академия наук армянской сср АСТРОФИЗИКА

TOM 15

ФЕВРАЛЬ, 1979

выпуск 1

УДК 523.855

БЕДНОЕ СКОПЛЕНИЕ ГАЛАКТИК, СОДЕРЖАЩЕЕ ЧЕТЫРЕ АБСОЛЮТНО ЯРКИХ ГАЛАКТИКИ МАРКАРЯНА

М. ИЫЭВЭЭР, А. КААЗИК, Я. ЭГІНАСТО Поступила 29 ноября 1978

Обращается винмание на скопление галактик (ZwCl 1122.3 + 6317) с малым числом членов, но содержащее четыре абсолютно вринх (-20^m9 $M_{\odot} = -19^m$) галактики Маркарина. На основе ракее опубликованими и замово измеренных дучевых скоростей определены характеристики свопления: средняя сворость удваения (v_a) = 3557 км-гек, дисперсия скоростей $\frac{1}{2} = 219 \text{ км/сек}$, отношение массы в светимости $M_{\rm c}L$ 84 $M_{\odot}L$. Не исялючено, что чы имеем дело с двумя прооцирующимися друг на друга группами с (v_a) $_1 \approx 3350 \text{ км}$ сек и $_1 = 3350 \text{ км/сек}$.

Согласно Маркаряну [1], на каждые восемь квадратных градусов неба приходится в среднем одна галактика ярче 17° с сильным ультрафиолетовым излучением. Галактики Маркаряна часто входят в состав двойных и троиных галактик [2—5]. Караченцевы [6] обратили внимание на группу галактик, содержащую пять галактик Маркаряна. Нами при измучении пространственного распределения галактик в созвездии Большой Медведицы было найдено пространственное сгущение галактик, содержащее четыре галактики Маркаряна.

Это сгущение находится в области неба, ограниченной координатама $11^{\circ}04^{\circ} < z < 11^{\circ}38^{\circ}$, $62.00^{\circ} < \delta < 64.40^{\circ}$. В каталоге Цвикки и Герцога [7] оно выделено как рассеянное скопление галактик ZwCl 1122.3 + τ 6317 с классом расстояния "близкое". Согласно каталогу [7], в указанной области неба находятся 33 галактики с $13^{\circ}1 < m_{pg} < 15^{\circ}7$ (3.2 галактики на кнадратный градус). От соседних сгущений галактик с тем же диапазоном видимых звездных величин рассматриваемое скопление отделяется областью с более низкой поверхностной плотностью таких

галактик. Так, в участке $10^{6}50^{6}$ 2 2 11 6 50^{6} , 61^{7} 7 7 6 6 имеется лишь 13 галактик (0.45 галактик на квадратный градус).

В табл. 1 представлены данные о ярких ($m_{\rm PS} < 15^{\circ\prime\prime}$ 0) галактиках и галактиках Маркаряна в области неба, занимаемой выделенным нами сгущением. Координаты и эвездные величины $m_{\rm PS}$ приведены согласно Цвикки и Герцогу [7], размеры и описания галактик — согласно Воронцову-Вельяминову и Красногорской [9], абсолютные светимости соответствуют постоянной Хаббла $H=50~\kappa m/ce\kappa/Mnc$, поглощение света в Галактике принималось согласно [8]. Лучевые скорости для пяти галактик взяты из каталога [8], для трех галактик (NGC 3668, АКп 293, NGC 3762) приведены новые данные, полученные нами.

Спектры для определения лучевых скоростей получены весной 1978 г. на 1.5-м рефлекторе АЗТ-12 со спектрографом UAGS в ИАФА АН ЭССР. Спектры наблюдались с многоканальным оптическим анализатором (ОМА) фирмы PARC (США), в котором светоприемником является телевизионная передающая трубка типа SIT видикон. Наблюдения проводняйсь в днапазоне длин воли и 4000—6200 А с дисперсией 200 А/мм. Источником света для получения спектра сравнения служила лампа с польм катодом. Лучевые скорости определялись из смещений линий поглощения в зеленом и желтом участках спектра (см. рис. 1). Во всех спектрах определялись положения линий MgI 5175, и 5269 А и NaD, в спектрах Акп 293 и NGC 3762 измерялись также положения линий Н, и и 5331 А. Точность лучевых скоростей определялась по разбросу значений лучевых скоростей, полученных по отдельным линиям. Имеющиеся в спектрах сильные эмиссионные линия ночного неба (и 5461, 5577, 5770, 5791, 5892) использовались для контроля нуль-пункта системы скоростей.

