академия наук армянской сср АСТРОФИЗИКА

TOM 15

МАЙ, 1979

ВЫПУСК 2

УДК 524 5,524.3/4-32+524.6

РАССТОЯНИЯ И ГАЛАКТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ ПЛАНЕТАРНЫХ ТУМАННОСТЕЙ

Γ. C. ΧΡΟΜΟΒ

Поступила 15 июня 1978 Пересмотрена 25 июля 1978

На основе метода определения расстояний до планетарных туманностей, предложен ного в [2], и данных об угловых расширениях 11 объектов построена новая шкала расстояний до планетарных туманностей. Существующие наблюдательные данные позволили определить расстояния до 197 объектов. Новая шкала значительно короче опубликованных ранее и хорошо согласуется со статистическим параллаксом рассматриваемым объектов.

Исследованные галактические планетарные туманности не показывают концентрации к спиральным ветвим и не наблюдаются на расстояниях более 5 клс от Солица. Они образуют весьма уплощенную подсистему и не могут рассматриваться как вероятная составляющая населения галактического гало. Планетарные туманности имеют выраженную концентрацию к газактическому центру.

При исследовании системы планетарных туманностей выявляются значительные вффекты наблюдательной селекции, требующие отдельного рассмотрения

1. Висление. Представление о галактической системе планетарных туманностей является важнейшей составной частью общей схемы их происхождения и вволюции. Оно складывается на основе данных о распределении туманностей по небу, их кинематических свойствах и расстояниях. В этой работе мы попытаемся построить такую комплексную картину. В следующей статье этой же серни мы уточним ее путем введения поправок за наблюдательную селекцию и аволюционные аффекты и сделаем ряд выводов о космогонии планетарных туманностей.

 Наблюдаемое залактическое распределение планетарных туманностей. Наблюдаемое распределение астрономических объектов некоторого класса по небу уже содержит в себе сведения об их галактическом распределении. Общензвестно (см., например, [1], рис. 2), что планетарные туманности концентрируются как к газактическому экватору, так и к направлению на газактический центр. Подавляющее большинство известных объектов этого класса сосредоточено в полосе $|b^{(i)}|$. 20 и в интервале долгот $\pm 60^{\circ}$ от направления на центр Газактики. На этом важном наблюдательном факте основывается общепринятая сейчас гипотеза о том, что планетарные туманности принядлежат к населению газактического диска.

Сопоставляя степень концентрации планетарных тумвиностей к галактической плоскости с их угловыми размерами, можно получить предварительные выводы о расстояниях до атих объектов. Рис. 1 и табл. 1 показывают, что концентрация планетарных туманностей к галактическому экватору заметно возрастает с уменьшением их видимого углового размера. Следовательно, объекты меньших угловых размеров в среднем находятся на больших расстояниях от Солица. Простые геометрические соображения подсказывают, что звездообразные планетарные тумаиности статистически примерно в 5 раз удалениее, чем объекты с угловыми размерами более 100".

Таблица 1

СРЕДНИЕ АБСО	лютные	ЭНАЧ	ЕНИЯ	ГАЛА	ктич	еской	ШИ	роть
планетарных	ТУМАННО	стей	PA3.	лично	OTO	УГЛОВО	оло	PAS
	MEP	Α ΠΟ	AAHH	1ЫМ 1	1			

Интервал угловых размеров туман- ностей в сев. дуги Зф"	(Ф	(b ¹¹)	Число	
1	2	3	4	
ф'<2-5' (ласэдообразные плане- тарные туманности)	-	10	242	
5"<¢" 25"	10″	12	342	
25 < φ [*] - 50	38	19	97	
50 < φ = 100	73	20	54	
>100*	300	45	59	

Примечания к таблице

1 — интервал изменения угловых диаметров планетарных туманностей.

2 --- (Φ^{*}) -- среднее взвешенное значение углового диаметра для данного имтервала угловых размеров ΔΦ^{*}.

