АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР

ΑСТРОФИЗИКА

TOM 15

ABI'YCT, 1979

выпуск з

УДК 523.855

ФИЗИЧЕСКИЕ УСЛОВИЯ В ЯДРАХ СЕЙФЕРТОВСКИХ ГАЛАКТИК ТИПА 1

Г. Т. ПЕТРОВ Поступила 30 марта 1978

По результатам спектрофотометрии Остерброка единым методом определены электронные плотности и температуры в ядрах 36 сейфертовских галактик типа 1 и 5 радногалактик. Показано, что в зонах свечения нопа О всех исследованных объектов температуры близки к 10.000 К, а плотности — к 5-106 см⁻¹. При этом дисперсии обоих упомянутых параметров чрезвычайно малы. Разоброс значении тех же параметров в зонах спечения нопа О⁺ существенно больше.

1. Введение. В статьях [1, 2] рассматривались зависимости эквивэлентных ширин водородных и запрешенных линий сейфертовских галактик от показателя цвета (U—B), и абсолютной величины M_{U_4} и аналогичные зависимости для потоков и светимостей в тех же линиях. В [1] сейфертовские галактики были рассмотрены безотносительно к их типу, а в [2] рассматривались лишь галактики типа 1. Полученные зависимости указывают на то, что интенсивность водородных линий увеличивается с уменьшением показателя цвета U—B, а интенсивность запрещенных линий [O III] n. 4959, 5007 убывает, если галактики обоих типов рассматриваются совместно, и практически не зависит от показателя цвета, если рассматриваются в лишь галактики типа 1. Как возможное объяснение этого факта в [1, 2] было высказано предположение, что линии [O III] у сейфертовских галактик типа 1 возникают в областях со сравнительно высокой влектронной плотностью.

Для проверки этого предположения могут быть использованы опубликованные Д. Е. Остерброком [3] данные об интенсивностях эмиссионных линий 41 галактики с широкими эмиссионными линиями (36 сейфертовских галактик и 5 радиогалактик). В их число входит большинство галакгик, рассмотренных в [1] и [2]. Эквивалентные ширины, определенные в [2] по спектрам, предоставленным Д. В. Видманом, в большинстве случаев отличаются от данных, приведенных в [3] на 0.1—0.2 (логарифмическая шкала). Лишь в нескольких случаях различие достигает 0.5.

Зависимости эквивалентной ширины линии H_3 , а также относительных интенсивностей линии [O II]. [O III], [N II] и [S II] от показателя цвета U—В по данным A. Е. Остерброка иллюстрируются в табл. 1, где для разных линий приведены угловые коэффициенты этих зависимостей, а также коэффициенты корреляции. Как видим, для линий H и [O III] они мало отличаются от соответствующих зависимостей. приведенных в [2]. Подобный характер зависимости, как отмечалось, был интерпретирован в [1] и [2] как свидетельство высокой электронной плотиости в зонах, отлетственных за свечение иона O

Что касается линий [O II], [N II] и [S II], то обращает на себя внимание прекрасное согласие угловых коэффициентов, а также коэффициентов корреляции, характеризирующих зависимость их интенсивностей от показателя цвета.

В настоящей работе для проверки указанной интерпретации с помощью данных Остерброка определены физические условия в ядрах ряда сейфертовских галактик типа 1 и радиогалактик.

Tubauna 1

	12 W _{H3}	ig -IIIII	Ig Internet	lg IIII	$\log \frac{I_{[S11]}}{I_{H_1}}$
u	-0.3810.15	0.41 : 0.23	0.70 0.35	0.75 0.39	1.00 - 0.33
r	-0430.14	0.26 : 0.16	0.37 0.16	0.38 0.18	0.39 0.14

