академия наук армянской сср АСТРОФИЗИКА

TOM 14

НОЯБРЬ, 1978

выпуск 4

УДК 523.855

СПЕКТРОФОТОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ СЕЙФЕРТОВСКОЙ ГАЛАКТИКИ МАРКАРЯН 348

В. Ф. ЕСИТОВ, В. Н. ПОПОВ, Э. Е. ХАЧИКЯН Поступила 6 августа 1978

На основе 24 спектров, полученных с ЭОП, проведено спектрофотометрическое исследование ядра сейфертовской галактики типа 2 Маркарян 348. Определены относительные интенсивности ряда эмиссионных линий и вычислены физические характеристики излучающего газа. Построены усредненные профили H_3 . N_1 и N_2 и обнаружены компоненты, расположенные почти симметрично относительно центра линий на расстояниях, соответствующих доплеровским скоростям до ± 2000 км/сек. Предполагается сходство активности ядра Маркарян 348 с активностью, наблюдаемой в ядре Маркарян 6.

1. Введениє. Известно, что сейфертовские галактики, в зависимости от вида их спектра, согласно [1], могут быть разделены на два класса. К первому классу относятся объекты с весьма широкими водородными линиями и сравнительно более узкими запрешенными линиями; отношение $I_{N_1-N_2}/I_{H_3}$ порядка единицы. Линии же ядер сейфертовских галактик второго типа имеют приблизительно одинаковую ширину, заметно превосходящую инструментальный контур и отношение $I_{N_1+N_2}/I_{H_3}$ порядка десяти. Как физическая природа ядер сейфертовских галактик, так и ход их эволюции далеки от окончательного выяснения. Поэтому особое внимание уделяется более подробному спектрофотометрическому исследованию этих объектов.

В настоящем сообщении приводятся результаты исследования одной из сейфертовских галактик второго типа — Маркарян 348 [2].

Общий вид оптического спектра этого объекта описан в [3] и определено красное смещение z равное 0.014. Отмечено также присутствие следующих эмиссионных линий: H_2 , H_3 , [N II] $\lambda\lambda$ 6548/83, [S II] $\lambda\lambda$ 6717/30 и [O I] λ 6300. Ширина линии H_4 по данным, приведенным в этой

же работе, оценивается в 60 А. Профиль этой линии (точнее — профиль бленды H₂ + [N II] лл 6548/83) со спектральным разрешением около 6 А построен Денисюком [4]. Остерброк [5] отмечает сходство оптического спектра Маркарян 348 с оптическим спектром радиоисточника 3С 33. Товмасян и Шрамек [6] обнаружили переменное радиоизлучение от галактики на волнах 3.7. 6 и 11.1 см. В течение года — с августа 1972 г. по сентябрь 1973 г. — излучение объекта на более коротких волнах упало по мощности почти в два раза, оставаясь почти на постоянном уровне на волне 11.1 см. Этот спад в [6] объясняется вспышкой, имевшей месго за 3—9 лет до наблюдений.

2. Аппаратура и наблюдательный материал. Получено 24 спектра Маркарян 348 на разных телескопах. Данные о наблюдательном материале приведены в табл. 1. Ниже приводится краткое описание аппаратуры с помощью которой снимались спектры, обозначенные в табл. 1 различными индексами:

Спектр UVITS получен на 2.7-м телескопе обсерватории Мак-Дональд в США со спектрографом UVITS (Ultra Violet Image Tube Spectrograph).

БТА обозначает спектры, полученные на 6-м телескопе со спектрографом СП-160 и ЭОП типа М9ЩВ.

Индексы А и Б обозначают соответственно А и Б спектрографы Южной станции ГАИШ, на которых устанавливается ЭОП типа ФКТ-1 [7].

В графе «Эмульсия» указано, на какой пленке (для спектра 1—пластинке) регистрировалось изображение с экрана ЭОП. Звездочкой помечены эмульсии, очувствленные подсветкой.

Регистрограммы спектров записаны на микрофотометре ИФО-451 Перевод в интенсивности и первичная обработка профилей линий производились на ЭВМ типа «Наири-2» по специально разработанной программе. Спектральная чувствительность системы, с которой получен спектр № 1, определена по калибровочному спектру звезды класса АО. Для остальных спектров чувствительность системы на каждом из участков N₁, N₂, H₃ и [SII], H₇, [NII] в отдельности считалась постоянной.