3 — (||¹¹ |) среднее вначение модуля галактической широты для объектов, дивметры которых лежат в данном интервале Δφ^{*}. Величины (| b¹¹ |) относятся к уровню 0.1 N_{max} гистограмм распределения N (Δφ^{*}) = / (| b¹¹ |).

4 - Число объектов из [1] в данном интервале 10".

Эту оценку, вообще говоря, следует исправить за влияние наблюдательной селекции и аволюционные аффекты, так как на больших расстояниях мы наблюдаем преимущественно объекты большей светимости, то есть

угловыми днамегрлым Асимметрия в распределении планетарных разанчаесо углового размера в галактаческих кооробусловлена сравнительно худшей абследоų крушки объекты > 100. центр MAAMO туманностей и западу и и востову от направления на галадтический угаовыжи диаметрами Рис. 1. Набаюдаемое распределовие планетариих тумаказотей динатах (1", b"). Точин – объекты с угловыми диаметрами -: 25"; 25 «ф" «100°; большие вружки – объекты с занностью южного неба.

систематически более компактные и молодые. Однако эмпирический вывод о том, что угловые размеры являются индикатором расстояний до планетарных туманностей, представляется весьма очевидным.

3. Расстояния до планстарных туманностей. Вывод о существовании статистической связи между угловыми размерами и удаленностью планетарных туманностей от галактической плоскости дает независимый аргумент в пользу известного метода построения шкалы расстояний до атих объектов, предложенного в [2]. Основное соотношение этого метода имеет вид:

$$R = k \left(z'' S^{1.5} \right)^{-1} = kM, \tag{1}$$

где R — расстояние до туманности, φ^{μ} — ее угловой радиус, S — поверхностная яркость н k — постоянная, определяемая при калибровке шкалы. Величину M, зависящую только от наблюдаемых физических характеристик данного объекта, мы назовем модулем расстояний.

Наилучшим способом калибровки шкалы было бы использование тригопометрических параллаксов близких объектов. Однако сколько-инбудь надежные данные такого рода пока отсутствуют.

В некоторых прежних работах шкала расстояний калибровалась с помощью спектральных параллаксов пекулярных ядер нескольких планетарных тумаиностей. Правомочность этого метода вызывает сомнения, сзязанные с невозможностью проверки справедливости обычного соотношения спектр—светимость для ядер планетарных туманностей или даже для гипогетических холодных компаньонов этих ядер.

С нашей точки зрения, единственным заслуживающим доверия методом определения абсолютных расстояний до индивидуальных планетарных туманностей пока является использование существующих данных о вековом угловом расширении нескольких объектов, вкупе с измеренными спектроскопически скоростями их расширения.

Критический отбор наблюдательных данных позволил нам получить таким путем расстояния до 11 планетарных туманностей с помощью простого соотношения из [3]:

$$\mathcal{R}_{\rm nc} = 21.1 \frac{V}{\Delta r}, \tag{2}$$

где $R_{\rm nc}$ — расстояние до туманности в парсеках. V, (км/с) — радиальная скорость ее расширения. — "" — приращение углового радиуса в секундах дуги за 100 лет. Для вычисления модулей расстояния M для тех же объектов, использовались их поверхностные радиояркости на частоте 6630 МГц и угловые радиусы основных структур туманностей из работы [12]. Все

использованные данные сведены в табл. 2. Соответствующая калибровочная зависимость показана на рис. 2 и имеет вид:

$$\lg R_{\rm nc} = \lg k + \lg M = 0.35 + \lg M. \tag{3}$$

Существование отчетливой связи между независимо определенными величинами $R_{\rm o}$ и M, отвечающей теоретическому предсказанию, служит еще одним доказательством состоятельности метода определения расстояний до планетарных туманностей с помощью соотношения (1). Точность калибровки, определяемая разбросом точек на рис. 2, может быть порядка ± 0.10 в величине 18