2. Физические условия в ядрах сейфертовских талактик типа 1. Для определения физических условий в ядрах галактик Сейферта мы применили метод пересечения кривых Ситона [4] в варнанте, предложенном в [5] Боярчуком и др. При атом, следуя [6], мы предполагали, что во всех объектах схематически существуют три зоны — Н, [О III] и [О II]. В зоне [O III] светятся ионы O⁺⁺, Ar⁻³, Ne⁺⁺; в зоне [O II] излучают ионы O⁺, N⁻ и S⁺. Так как примерно 60⁰/₀ атих галактик показынают линии [Fe VII], то, возможно, существует и четвертая зона, в которой светятся ионы Fe⁺⁶ и Ne⁺⁻. Естественно, в каждом отдельном случае может иметь место известное отклонение от предложенной схемы, то есть некоторые зоны могут сосуществовать или отсутствовать совсем. Подобная многокомпонентная модель впервые количественно рассматривалась Нойгебауером и др. [6]. Рассмотрим сначала физические условия в зоне [OIII]. Так как в [3] нет дзиных о линиях [NeIII] — 3343. 3869, 3968, то мы не можем непосредственно применить метод Ситоча для независимого определения n_c и T_c . Единственной кривой равных отношений, которую мы можем использовать, является $l_{AKS}/(l_{ASS} + l_{SOR}) = const для [OIII]. Поэтому$ мы вынуждены принять определенный химический состав и степень нонизации. Химический состав был принят нами в соответствии с моделями1. 2 и 3 Давидсона [7]. Что касается степени ионизации, то, следуя [5]и [8], примем для водорода <math>N'(HII)'/'(HI) = 0.5 и рассмотрим три значения степени ионизации кислорода:

$$N(O(III)/N(O(I)) = 0.50, 0.75 \pm 0.90.$$

При этих данных мы определяли кривые равных значений функции $\lg b_i(n_e, T_e)$ для нона О⁻¹. Таким образом, *n*, и *T*. для зоны [OIII] определялись по пересечению кривых: 11 $l_{-4563}/(l_{-4759} + l_{-5977}) = \text{const}$, 2) $\lg b_i(n_e, T_e)$ для 4363 и $\lg b_i(n_e, T_e)$ для $\lambda A959$, 5007.

Рис. 1. Определение п, и T, зоны [O III] для газавтих Мархарян 40 (а) и 110 (б) методом пересечених вривых Ситона [4]. (1) – $I_{\lambda,1,0}$ ($I_{0,950} - I_{4,50,7}$) const., (2) и (3) – $Ig \theta_i(n_x, T_y)$ для 4353 и 44 4959, 5007, соответственно. Кривые (2) и (3) соответствуют 50°, и инизуции вислородо. Пунктирные вривые соответствуют 75° а понизации вислорода.

На рис. 1 для некоторых галактик приведены графики, иллюстрирующие определение электронных температур и плотностей описанным методом. Линии на приведенных графиках относятся к случаям N(O III)/N(O I) = 0.50 и 0.75. Линия Ig b_i (n_e , T_e) для N(O III) N(O I) = 0.90 не наносилась, так как практически она совпадает с линией. соэт-

Г. Т. ПЕТРОВ

ветствующей случаю N(OIII)/N(OI) = 0.75. Полученные результаты представлены во втором—пятом столбцах табл. 2. Как видим, физические условия в зоне [OIII] для разных галактик очень близки и в среднем таковы:

N (O 111)//	N (O I) = 0.50	N (O III); N (O I) = 0.75			
$1g T_{s} = 3.89$.	$z^{2}(lg T_{g}) = 0.002$	$1g T_{e} \approx 3.95$	$z^{2}(\log T_{e}) = 0.014.$		
lg n, = 6.72,	$z^2 (\lg n_g) = 0.113,$	lg n, ==6.60,	$z^2 (\log n_p) = 0.078.$		

Разница для 50% и 75% ионизации кислорода очень мала — 0.06 для $\lg T_e$ и меньше 0.2 для $\lg n_e$. Можно отметить, что и совпадение между n_e и T_{e} , определенными соответственно по пересечению кривых (1) и (2), (1) и (3) и (2) и (3), очень хорошее (см. например, рис. 1). Следовательно, полученные величины мало зависят от исходных предположений, то есть они, вероятно, характеризуют истиниую картину.

Полученные высокие значения электронных плотностей в зонах [О III] сейфертовских галактик типа 1 согласуются с интерпретацией зависимости интенсивностей линий [О III] от показателя цвета, предложенной в [1, 2]. С видом этой зависимости, полученным в [1], хорошо согласуется также малая дисперсия электронных плотностей и температур.

Рассмотрим далее данные о зоне [O II]. Интенсивности линий [O II] i 7320, 7330, [S II] $\lambda\lambda$ 4068, 4076 и [N II] i 5755 в [3] не приводятся, и линий постоянного отношения, как в случае зоны [O III], у нес нет. Поэтому n_e и T_e определялись двумя методами и результаты сравнивались между собой.

