
- 5. R. Costero, D. E. Osterbrock, Ap. J., 211, 675, 1977.
- 6. D E. Osterbruck, Ap. 1., 215, 733, 1977.

7. A. T. Koski, Ap. J., 223, 56, 1978.

 G. de Vaucouleurs, A. de Vaucouleurs, Reference Catalugue of Bright Galaxies, Univ. of Toxas, Austin, 1964.

9. Б. Е. Маркорян, В. А. Липовецкий, Астрофизика, 12, 389, 1976.

10. В. Л. Афанасьев, Э. К. Ленисюк, В. А. Липовецкий, Письма АЖ. 5, 271, 1979.

11. R. P. S. Stone, Ap. J., 193, 135, 1974.

12. В. Л. Афанасьев, А. Л. Шербановский, Сообщ. САО АН СССР. 16. 25. 1977

- 13 А. И. Шаповалова, А. А. Щербановский, Сообщ. САО АН СССР, 22, 49, 1978.
- 14. C. E. Moore, A Multiplet Table of Astrophysical Interost, Princeton, 1945.

576 В Л АФАНАСЬЕВ, В А ЛИПОВЕЦКИИ А. И ШАПОВАЛОВА

- A. B. Meinel, A. F. Avent, M. W. Stockton, Catalog of Emission Lines in Astrophysical Objects, Univ. of Arisona Press, Tucson, 1969.
- 16. R. H. Garstang, M. N., 117, 393, 1957; 118, 572, 1958; 124, 321, 1962.
- R. H. Garstang, I. A. U. Symposium No. 34, ed. D. E. Osterbrock and C. R. O'Dell, Reidel, Dordrecht, 1968, p. 143.
- W. L. Wiese, M. W. Smith, B. M. Glennon. Atomic Transition Probabilities, I. Washington, 1964.
- 19. A. D. Thackeray, M. N., 113, 211, 1953; 135, 51, 1967.
- L. H. Aller, R. S. Polidan, E. J. Rhodes, G. W. Wares, Astrophys. Space Sci., 20, 93, 1968.
- 21. H. Netzer, M. N., 169, 579, 1974.
- A. Baksenberg, K. Shartridge, D. A. Allen, R. A. E. Fasburg, M. V. Penston, A. Savage, M. N., 173, 381, 1975.
- 23. В. Г. Дорошенко, В. Ю. Теребиж, К. К. Чуваев, Астрофизика, 12, 417, 1976.
- 24. M. M. Phillips, Ap. L., 208, 37, 1976.
- 25. R. W. O'Connell, Ap. J., 206, 370, 1976.
- 26. D. E. Osterbrock, A. T. Koski, M. M. Phillips, Ap. J., 197, 1.41, 1975.
- 27. M. J. Seaton, Rep. Progr. Phys., 23, 313, 1960.
- 28. M. Brocklehurst, M. N., 153, 471, 1971.
- 29. A. E. Whitford, A. J., 63, 201, 1958
- 30. D. Weedman, P. A. S. P., 80, 314, 1968.
- 31. В. Головатый, Частное сообщение, 1978.
- 32. M. J. Seaton, M. N., 170, 475, 1975.