Таблица 2

No	Объеят	39-	Ли- тература	V, (вм/с)	Ан- тература	In R (ne)	ę"	ід МГа (Вт/м ³ . Гц.ср	lg M
1	2	3	4	5	6	17	8	9	10
1	NGC 245	1.4 ±0.5	[3]	(20)		2.470	214	-20.38	2.047
2	1535	0.2 = 0.3	[3]	20	[5]	3.324	21	18.79	2.737
3	3242	1.0 ±0.4	[3]	19.9	[5]	2.625	24	18.06	2,533
4	3587	2.0 ±1.0	[3]	22.2	[3]	2.366	180	20.11	2.068
5	6572	1.27 . 0.1	3 [3]	17.0	[5]	2_451	20	17.74	2.548
6	6720	0 90	[4]	2).3	[6]	2.832	- 60	18.76	2.275
7	6853	6.8	[4]	23.0	[79]	1.853	480	19,19	1.458
8	7009	0.43±0.2	6 [3]	12.0	[10]	2.740	15	17.58	2.641
9	7026	0.21±0.1	5 [3]	40.8	[5]	3.615	8	17.66	2.930
10	7293	3.3 ±1.4	[3]	(20)	[11]	2.107	250	20.70	1.602
11	NGC 7662	J.76±0.2	4 [3, 4]	28.5	[5]	2_891	22″	-18.19	2.597

СВОДКА ДАННЫХ ДЛЯ ПОСТРОЕНИЯ КАЛИБРОВОЧНОГО ГРАФИКА НА РИС. 2

В табл. З приведены расстояния до 197 планетарных туманностей, определенные нами с помощью соотношения (3). По характеру наблюдательных данных, использованных для вычисления M, все объекты разделены на 5 категорий, описание которых дано в пояснениях к таблице. Наибольшую точность имеют расстояния до объектов категорий 1, 2 и 4. В табл. З приведена также вспомогательная величина потока радиоизлучения туманностей на частоте 6630 МГц, измеренная или вычисленная по оптическим данным с помощью теоретических или эмпирических формул переходя, а гакже звездные величина ядер туманностей в системе В, исправленные за межзвездное поглощение; они понадобятся нам позднее, при расчете абсолютной светимости ядер. Приведенные в таблице величины В, исправлены за межзвездное поглощение с помощью достаточно очевидного саотношения, основанного на кривой селективного межзвездного поглощения Унтфорда

$$B_0 = B - 2.86 C, \tag{4}$$

где В., и В — истинная н видимая звездные величины, а С — постоянная межзвездного покраснения. Значения С для рассматриваемых планетарных туманностей взяты из [12, 16]. Наблюдаемые В-величины ядер собраны в нашей работе [19].

Рис. 2. Калибровочная зависимость для определения ковффициента k в формуле (1) путем сравнения расстояний $R_{\rm nc}$, определенных по утловым расширениям планетарных тумвинсстей (формула (2), табл. 2) с модулями расстояний M. Цифры соответствуют номерам объектов в табл. 2. Точка 7' показывает положение туманности NGC 6572 с расстояниями, определенными по выно заниженией оценке се утлового расширения в [3]. Калибовочная зависимость вмест виа: $R_{\rm nc} = 0.35 \pm 1 g M$.

В табл. 3 содержатся, по-видимому, практически все планетариме туманности. для которых можно сколько-нибудь уверенно определить расстояния по формуле (3). Получениая шкала расстояний в 1.3 раза короче шкалы [2], в 1.8 раза короче шкалы [20] и в 2.2 раза короче [21], которая, как ато было показано в [17], вообще завышена из-за переоценки межзвездного поглощения. Наша шкала оказывается тем более (в 2.7 раза) короче шкалы Кадворса [22], построенной с использованием кинематических данных.

Ввиду таких противоречий необходимо сопоставить полученную шкалу расстояний со статистическим параллаксом планетарных туманностей.