Метод 1. Задаваясь нормальным химическим составом согласно [7] и принимая для относительного содержания серы значение 1 $\cdot 10^{-5}$ согласно [9], для степени ионизации водорода N(H II) N(H I) = 0.50 и два значения степени ионизации для кислорода, азота н серы:

N'(O |I|)/N(O |I|) = 0.10 и 0.25, N(N |I|)/N(N |I|) = 0.20 и 0.50, N(S |I|)/N(S |I|) = 0.20 и 0.50,

мы определяли кривые равных значений функции lg0, (*n., T.*) для *п.* 3726, 3729; *п.* 6548, 6584; *П.* 6717, 6731. Их пересечение данало значения *n.* и *T.*.

Метод 2. Предполагая, что линии [N II] λ 5755 и [S II] $\lambda\lambda$ 4068, 4076 имеют интенсивность $I \ll 0.005$ по отношению к I_{H_3} (минимальная интенсивность, уверенно определяемая в [3]), мы получаем две линии равных отношений, пересечение которых определяет *n*, и *T*, независимо от химического состава и степени ионизации.

СЕИФЕРТОВСКИЕ ГАЛАКТИКИ

387

							Табл	uya 2	
Зона [О III]					Зона [О 11]				
Объект	N (OIII)/N (OI) 0.50 N (OIII)/N (OI) 0.75				In T In -		la X	In X	
	Ig T _o	lg n _e	$\lg T_e$	lg ne	18	ig n _g	IN A BMN.	ig A	
1	2	3	4	5	6	7	8	9	
Мархарян 10	3.92	6.30	3.88	6,50	4.20	3.20	3.10	3.02	
40	4.40	6,70	4.00	6.90	4.40	3.20	3.00		
69	3,96	6.75	3.92	6.80				3.38	
79	3.92	6.50	3.88	6.60	4.28	3.40	3.26	3.82	
106	3.88	6,50	3.84	6.60	-	_	_	_	
110	3.92	6.50	3.88	6.65	4.48	1.20	0.98	2.90	
124	3.96	6.50	3.92	6.70		-	-	3.00	
141	3.92	6.75	3.88	6.80	3.92	3.00	3.04	2.76	
142	3.88	6.80	3.84	6.90	3.50	3.00	3.55	2.70	
236	3.92	6.80	3.88	6.90	_	_		3.20	
279	3.88	6.80	3.84	6.90	4.40	3.50	3.30	3.08	
290	3.90	6,40	3.88	6.50	4.56	3.00	2.62	2 78	
291	4.00	6,60	3.96	6.70	3,80	2.10	2.50	-	
304	3.88	7.30	3,84	7.50	5.50	4.50	3.75	4.08	
335	3.90	6.80	3.86	7.00	_	_	-	-	
352	-			_		-	-		
358	3.92	6.60	3.88	6.70	4.16	1.30	1.22	-	
374	3.92	6.70	3.88	6.80	-	-	-	3,08	
376		_			4.08	4.10	4.06	-	
382	3.92	6.25	3,90	6.30	-	-	-	_	
478				-		-] -	3.42	
486	_			-			-		
504	3.88	6.50	3,84	6.60	-		-	-	
506	3.92	6.30	3.88	6.40	4.00	2,50	2.50	2.85	
509		-	_	-	-	-	-	3.20	
541	3.96	7.20	3.88	7.40		-	-	-	
590	4.00	6.95	3.96	7.10	3.96	3.15	3.17	-	
баркарян 618	3.88	6,40	3.84	6.50	3.92	3.40	3.44	3.50	
NGC 3227	3,96	6.00	3.92	6.20	-	-		3.12	
NGC 3516	3.88	6.70	3,84	6.80	4.16	3.60	3.52	2.76	
NGC 5548	4.00	6.70	3.84	6,80	4.36	3.30	3.12	3.08	
NGC 7469	3.90	6.60	3.88	6.70		-	-	3.22	
IZw 1	3.92	6.70	3.88	6.70		-		-	
HZw 1	3.92	6.10	3.90	6.20	3.88	2.40	2.96	3.20	
II Zw 136	-	-	-	-		-	-	-	
III Zw 2	3.84	6.40	3.80	6.50	4.64	3.30	2.98	3.08	

								, ,	
1	2	3	4	1 5	6	7	8	9	
3C 120	3.96	6.30	3,92	6.45	-	-	_	3 22	
3C 227	3.96	6.70	3.92	6.80	4.40	3.40	3.20	2.33	
3C 382	3.92	7.00	3.88	7.10	-	_	-	3.28	
3C 390.3	4.00	6.60	3,92	6.70	4.18	3.90	3.80	-	
3C 445	4.40	6.20	4,00	6.33	4.00	2.50	2.50	2.82	
								•	

Таблица 2 (окончани

В качестве контроля может быть использован приведенный Остерброком в [10] график, непосредственно задающий величину X = n,] 10' T_r , то есть значение n_r , в предположении, что $T_r = 10'$ K. Этот параметр независим от каких-либо предположений.