Как показывают приведенные данные о лучевых скоростях, все до сих пор наблюденные галактики скопления находятся от нас примерно на одном и том же расстоянии и образуют пространственное сгущение. Судя по контрасту поверхностных плотностей, большинство галактик без лучевых скоростей из табл. 1 должны входить в это скопление, число объектов фонзвероятно не больше 1—2.

Как видно из табл. 1, изучаемое скопление в основном состоит из спиральных галактик, возможными членами являются некоторые компактные Е-галактики. Скопление является очень рассеянным, никаких признаков концентрации к центру не имеется. Примечательно то, что гвлактики Маркаряна в скоплении оказываются в числе наиболее ярких. Они в среднем на 2^m ярче галактик Маркаряна, содержащихся в группе, изученной Караченцевыми [6]. Следует отметить, что поскольку рассматринаемое скопление находится более чем вдвое дальше, чем группа [6], и галактики с $M_{\rm PF} \sim -17^m + -18^m$ оказываются уже на грани полноты спектраль-

ного обозрения Маркаряна, то действительное число галактик с сильным ультрафиолетовым излучением в скоплении может быть больше четырех.

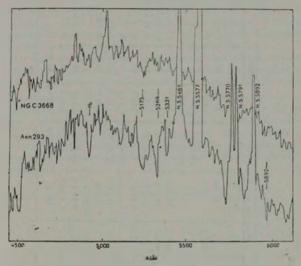


Рис. 1. SIT спектры галантик Akn 293 и NGC 3668. Интенсивности линий ночного ноба / 5461 и 5577 A таковы, что их центры выходят за рамки рисунка.

На основе наблюдательных даниых для восьми галактик с известными лучевыми скоростями можно оценить пространственно-кинематические характеристики скопления. Оказалось, что $V_0=3557$ км/сек, исправления за счет случайных ошибок наблюдений дисперсия лучевых скоростей (ΔV^2) $^{1.2}=219$ км/сек, $R_1=\langle R_{IJ}\rangle=1.50$ Мпс. ($R^{-1}\rangle^{-1}==R_{IJ}^{-1}\rangle^{-1}=0.92$ Мпс. Поскольку распределение на небе галактик скопления с известиыми лучевыми скоростями в общем схоже с распределением остальных возможных членов скопления, то полученные величины должны в какой-то мере характеризовать все скопление.

Принимая для массы выражение согласно [6], имеем для вириальной массы: M=3= G^{-1} ΔV^{\pm} \langle R^{-1} \rangle $^{-1}$ = $9.2\cdot 10^{13}$ M_{\odot} Согласно [10]

М. ЯЫЭВЭЭР. А. КААЗИК, Я. ЭПНАСТО

Logardor	Marc.		۰۸	PI
Описание	(אעכ)	34 _W	(наз/ин)	(10)0
(%) 3	6 92	9_61-	5 -	13 2.5
3		7,91		
		£ 61-	3367+55	
		61 -	3290 # 45	
EP.	€,9€	8.91-		5 2 61
L: Da: 25h	ε'6ε	₱.02—	6 ∓058£	91×61
L: 15, 15bett - R	1.88	-21"4	3750 +50	16 < 12
a	L'61	9.61-		PX5'6
3	8.3	R 61-	3430 F 150	8.8≥1
રાત્ર	8,22	50 3	501 ₹ 9648	\$19≥11
B: R4: 12.4 14	7,02	E 02-		01 01
al.	1"15	-21.2		30 €
Pl 3 icm	L 61	6.02-	3303 ∓ 20	5 7×2.9
В	9.71	6 61-		8.5×4.5
d	6 92	Z*1Z-	001 0498	13×4
	4 07	7 17	201 - 1/05	L Vel

	13.3	70 79	11 34 7	NCC 3362
£×5'9	9 11	.2 29	11 33 3	
9×9	13 6	95 10	8 08 11	641
12 3	13 3	PE E9	11 30 ₹	
	1,41	ZO 29	11 59.9	
1 9	UFL	8F Z9	9 67 11	251 unquaqaM
	14.7	2F E9	11 54'0	VKn 293
4 2 5	6 Fl	94 52	11 53 6	
8.5×5	13.1	EF E9	11 22,5	NGC 3998
FIF	1791	10 19	11 22 4	
6×3	14.7	12 19	8'61 11	
	12.51	SF 79	\$191.11	991
	R FI	63 33	9 81 11	201 инфанциМ
3 2 5	8 FL	SS 89	6190 11	
	6_11	+95 34.	490 _q 11	
([0) P	Mar	95619	0581 _E	SANTHER
e#d		HIBAN	Koopa	