ПЛАНЕТАРНЫЕ ТУМАННОСТИ

Таблица З

РАССТОЯНИЯ ДО ГАЛАКТИЧЕСКИХ ПЛАНЕТАРНЫХ ТУМАННОСТЕЙ

Туманность	lg F _{seat} (Bτ μ ² , Γg)	lg R (ne)	Bo	Катего- рия
1	2	3	4	5
NGC 40 246 650-1 1501 1514	-26.34 26.75 26.90 26.69 26.59	2.72 2.39 2.71 2.70 2.40	10 ³ 11.3 13.2 8.6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1535 2022 2346 2371 2 2392	26.88 27.02 27.12 27.11 26.57	3.09 3.05 2.91 3.03 3.08	11 3 14.4 13.1 14 3 9.9	1 1 1 1
2438 2440 2452 2610 3132	27.14 26.46 27.16 27.47 26.64	2.82 3.00 3.15 3.21 2.96	13 5 (16.8) 14.1 9.5	2 1 2 2 2
3242 3587 4361 5882 6058	26.08 26.78 26.74 26.44 27.00	2.88 2.42 2.79 3.28 2.99	11.5 16.0 12.7 10.9 12.8	1 1 1 2 1
6072 6153 6164—5 6210 6302	26.90 26.26 24.43 26.48 25.46	2.85 2.81 1.65 3.07 2.78	(14.5) 10.7	2 2 1 1 1
6369 6439 6445 6537 6543	25.71 27.64 26.49 26.24 26.06	2.76 3.59 2.73 3.08 2.88	10 6 (16.2) (16.8) 9.4	2 2 1 1 1
6563 6565 6567 6572 6578	27.90 27.41 26.87 25.87 27.40	3.31 3.41 3.25 2.90 3.42	17.4 (14.7) 10.3 10.1	2 2 1 1 2
6620 6629 6720 6741 6751	27.15 26.62 26.22 26.50 27.46	3.63 3.14 2.56 3.33 3.07	10_2 14_3 13_4	4 3 1 1
6772 6778 6781 6790 6803	27.09 27.95 26.53 26.44 27.00	3.01 2.78 2.35 3.51 3.50	(15_4) (14.1) (14.4) 11.6 (12.4)	2 1 2 1 1

Г. С. ХРОМОВ

Таблица 3 (продолжение)

1	2	3	4	5
NGC 6804 6807 6818 6826 6833	26.87 2728 26.43 26.42 26.82	2.98 3 36 3 04 2.95 3.27	13 0 13.1 12.0 10.2 12.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6853 6879 6891 6884 6886	25.91 27.64 26.77 26.75 26.87	2.81 3.61 3.51 3.40 3.45	(13.7) (11.4)	1 2 1 1 1
6891 6894 6405 7003 7009	27.02 27.11 26.30 26.67 26.08	3.08 2.86 2.77 2.68 2.99	(11.4) (15.5) (11.5) 11.4 10.7	1 2 1 2 1
7026 7027 7048 7139 7293	26.59 25.17 26.05 27.55 25.95	3.28 2.88 2.51 2.85 1.85	(12.6) (7.1) (15.4) (16.6) 13.3	1 1 1 2 2
7354 NGC 7662 289 351 418	26.21 26.22 27.00 27.42 25.80	2.89 2.95 2.91 3.48 2.99	10,7 14,4 9,0	1 1 2 1 1
11 1747 2003 2120 2149 2165	27.04 27.55 27.03 26.58 26.70	3.50 3.50 2.94 3.25 3.37	14.9 13.8 9.2	1 2 1 1
3568 4593 4634 4732	27.07 26.95 28.82 27.09	3.41 3.19 3.14 3.63	12.1 10.9 14.5	1 1 1
4776 4846 4947 5117 11 5217	27.43 27.30 27.07 26.67 27.08	3.26 3.41 3.69 3.66 3.42	12.7 13.7 10.6 11.8 (13.7)	2 1 1 1
A 1 2 3 4 5	29.64 29.29 28.85 27.39 28.59	3.31 3.30 3.28 3.45 2.85		3 3 3 3 3
6 7 8 10 11	28,49 27,29 28,23 28,54 30,15	2.69 2.20 3.14 3.21 2.67		3 3 3 3 3