По *n*, и *T*_s, полученным обоими методами, можно вычислить величины $X_{uuw.} = n_s$] 10⁴ *T*_s и сравнить их с *X*, полученным по графику Остерброкі. Алілиз похізывает, что результаты, полученные методом 1, целесообразно исключить из обсуждения, так как оли сильно отличаются и друг от друга и от результатов, полученных методом 2. Как указывал Ситон в [11], когда линии пересекзются под малым углом, неопределенность и *n*, возрастает. Например, для Маркарян 10 *n*, и *T*_s, определенные по разлым лилиям методом 1, находятся и следующих границах: 3.70 lg *T*_s 4.00 и 3.80 lg *n*, 5.60.

Обратимся теперь к результатам применсния второго метода. Принимая, что относительная интенсивность линии [N II] / 5755 и [S II] // 4058, 4076 равна 0.005, мы получили л, и T_{\star} , приведенные в шестом и седьмом столбцах табл. 2. В носьмом столбце приведены соотнетствующие значения $X_{\rm surf.}$, а и девятом теоретические значения X согласно [10]. Как видим, согласие между этими величинами неплохое. Действительно, для 11 случаев из 17, для которых такое сравнение возможно, $||g X - |g X_{\rm surf.}| \le 0.5$; то есть примерно для 2/3 слугаев метод 2 дает приемлемые результаты.

Для зоны [O II] л. и Т. меняются в следующих границах:

3.80 lg T, 5.50, 1.20 lg n. 4.5J.

При атом

 $\langle \lg T_e \rangle = 4.23,$ $\sigma^2 (\lg T_e) = 0.13,$ $\lg n_e = 3.07,$ $\sigma^2 (\lg n_e) = 0.76.$

1g T. — 5.50 получается для объекта Маркарян 304, который отличается от остальных объектов высокними значениями п, и T, и для зоны [О III].

Однако надо отметить, что у атого объекта $\|\log X - \log X_{\text{виж}}\| = 0.33$. Это делает его чрезбычайно интересным для дальнейшего более подробного исследования. Исшлючая Маркарян 304, электронная температура меняется в границах 3.80 Ig T. 4.64. Можно заметить, что применяемым методом 2 температуры зоны [O II] получаются в среднем несколько более нысокими, чем в зоне [O III]. Рис. 2 иллюстрирует определение физических условий в зоне [O II].

Рис. 2. Определение n_e и T_e зоны [O II] для галактик Маркарти 40 (в) и 110 (6). (1) — 12 (п. T_e) для / 3727 при 10 ° в ионизоции кислорода. (2) и (3) — 14 $h_1(n_e, T_e)$ для λh 6548, 6584 и 6717, 6731 при 20 ° в ионизоции серм и азота. $S = (I_{A066} + I_{1076}), (I_{16717} + I_{-6731})$ const. N $= I_{A5755}$ ($I_{A6544} + I_{-6584}$) const. принимая что $I_{A066} + 4r_{76} = 0.005 I_H$ и $I_{-5755} = 0.005 I_H$.

3. Результаты. Все полученные результаты можно суммировать таким образом: по наблюдениям 36 сейфертовских галактик типа 1 и 5 радиогалактик с широкими линиями получается, что если запрещенные линии излучаются в двух зонах, соответствующих разным потенциалам ионизации, то условия в среднем таковы:

B JOHE [O III]

 $\lg T_n \simeq 4, \qquad \lg n_n > 6.$

В зоне [O II]

 $\lg T_* > 4, \qquad \lg n_* = 1.2 - 4.5.$

При этом условия в зонах [О III] для разных объектов очень сходны. Различня в физических условиях для зоны [О II] намного больше. Следовательно, в зонах [О II] различных галактик мы имеем значительно больший диапазон значений температуры и плотности, определяющих относительную интенсивность эмиссионных линий. Отсюда следует и больший диапазон самих относительных интенсивностей. Эти результаты качественно согласуются с тем фактом (см. табл. 1), что зависимость от показателя цвета относительных интенсивностей эмиссионных линий [O II], [N II] и [S II], заметно сильнее, чем аналогичная зависимость для линий [O III].