3. Описание спектров. На наших спектрах обнаружен ряд линий, не отмеченных ранее другими авторами. В табл. 2 приведены данные об относительных интенсивностях линий излучения. Энаком «+» отмечены не обнаруженные ранее линии; двоеточием отмечены значения интенсивностей, которые определены с меньшей точностью (до \pm 50%) из-за блендирования или шумов аппаратуры. Помимо указанных в табл. 2 линий, в спектре имеются эмиссионные детали, которые можно отождествить с линиями Fell. Этот результат весьма интересен, поскольку излучение Fell, как правило, наблюдается в сейфертовских галактиках первого типа.

604

.Ne	Индекс спектра	Дата	Дисп. (А.м.м)	Эмульсия	Спектральный диапазон (А)	
1	UVITS 303	23.09.73	225	103aD	3500-7000	
2	БТА 4	18.09.77	90	103aO	3800 - 5300	
3	БТА 5	**				
4	ETA 6		41			
5	БТА 9	19.09.77			5000-6500	
ó	БТА 10	**	**	**	3800-5300	
7	A-0500- 20	10.09.72	220	A 600*	52 00-6800	
8	A-0445- 15	12.09.72	49		4000-5600	
9	A-2152- 33	19	• 7		5200—6800	
10	A-2305- 10	**	-	49	19	
11	A-0355- 20	10			-	
12	A-0018- 10		U	- 19	5600-7200	
13	A-0042- 20			18		
14	A-0130- 40			19	-	
15	A-0322- 10	14.09.72		**	5900 750 0	
16	A0247- 20				6200-7800	
17	A-0204- 20		48	14	6300-7900	
18	A-0443- 10	15.09.72	18	19	4000- 56 00	
19	A-0427 - 8				4500-6100	
20	A-0408- 8		49	19	5000-6600	
21	A-0337-13	11	**		5300-6900	
22	Б-0033-180	16.09.72	55	103nD*	6450-6900	
23	Б-2317-210	18.09.72		A 600*	4700-5150	
24	Б0350- 95			**	6450-6900	

На рис. 1 показан общий вид спектра — регистрограмма снимка 1 (табл. 1). Ширины как запрещенных линий, так и линий бальмеровской серии

Ширины как запрещенных линии, так и линии оальмеровской серии приблизительно одинаковы и достигают 40—60 А, что соответствует доплеровским скоростям около 2000—3000 км/сек. Интересно отметить, что на уровне половинной интенсивности ширины всех линий очень близки и составляют около 800 км/сек в шкале доплеровских скоростей. Близость по ширине запрещенных и разрешенных линий хорошо согласуется со сравнительно высоким отношением $I_{N_1+N_2}$ $I_{H_3} \simeq 10$, которое свойственно сейфертовским галактикам второго типа.

На рис. 2 и 3 представлены усредненные профили линий H_3 , N_1 и N_2 , полученные по спектрам 1—3, 6, 8, 18 и 19. По оси абсцисс отложена скорость доплеровского сдвига от центра линии, соответствующая изменению

605

Tuber

длины волн. а по ординате — интенсивность излучения, нормированная к единице в максимуме линии.

Рис. 1.

-		- 20					
ł	a	0	л	u	U	a	2

Ион	7.	$I_{i}/I_{\rm H_3}$	Ион	λ	$I_i/I_{\rm H_3}$
[SII]	6717 30	5.3	Hell	4686+	0.16:
H	6563	3.4:		4363+	0.5:
INII	6548 83	2.2:	H.	4340+	0.5:
[0]	6300 64	2.3:	H	4102	0.2:
Hel	5876 **	0.2:	[SII]	4068 76*	0.5:
[NII]	5755	0.2:	Hel	4026	0.1:
[0]	5577 +	0.2:	[Nell1]	3968 3869-	0.8:
[011]	4959 5007	10.0	[01]	3727-	3.4
Ha	4861	1.0			

Как видно из этих рисунков, профили эмиссионных линий имеют заметную асимметрию, при этом более приподнято синее крыло. Наличие большого числа спектров позволило выделить при усреднении интересные особенности профилей, в частности надежно определить присутствие ком-

СЕИФЕРТОВСКАЯ ГАЛАКТИКА МАРКАРЯН 348

понент, которые обнаруживаются как у водородных, так и у запрещенных линий. Это особенно хорошо заметно на рис. 3, на котором представлены усредненный профиль линии Н₃ и профиль «синтетической» линии, со-