ПЛАНЕТАРНЫЕ ТУМАННОСТИ

		1 40.108		O,T.ILEMAC
1	2	3	4	5
A 13 15 16 19	27.87 29.29 28.59 26.69	2.76 3.29 2.89 3.03		3 3 3 3
20 21 22 24 25	29.01 25.73 28.25 26.63 28.69	3.05 2.04 2.50 2.44 2.77	17."0	3333
26 28 29 30 31	29.39 28.91 27.44 28.96 26.65	3_411 2.72 2.43 2.87 2.02		3 3 3 3
32 33 34 36 37	29.13 27.65 27.55 27.44 28.53	2.98 2.54 2.50 2.35 3.10	15.4	3333
38 39 40 41 42	27.99 28.19 28.91 29.17 29.57	2.95 2.66 3.48 3.16 3.26		3 3 3 3
43 44 45 46 49	28.53 28.49 27.87 28.79 28.79 28.79	2.91 3.20 2.49 3.12 3.25		3 3 3 3 3
50 51 52 53 54	28.74 28.69 29.01 28.31 29.50	3.28 2.85 3.25 3.19 3.23		3333
55 56 57 59 60	28.15 28.31 29.69 78.25 29.07	2.93 2.69 3.32 3.03 3.03		3 3 3 3 3
61 62 63 64 65	28.25 27.21 29.23 28.85 28.53	2.66 2 74 3 32 3 14 2.84	16.0	3 3 3 3
66 67 68 70 71	27.87 29.33 29.13 28.53 28.17	2.57 3.00 3.52 2.97 2.78	18.2	3333
			1	

Г. С. ХРОМОВ

Таблица 3 (окончание)

1	2	3	4	5
A 72 73 74 75 76	27.59 29.07 27.06 29.34 29.39	2.82 3.08 2.23 3.13 3.51		ମ ମ ମ ମ ମ ମ ମ
77 78 79 80 81	27.87 29.39 27.67 27.77 28.49	3.10 2.82 2.97 2.81 3.06	10 ^m 8 18.2 7(19.7)	3333
82 83 84 A 86 Ba 1	28.15 29.73 26.64 29.13 27.89	2.89 3.27 2.70 3.13 3.11		3 3 3 1
BD + 30°3639 BI 311 Cn 3-1 320] 900	26.22 24.59 26.90 27.57 26.93	2.82 2.76 3.48 3.37 3.21	8.5 13.3	1 4 1 1
H 1-42 Hb 5 Hb 6 Hb 12 He 2-131	24.62 26.28 26.74 27.15 26.21	5.09 3.16 3.38 3.77 3.29	° 11.7 12.7	4 4 2 1 5
Hu 1-1 Hu 1-2 Hu 2-1 K 2-4 M 1-1	27.89 27.04 26.90 26.47 27.34	3.66 3.47 3.60 2.02 3.50	14.3	1 1 2 1
M 1-7 M 1-26 M 1-29 M 1-32 M 1-42	27.77 26.03 26.95 26.46 26.63	2.92 3.47 3.49 3.39 3.39	9.0	1 4 4 5 4
M 1 46 M 1 48 M 1 50 M 1 53 M 1 54	26.52 28.26 27.43 27.76 27.33	3.30 3.87 3.67 3.71 3.41		4 4 4 4 4
M 180 M 224 M 233 M 236 Me 11	27.89 26.56 27.81 26.91 27.29	3.44 3.41 3.80 3.49 3.86		2 4 4 4 1
Me 2-1 Me 2+2 VV 41 VV 42	26.94 27.55 26.56 26.88	3.38 3.74 2.33 2.78	13.9	1 1 2 2
VV 75 VV 232 VV 473	27,62 26,82 27,05	3.30 3.40 2.76	1	2 2 2

Примечания к таблице 3

В столбще 5 приведена категория объекта по характеру наблюдательных данных, использованных для вычисления расстояния по формуле (3):

 туманности с известными радиопотоками, условыми размерами и морфологическим типом согласно [18], для которых в [12] рассчитаны поверхностные радиояркости S₄₄₅₀.