Другим следствием этого факта является то, что стратификация существует в сильной степени и что определение физических условий в зонах, излучающих запрещенные линии, по пересечению кривых для конов O⁺⁺, N⁺ или S⁺ может быть ошибочно в тех случаях, когда нет дополнительных соображений относительно сосуществования атих двух зон.

4. Сравнение с полученными ранее результатами. Чтобы сравнить полученные нами результаты с результатами, полученными ранее другими авторами, мы приводим краткую сводку данных о физических условиях в ядрах сейфертовских галактик обоих типов, радиогалактик и N-галактик. Данные представлены в табл. 3. Хотя методика определения алектронных температур и плотностей немного отличается в разных случаях, данные в среднем согласуются между собой. У сейфертовских галактик типа NGC 4151 электронные плотности $n_e > 10^\circ$ см⁻³ отмечаются у NGC 4051 и NGC 7469, а также у NGC 1275, принадлежность которой к какому-нибудь типу спорна. Для NGC 5548 n_e , полученная в [12] методом 1, довольно неопределенна и может быть от 10⁴ до 10° см⁻³. В [12] приводится $n_e = 3 \cdot 10^5$ см⁻¹.

Для трех N-галактик Смит и др. [13] отмечают, что при нормальном тхимическом составе $n_* \gg 5 \cdot 10^3$ см⁻³ для PKS 0353 + 027 и 3С 467 и $n_* \gg 10^4$ см⁻³ для 3С 411.

Спектрофотометрия 18 галактик Маркаряна привела Нойгебауера и др. [6] к выводу, что у сейфертовских галактик типа 1 существуют три зоны: плотная (водородная) зона с $n_* = 10^6$ см⁻³ (раньше принимались значения $n_* = 10^5$ см⁻³), зона [O III] с $n_* = 10^6$ см⁻³ и $T_* \sim 10^4$ К и зона [O III] с $n_* \ll 10^3$ см⁻³ и $T_* \sim 10^4$ К. Для сейфертовских галактик типа 2 в [6] получено, что плотная зона отсутствует.

Как отмечают Остерброк и др. [14], электронные температуры и плотности в зонах [O III] четырех радиогалактик, которые входят в [3], порядка $T_{\star} \sim 10^4$ К и $n_{\star} = 10^4 - 10^3$ см⁻³. Кроме того, они отмечают, что для 3C 382 и 3C 390.3 нет конечных температур, которые соотнетствовали бы наблюдаемому отношению линий [O III] для $n_{\star} < 10^3$ см⁻³⁻

Таким образом, полученные нами результаты в принципе не противоречат полученным рансе другими авторами. С другой стороны, как уже отмечалось, оны согласуются с интерпретацией зависимостей, полученных в [1, 2].

СЕПФЕРТОВСКИЕ ГАЛАКТИКИ

Таблица 3

ФИЗИЧЕСКИЕ УСЛОВИЯ В ЯЛРАХ СЕЙФЕРТОВСКИХ ГАЛАКТИК

		BONE (O II	l)	Зона (О 11)				
Объект	хитера- тура	T, [K]	п,[сы-3]	литера- тура	$T_{\pi}\{K\}$	n_[eu-3]		
NGC 1068	[17] [23]	17000 10200	10 ³ 4 10 ³ —2 · 10 ⁹	26] [23]	(10-20000) 8-10000	104 4+103		
NGC 1275	[15] [18]	16000	104 310 104	[26] [18]	10 - 20+10* 12000	104 4-103		
NGC 3227	[24] [19]	19000 16000	10¢	[24] [19]	11000 12000	200 — 300 10 ³		
NGC 3516				[19]	15000	104		
NGC 4051	[19]	16000	5-10 ^e	(19]	12000	3-103		
NGC 4151	[3] [20] [22]	одна вона с $T_s = 2 \cdot 10^4$ и $n_s = 4 \cdot 10^3$ $T_s = 14000$ $n_s = 2 \cdot 10^3$ (18000) (5000) (одна вона)						
NGC 5548	[12]	14000	3-105					
NGC 7469	(19) [15]	I 1000 (4=104)	5-10 ⁶ >2.5-10 ⁵					
Маркарян 79	[8]	3-3.5-104	2.5.103	[8]	104	2.5-3.104		
3C 120	[25]	25000	(<10 ⁵)	[25]	(26000)	1500		
N-FRARET.	[13]	10-12000	5-10 ⁵ ÷5-10 ⁴					
СГ типа 1	[6]	(104)	> 104	[6]	(104)	د10		
СГ тыпа 2	[6]	(12000)	105	[6]	10-20000	103		
Радногал.	[14]	1042	>10 ⁴ -10 ³	4				