ставленный наложением усредненных профилей N₁ и N₂. Наблюдается также и определенная симметрия в распределении компонент относительно центра линии. В интервале скоростей 600—800 км/сек по обе стороны от центра всех линий имеется заметный подъем, который имеет большую относительную интенсивность у линии H₃. На основе этого можно предположить, что облако газа, ответственное за излучение этой компоненты, имеет большую среднюю плотность, чем основная масса газа и поэтому слабее светится в запрещенных линиях. В области синих смещений на расстоянии от центра, соответствующего скорости около 1900—2300 км/сек, гакже имеется компонент: на красной стороне линий имеется компонент с несколько меньшей скоростью—около 1500—2000 км/сек. У этой пары компонент различие относительных интенсивностей между водородными и запрещенными линиями по всей видимости, выражено еще сильнее. Если предположить, что это различие является, главным образом, следствием различия плотностей излучающих масс газа, можно придти к выводу, чго газ, имеющий большую скорость, является также и более плотным.

На основе имеющегося материала сделана попытка обнаружить возможные изменения оптического спектра, коррелирующие с изменением радиоизлучения. Сравнение спектров, полученных в 1972 г., со спектром 1973 г. не показывает значительных изменений оптического спектра. На спектрах 1977 г. как будто наблюдается небольшое уменьшение (на 10— 20%) эквивалентной ширины эмиссионных линий [O III] 4959/5007.

4. Определение некоторых физических параметров излучающего газа. Наличие в спектре ядра галактики Маркарян 348 значительного количества эмиссионных линий, в число которых входит и много запрещенных, позволяет предположить, что механизм их возбуждения сходен с механизмом возбуждения эмиссионных линий в газовых туманностях. Наблюденные линии позволяют определить электронную температуру и плотность излучающей среды, независимо от ее химического состава, используя метод «пересечения кривых» [8].

Кривые равных отношений интенсивностей для линий ионов [OIII] и 4959/5007 и и 4363 (рис. 4, кривая а); [NII] и 6548 83 и и 5755 (рис. 4, кривая б); [SII] и 4068 76 и и 6717 30 (рис. 4, кривая в) взяты по [8].

Используя кривую для линий иона [S II], следует учесть некоторые дополнительные соображения. Дифференциальное межзвездное поглощение влияет на отношение $L_{4068,76}/L_{6717,30}$ в сторону его понижения. Различие в потенциалах ионизации S II — 23.4 эв и О III, N II — 54.9 и 29.6 эв соответственно, может явиться причиной стратификации областей, излучающих линии этих ионов. В частности, линии иона S II, имеющего наиболее низкий потенциал ионизации, излучаются из более холодной области, в которой отношение $L_{4068,76}/L_{6717,30}$ понижено. Оба этих эффекта, снижая величину отношения $L_{4068,76}/L_{6717,30}$, приводят к некоторому смещению соответствую-

6 0 8

щей ему кривой влево и вниз. Именно такое смещение и наблюдается на рис. 4.

Полученные таким образом величины, характеризующие физические условия в излучающей области, позволяют оценить массу и эффективный объем излучающего газа.

Ядро галактики имеет звездную величину $m_B = 15.3$ [9], расстояние до нее составляет 56 *Мпс* (при H = 75 км/сек *Мпс*, z = 0.014). Согласно [10] поток в линии H₃ от звезды нулевой величины класса G4 составляет

$$F_1 = 3 \cdot 10^{-9} \text{ pricek c.m}^2 \text{ A.}$$
 (1)

Тогда, при эквивалентной ширине линии Н₃ около 15 А, получаем наблюдаемый поток от галактики в линии Н₃

$$F_{2} = 3.4 \cdot 10^{-14} \; \mathfrak{spt}/cm^{2} \; ce\kappa. \tag{2}$$

С учетом расстояния до галактики получаем полное излучение небулярной зоны в линии H_3

$$S_{\rm H_2} = 1.3 \cdot 10^{40} \; \mathfrak{spi/cek}.$$
 (3)

Поток излучения от единичного объема водорода определяется по [11] формулой

$$S_{\rm H_2}^{-1} = 22.4 \cdot 10^{-20} n_e \frac{b_4 (T_e)}{7^{3/2}} e^{\frac{9814}{T_e}}, \tag{4}$$

где $b_4(T_e)$ — параметр, характеризующий населенность четвертого уровня атома водорода. Его величина, ингерполированная по [12], равна 1.025, n_e — электронная плотность, которая по нашим измерениям (см. рис. 4) равна $6.5 \cdot 10^3 \ cm^{-3}$, T_e — температура, которая определялась вместе с n_e и равна 50 000 K.