2 туманности с известными радиопотоками, угловным размерами и морфологическим типом, согласно [18], не вошедшие в [12]. Наблюдательные дачные о них брались из каталога [13] и некоторых более поздних радиоастроиомических обзоров.

3 — слабые планетарные тумянности из спискя [14] с известыми фотографическими поверхностными яркостями в системе Паломарского атласа неба, угловыми размерами и, реже, морфологическим типом. Для перехода к поверхностным размояркостям использовалось эмпирическое соотношение, получениее в [12]. Межзвезаное поглощение на за отсутствия необходимых данных.

4 — компактиме планстарные туманности в направлении на галактический центр из [15] с известлыми потоками излучения в знини Н₂ и угловыми размерами. Попрации за межзлезаное поглощение брались из [16], а перерасчет исправленных веми чин F (H₂) в радиопотоки F₁₀₀₀ производились с помощью известного теоретического соотношения (см., напр., [17]).

5 — прочне туманности из каталога [1] с известными угловыми размерами и какими-либо наблюдательными данными, позволяющими оценить межавездное поглощение и раднопоток.

4. Статистический параллакс планетарных туманностей. В нашей работе [23] был проведен подробный анализ существующих данных о кинематике галактических планетарных туманностей и исследована надежность получаемых на их основе результатов. Сделан вывод о том, что нанбольшего доверия заслуживает статистический параллакс, рассчитанный по т-компонентам собственных движений планетарных туманностей

Собственные движения известны сейчас для 62 планетарных туманностей (см. также табл. 111 в [22]); 58 из атих объектов попали в нашу табл. 3. Рассчитывая среднее расстояние до атой группы туманностей и сравнивая соответствующий средний параллакс = с параллаксом = из [23], имеем

" = 0 00079 – по нашей шкале расстояний.

0 00068 - 0 00022 — по т-компонентам собственных движений тех же объектов.

Очевидно, что в пределах точности калибровки нашей шкалы расстояний (см. рис. 3) и современной точности определения статистического параллакса, полученные значения средних параллаксов и , хорошо согласуются. Это подтверждает правильность принятого нами абсолютного масштаба шкалы расстояний.

 Галактическое распределение планетарных туманностей. Убеднвшись в непротиворечивости нашей шкалы расстояний данным о кинематикс планетарных туманностей, сделаем некоторые выводы об их галактическом распределении.

На рис. З приведена картина распределения 197 планетарных туманностей из табл. З в проекции на галактическую плоскость. Очевидно, что планетарные туманности в непосредственной близости от Солнца распределены примерно однородно. Некоторый дефицит объектов в области галактических долгот 250—340° обусловлен неполнотой обзоров Южного неба.

Рис. 3. Распределение планетариых туманностен из табл. 3 в проекции на галактическую илоскость. Картина спиральных ветвей — согласно работе [24].

Наиболее удаленные объекты наблюдаются в направлении галактического центра на расстояниях порядка 5—6 кпс. Эначит, как и следовало ожидать, наблюдаемые планетарные туманности находятся вне центральных областей Галактики. В противном случае трудно было бы понять, каким образом их оптическое излучение доходит до нас сквозе мощные сгущения межзвездной материи, окружающие ядро Галактики.

Еще одним существенным выводом из рис. З является отсутствие сколько-нибудь заметной концентрации планетарных туманностей в спиральных ветвях. Некоторое увеличение поверхностной плотности распределения планетарных туманностей в непосредственной близости от Солнца объясняется наблюдательной селекцией, вследствие которой протяженные объекты из списка [14] обнаруживаются в среднем только на малых расстояниях.

Использованный нами метод определения расстояний до планетарных туманностей требует знания их угловых размеров. Это обстоятельство, вместе с влиянием наблюдательной селекции и слабой фотометрической обследовательностью удаленных компактных планетарных туманностей, привело к кажущемуся падению поверхностной плотности их системы в направлении на галактический центр. На самом деле, как это следует на рис. 1 и данных о распределении планетарных туманностей в спиральной галактике М 31 [25], поверхностная плотность должна возрастать к центру Галактике.