ē

для времени пересечения получаем значение $\cdot \Delta t = (3/5)^{3/2}$ R $\Delta V^2 = ^{-1/2} = 2.9 \cdot 10^9$ лет. Взяв параметры функции светимости галактик по Кристенсену [11]. для оценки суммарной светимости скопления получаем выражение $L = n^6 \cdot 3.6 \cdot 10^{11} \, L$, где n = число галактик с $M_{\rm Pl} < -21^{\rm st}0$ [12]. Поскольку в нашем случае $n^6 = 3$, для рассматринаемого скопления галактик $L = 1.1 \cdot 10^{12} \, L$., а для отношения массы к светимости получаем значение $M = 84 \, M_\odot L$.

Полученное отношение M.L весьма типично для систем галактик, содержащих преимущественно спиральные галактики, но результат нельзя считать окончательным по двум причинам. Во-первых, используемая дисперсия скоростей ΔV^a может иметь лишь формальный смысл, поскольку не исключено, что в действительности наблюдаются две проецирующие друг на друга группы галактик с V_a ≈ 3350 км/сек и (V_o , ≈ 3750 км/сек (см. рис. 2). Во-вторых, скопление имеет весьми большое время пересечения и может вообще не быть гравитационно связанным [10]. В обоих случаях вириальная оценка массы скопления потеряла бы смысл.

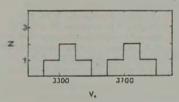


Рис. 2. Распределение лучевых скоростей галактик в скоплении ZwCl 1122.3+6317.

Чтобы более уверенно судить о динамическом состоянии рассматриваемого скопления галактик, нужны дополнительные наблюдения для определения лучевых скоростей остальных вероятных ярких членов группы. Несомнениый интерес представляют точные фотометрические наблюдения для выяснения вопроса о том, встречаются ли признаки аномальности цветов у галактик скопления без ультрафиолетового избытка.

Институт астрофизики и физики атмосферы АН ЭССР

POOR CLUSTER OF GALAXIES CONTAINING FOUR ABSOLUTELY BRIGHT MARKARIAN GALAXIES

M. JÓEVEER, A. KAASIK, J. EINASTO

The cluster of galaxies (ZwCl 1122.3 - 6317) with poor population but containing four absolutely bright (-20^{m9} $M_{\rm pr} \le -19^{m}$) Markarian galaxies is considered. Three new radial velocities have been determined with a SIT based optical multichannel analyser. On the basis of 8 available redshifts the parameters of this cluster are estimated as follows: mean redshift $V_{\rm e} > 3557~km\,sec$, velocity dispersion $\Delta V^{2-12} = 219~km\,sec$, mass-to-luminosity ratio M L = 84 M . L . There exists a possibility that the cluster consists of two separate groups of galaxies with mean redshifts $V_{\rm 0} = 3350~km/sec$ and $V_{\rm 0} \approx 3750~km/sec$, respectively.

ЛИТЕРАТУРА

- 1. Б. Е. Маркаряч, Астрофияния, 5, 581, 1969.
- 2. J. Heidmann, A. T. Kalloghlian, Aстрофизика, 9, 71, 1973.
- 3. J. Heldmann. A. 7. Kalloghlian, Астрофиянка, 11, 229, 1975.
- 4. Р. А. Варданан, Ю. К. Мелик-Алавердин, Астрофизика, 11, 21, 1975.
- 5. Г. Арп. Э. Е. Хачикян, Н. К. Андреасян, Астрофизика, 10, 625, 1974
- 6. II 1. Карачениев. В. Е. Карачениева, Письма АЖ, I. № 5, 3, 1975.
- 7. F. Zwicky, E. Herzog, Catalogue of Galaxies and Clusters of Galaxies, IV, Ca-
- lifornia Inst. Techn., 1968. 8. G. de Vaucauleurs, A. de Vaucauleurs, H. G. Cormin, Second Reference Cata-
- logue of Bright Galaxies, Univ. of Texas Press, 1976.

 9 Б. А. Воронион-Вельяминов, А. А. Красногорская, Морфологический каталог галактик, 1. М., 1962.
- 10. J. R. Gott III, G. T. Wrixon, P. Wannier, Ap. J., 186, 777, 1973.
- 11. C. G. Christensen, A. J., 80, 282, 1975.
- 12 M. Jaever, J. Elnasto, E. Tago, Tertu Preprint A-1, 1977.