При этих условиях (4) дает:

$$S_{\rm H_s} = 1.05 \ 10^{-18} \ \text{эрг сек.}$$
 (5)

Тогда эффективный объем излучающего газа равен

$$V_{300} = 1.2 \cdot 10^{58} \ c \, m^3 \simeq 4.1 \cdot 10^2 \ n c^3$$

Соответственно, масса излучающего газа равна

$$M = \frac{V_{*\Phi\Phi} \cdot n_e \cdot m_H}{M_{\odot}} = 6.6 \cdot 10^4 M_{\odot}.$$

Таким образом, в ядре галактики Маркарян 348 наблюдаются значительные массы горячего газа, имеющие скорости порядка нескольких тысяч километров в секунду. Распределение скоростей компонент линий по направлению вдоль луча зрения обнаруживает признаки симметрии по отношению к основной линии. Имеются основания предполагать, что ядро Маркарян 348 показывает активность наподобие той, которая была обнаружена ранее в ядре сейфертовской галактики Маркарян 6 [13—16]. Симметрия в распределении скоростей компонент линий дает основание предположить, что, возможно, в ядре Маркарян 348 имел место выброс масс газа в диаметрально противоположные стороны, как это предполагается в [16] в отношении вспышки в ядре Маркарян 6.

Один из авторов (Э. Е. Х.) выражает благодарность проф. Х. Смиту за предоставленную возможность наблюдать на 107[″] телескопе МакДональдской обсерватории.

ГАИШ Бюраканская астрофизическая обсерватория

СЕЙФЕРТОВСКАЯ ГАЛАКТИКА МАРКАРЯН 348

SPECTROPHOTOMETRIC STUDY OF SEYFERT GALAXY MARKARIAN 348

V. F. YESIPOV, V. N. POPOV, E. Ye. KHACHIKIAN

On the basis of 24 image tube spectra a spectrophotometric study of the nucleus of type 2 Seyfert galaxy Markarian 348 was carried out. The relative intensities of number of emission lines are determined and physical characteristics of the emitting gas are calculated. The mean profiles of $H_{\rm P}$, N_1 and N_2 are drawn and components are found to be present. They are situated almost symmetrically from the centrum of the lines and have corresponding velocities of up to 2000 km/sec. A similarity of the activity of the nucleus of Markarian 348 to that observed in the nucleus of Markarian 6 is supposed.

ЛИТЕРАТУРА

- 1. Э. Е. Хачикян, Д. В. Видман, Астрофизика, 7, 389, 1971.
- 2. Б. Е. Маркарян, В. А. Липовецкий, Астрофизика, 7, 511, 1971.
- 3. М. А. Аракелян, Э. А. Дибай, В. Ф. Есипов, Астрофизика, 6, 39, 1970.
- 4. Э. К. Денискох. Труды III Европейской астрономической конференции. Тбилиси, «Мецииереба», 1976, стр. 202.
- 5. D. E. Osterbrock, Physica Scripta, 17, 137, 1978.
- 6. R. A. Sramek, H. M. Tovmassian, Ap. J., 191, L13, 1973.
- 7. В. Ф. Есипов, Новая техника в обсерватории, вып. 1, Наука, А., 1971.
- 8. А. А. Боярчук. Р. Е. Гершберг, Н. В. Головников, В. И. Пооник, Изв. Кр.АО, 33. 147, 1969.
- 9. М. А. Аракелян, Э. А. Дибай, В. М. Лютый, Астрофизика, 8, 473, 1972.
- 10. А. Д. Код. Звездные атмосферы, ИЛ, М., 1963, стр. 67.
- 11. D. Menzel, Ap. J., 85, 330, 1973.
- 12. А. А. Боярчук, Р. Е. Гершберг, Н. В. Годовников, Изв. Кр.АО. 38, 1968.
- 13. Д. В. Видман, Э. Е. Хачикян. Астрон. цирк., № 591, 1970.
- 14. E. Ye. Khachikian, D. W. Weedman, Ap. J., 164, L109, 1971.
- 15. П. Натни, Э. Е. Хачикян, М. М. Бутслов, Г. Т. Геворкян. Астрофизика, 9, 39, 1973.
- 16. Э. Е. Хачикян, Астрофизика, 9, 139, 1973.