Применяя простой графический метод, описанный в [26], можно определить наблюдаемый радиальный градиент поверхностной плотности галактической системы планетарных туманностей.

Метод основан на сравнении чисел планетарных туманностей в двух секторах галактической плоскости—внутреннем и внешнем по отношению к охружности, описанной из центра Галактики через Солнце. Расстояние Солнца от галактического центра принималось равным 9 кпс. Для уменьшения влияния возможной неполноты выборки, мы использовали только те объекты, проекции которых попадали в окружность раднусом 0.8 кпс, списанную вокруг Солнца в галактической плоскости. Всего использовалось 57 туманностей. Полученное в итоге наблюдаемое распределение поверхностной плотности системы планетарных туманностей P(R) описывается соотношением

$$u(R) = \frac{R}{2} = 8.1 \cdot 10^{-6} e^{-0.32R}, \tag{5}$$

где z = 0.32 — показатель степени экспоненциального распределения поверхностной плотности, а $8.1 \cdot 10^{5}$ кпс⁻² — поверхностная плогность планетарных туманностей в центре Галактики. Полное число планетарных туманностей в Галактике $N = 2\pi p_0/z^2 = 5 \cdot 10^4$, а их местная поверхностная плотность р (Loc) 45.3 кпс⁻².

На рис. 4 показан ход пространственной плотности планетарных туманностей с высотой над галактической плоскостью. Он получен путем подсчета туманностей из табл. 3, попадающих в цилиндр радиусом 0.5 кпс вохруг Солица, перпендикулярный к галактической плоскости.

Как обычно, эмпирическая зависимость пространственной плотности объектов от высоты над галактической плоскостью оказывается промежуточной между экспоненциальным и нормальным распределениями. В нашем случае она характеризуется следующими параметрами: $Z_{0.1} = 0.2$ клс. $\langle |Z| \rangle = 0.13$ клс,

 $\frac{\partial \log v}{\partial Z} = -4.34 \, \text{кпc}^{-1} \\ v_{Z} = v_{0} e^{-10Z} \\ v_{0} = 4 \cdot 10^{1} \, \text{кпc}^{-3} \end{bmatrix} - \text{для экспоненциального распределения,}$

 $D(Z) = (0.1)^2 \ \kappa nc^2 - для$ нормального распределения.

Здесь пространственная плотность планетарных туманностей на кпс³; ч₁ – наблюдаемая пространственная плотность в галактической плоскости, Z высота над галактической плоскостью в кпс.

Рис. 4. Зависимость пространственной плотности ближайших планетарных туманпостей от расстояния над галактической плоскостью. Пунктирная линия — экспоненцияльная зависимость (2 4 10³ e⁻¹⁰²). Сплощияя линия — нормальное распределение с дисперсией (0.1 кпс)².

 $Z_{0,1}$ — высота над галактической плоскостью, соотнетствующая плотности $v_{2} = 0.1 = D(Z)$ — дисперсия нормального распределения $v_{2} = \frac{1}{2}(Z)$. Солнце считается лежащим в галактической плоскости.

Как показывает рис. 4, простые теоретические зависимости плохо представляют наблюдаемое распределение точек, имеющее значительный

разброс. Распределение у оказалось вполне симметрично относительно Z = 0. Некоторая депрессия точек на рис. 4 вблизи Z = 0 отражает дефицит планетарных туманностей, наблюдаемых вблизи галактической плоскости, что, очевидно, есть следствие значительного межзвездного поглощения, препятствующего обнаружению планетарных туманностей даже в непосредственной близости от Солица.

Полученные результаты вполне определенно говорят о том, что планетарные туманности образуют весьма уплощенную систему и должны практически отсутствовать в галактическом газо.