Примечание. Эначения л_е и T_e, завлюченныз в скобяж, являются воличинами, аринитыми авторами. При ятом соответствение получались приведенные в соседних столбцах значения T_e и n_e.

Автор благодарен М. А. Аракеляну за ценные советы, замечачия и постоянное внимание к настоящей работе.

Ереванский государственный университет

Г. Т. ПЕТРОВ

PHYSICAL CONDITIONS IN THE NUCLEI OF SEYFERT GALAXIES OF TYPE 1

G. T. PETROV

On the basis of spectrophotometric results by Osterbrock the electron densities and temperatures in the nuclei of 36 Seyfert galaxies of type 1 and 5 radio-galaxies are determined by the same procedure. It is shown that in the zones of O the temperatures are close to 10 000 K and densities are about 5 10^6 cm⁻³. The dispersions of both parameters are very small. In the zones of O the dispersions of these parameters are significantly larger.

ЛИТЕРАТУРА

- 4. М. А. Аракелян, Астрофизика, 13, 427, 1977.
- 2. Г. Т. Петров, Астрофизика, 15, 59, 1979.
- 3. D. E. Osterbrock, Ap. J., 215, 733, 1977.
- 4. M. J. Senton, M. N., 114, 154, 1954.
- 5. А. А. Боярчук, Р. Е. Гершберт, Н. В. Годовников, В. И. Проник, Илв. Кр. АО, 39, 147, 1969.
- n. G. Neugebauer, E. Beclin, J. B. Oke, L. Searle, Ap. J., 205, 29, 1976.
- 7. K. Davidson, Ap. J., 171, 213, 1972.
- 8. П. М. Янкулова, Диссертация, МГУ, М., 1974.
- 9. К. У. Аллен, Астрофизические величний, ИА, М., 1960.
- D. E. Osterbrock, in "Astrophysics of Gaseous Nelulae", Freeman and Company, San Francisko, 1974.
- 11. M. J. Seaton, Reports on Progress in Physics, 23, 313, 1960.
- 12. Э. А. Дибай, В. Ф. Есипов, В. И. Проник, Астрон. ж., 44, 689, 1967.
- 13. H. E. Smith, H. Spinrad, R. Hunstend, Ap. 1., 206, 345, 1976.
- 14. D. E. Osterbrock, A. T. Koski, M. M. Phillips, Ap. J., 206, 898, 1976.
- 15. K. S. Anderson, Ap. J., 162, 743, 1970.
- 16. J. A. Boldwin, Ap. J., 201, 26, 1975.
- 17. Э. А. Дибай, В. И. Проник, Астрэфизика, 1, 78, 1965.
- 18. Э. А. Дибай. В. Н. Проник, Пав. КрАО, 35, 87, 1966.
- 19. Э. А. Дибай, В. И Проник. Астрон. ж., 44, 952, 1967.
- 20, Э. А. Дибай, Б. А. Воронцов-Вельяминов, Сныпознум МАС № 29, Бюракан, 1968, стр. 75.
- 21. E. Y. Khachikian, D. W. Weedman, Ap. J., 192, 581, 1974.
- 22. J. B. Oke, W. L. W. Sargent, Ap. J., 151, 807, 1968.
- 23. O. E. Osterbrock, R. A. R. Parker, Ap. J., 141, 892, 1965.
- 24. V. Rubin, F. K. Ford, Ap. J., 154, 431, 1968.
- 25. G. A. Shields, J. B. Oke, W. L. W. Sargent, Ap. 1, 176, 75, 1972.
- 26. E. J. Wampler, Ap. J., 164, 1, 1971.
- 27. В И Проник, Астрофизика, 13, 51, 1977.