Сравнивая данные о распределения планетарных туманностей по Z-координате с их кинематическими характеристиками, выведенными в [23], мы получаем примечательное совпадение. Так, согласно теоретическим представлениям звездной динамики [27], среднему удалению от галактической плоскости, равному 0.13 кпс, должиа соответствовать средняя скорость объектов по Z-координате при пересечении ими галактической плоскости $|V_{Z0}| = 10$ км/с. В работе [23] для 348 планетарных туманностей с известными лучевыми скоростями получено $|V_Z| > = 6$ км/с: заметим, что по физическому смыслу $|V_A| = \lim (|V_A|)$. Вероятно, соответствие рассмотренных выше пространственных и кинематических характеристик может считаться дополнительным доводом в пользу построениюй нами шкалы расстояний.

Астрономический совет АН СССР

THE DISTANCES AND THE GALACTIC DISTRIBUTION OF THE PLANETARY NEBULAE

G. S. KHROMOV

The new distance scale for the planetary nebulae is constructed on the basis of the method of the determination of their distances suggested in [2] together with the data on the angular expansion for 11 nebulae. The scale includes 197 objects with observational data complete enough for the distance to be determined. The new scale is remarkably shorter, than the others published and is well compatible with the statistical parallax data.

The planetary nebulae with the distances determined do not show any concentration in the spiral arms and are distributed within 5 kps from the Sun. They form a rather flattened subsystem and cannot be treated as the possible component of the galactic halo; the degree of their concentration to the galactic center is high. Strong effects of the observational selection become evident in the process of the study of the planetary nebulae system; their special analysis is needed.

ЛИТЕРАТУРА

- 1. L. Perek, L. Kohoutek, Catalogue of Galactic Planetary Nobulae, Prague, 1967.
- 2. И. С. Шкловский, Астрон. ж., 33, 222, 1956.
- 3. M Liller, B. Welther, W. Liller, Ap. J., 144, 280, 1966.
- 4. О. Н. Орлова, Астрон. ж., 49, 1164, 1972.
- 5. O. C. Wilson, Ap. J., 111, 279, 1950.
- 6. Л. Аллер, У. Лиллер, Планстарные туманности, Мир. М., 1971.
- 7. J. Meaburn, Astron. Astrophys., 13, 478, 1971.
- 8. A. C. Danks, Astrophys. Space Sci., 14, 480, 1971.
- 9. В. Т. Дорошенко, Астрон. ж., 48, 455, 1971.
- 10. W. Ford, V. Rubin, Astrophys. Lett., 8, 67, 1971.
- G. Garrunza, G. Courtes, R. Louise, Planetary Nebulae, Dordrecht-Holland, 1968, p. 249.
- 12. Г. С. Хромов. Астрон. ж., 53, 961, 1976.
- L. Higgs, Catalogue of Radio Observations of Planetary Nebulae and Related Optical Data, Nat. Res. Council of Canada, 1971.
- 14. G. O. Abell, Ap. J., 144, 259, 1966.
- Б. А. Воронуов-Вельяминов, Е. Б. Костякова, О. Д. Докучасев, В. П. Архипова, Астрон, т., 52, 264, 1975.
- 16. J. B. Kaler, Ap. J., Suppl. ser., 31, 517, 1976.
- 17. Г. С. Хрочов, Астрон. ж., 53, 762, 1976.
- 18. G. S. Khromov, L. Kohoutek, Planetary Nobulae, Dordrecht-Holland, 1968, p. 227.
- 19. Л. С. Пилюгин, Г. С. Хромов, Астрон. ж., 56, 631, 1979.
- 20. C. R. O'Dell, Ap. J., 135, 371, 1962.
- 21. J. H. Cahn. J. B. Kaller, Ap. J., Suppl. ser., 22, 319, 1974.
- 22. K. M. Cudworth, A. J., 79, 1384, 1974.
- 23. М. Н. Киоса, Г. С. Хромов, Астрофизика, 15, 105, 1979.
- 24. R. M. Humphreys, A. J., 75, 602, 1970.
- 25. H. C. Ford, Planetary Nebulae, Dordrecht, Holland-Boston, U.S.A., 1978, p. 19.
- 26. D. Alloin, C. Cruz-Gonzalez, M. Peimbert, Ap. L. 205, 74, 1976.
- 27. J. H. Oort, Galactic Structure, Chicago, 1965, p. 455.