УДК 541.69+542.91+547.416

СИНТЕЗ И БИОЛОГИЧЕСКОЕ ИЗУЧЕНИЕ НЕКОТОРЫХ НОВЫХ ЗАМЕЩЕННЫХ БЕНЗИЛ-бис-(β-ХЛОРЭТИЛ) АМИНОВ

Б. Т. ГАРИБДЖАНЯН, Г. М. СТЕПАНЯН, М. А. ИРАДЯН и А. А. АРОЯН

Институт тонкой органической химии АН Армянской ССР

Поступило 28 III 1969

Синтезированы 2-алкохси-5-хлорбензил-бис-(3-хлорэтил)амины. Биологическое исследование этих и синтезированных ранее 3-хлор-4-алкоксибензил-бис-(3-хлорэтил)аминов показало, что полученные соединения более токсичны по сравнению с 2-алкокси-5-бромбензил-бис-(\$-хлорэтил)аминами, описанными в предыдущем сообщении, но некоторые из них обнаруживают и большую противоопухолевую активность.

Табл. 4, библ. ссылок 3.

В предыдущем сообщении [1] было показано, что 2-алкокси-5-бромбензил-бис- $(\beta$ -хлорэтил)амины обладают противоопухолевыми свойствами, однако по активности они уступают применяемым в клиниках препаратам близкой структуры. Продолжением этих исследований является синтез некоторых 2-алкокси-5-хлорбензил- (1) и 4-алкокси-3-хлорбензил-бис- $(\beta$ -хлорэтил)аминов (11).

$$\begin{array}{c}
OR \\
CH_2N(C_2H_4CI)_2 \cdot HCI
\end{array}$$

$$\begin{array}{c}
OR \\
CH_2N(C_2H_4CI)_2 \cdot HCI
\end{array}$$

Синтез соединений І проведен по следующей схеме:

Соединения II описаны ранее [2].

Биологическое изучение указанных рядов осуществляли по ранее описанным методам [1]. Полученные результаты представлены в таблицах 3 и 4. Действие испытанных препаратов в переносимых, токсических и летальных дозах на организм здоровых мышей во многом напоминает влияние 2-алкокси-5-бромбензил-бис-(β-хлорэтил)аминов. Однако по токсичности хлорсодержащие производные превосходят свои бромсодержащие аналоги. Так, например, если летальная доза 2-алкокси-5-бромбензил-бис-(β-хлорэтил)аминов в среднем составляет

194 мг/кг, то для 2-алкокси-5-хлорбензил- и 4-алкокси-3-хлорбензилбис-(β-хлорэтил) аминов она равняется 82 мг/кг и 50,6 мг/кг, соответственно. Удлинение углеродной цепи алкокси группы в ряду 2-алкокси-5-хлорбензил-бис-(β-хлорэтил)аминов приводит к закономерному снижению токсичности препаратов и увеличению их куммулятивных свойств (сравнить препараты 2-6 с 1). В этом отношении они также сходны с 2-алкокси-5-бромбензил-бис-(β-хлорэтил)аминами. Указанные закономерности не повторяются в ряду 4-алкокси-3-хлорбензил-бис-(β-хлорэтил)аминов. Препараты же, содержащие длинную углеродную цепь в алкокси группе, по токсичности превосходят свои аналоги, содержащие короткую углеродную цепь (сравнить соединения 9, 10, 11 с 7 и 8). В данной группе соединений 7—11, в отличие от предыдущих 1-6, также не наблюдается какой-либо связи между химической структурой препаратов и их куммулятивными свойствами (табл. 1). При сравнении этих двух рядов не трудно заметить, что 4-алкокси-3-хлорбензил-бис-(р-хлорэтил)амины более токсичны, чем 2-алкокси-5-хлорбензил-бис-(р-хлорэтил)амины.

Таким образом, токсичность алкоксибензил-производных бис-(β-хлорэтил)амина значительно изменяется не только в зависимости от характера галогена, но и при изменении положения алкокси и бис-(β-хлорэтил)аминной групп в бензольном кольце.

Проведенные химиотерапевтические опыты показали, что все соединения в МПД обладают противоопухолевой активностью в отношении использованных штаммов. В опытах с саркомой-45 часть этих препаратов (2, 4, 5, 7, 11) в дозе 8 мг/кг вызывали торможение роста опухоли на 30—59%, три препарата 6, 8, 9—на 60—79% и лишь три препарата 1, 3, 10 оказались неэффективными (табл. 2). При изменении схемы опыта, в частности, применение четырех ударных предварительных доз, повышает общетоксическое действие препаратов без особого улучшения результатов терапии. Исходя из этого, животных с саркомой М-1 лечили только оптимальной дозой — 8 мг/кг. Представленные в таблице 2 данные свидетельствуют, что испытанные производные бис-(β-хлорэтил)амина оказывают ингибирующее влияние на рост саркомы М-1. Так, препараты 1 и 3, а также 5—9, угнетали рост опухоли на $30-59^{\circ}/_{0}$, а соединения 2 и 4 — на $60-70^{\circ}/_{0}$. Достоверное торможение роста этой опухоли не вызывали препараты 10 и 11. Относительно устойчивой к терапевтическому воздействию этих соединений оказалась саркома 180 мышей. 6 препаратов (4, 5, 6, 8, 9 и 11) на эту опухоль ингибирующего влияния не оказывали и лишь 5 (1, 2, 3, 7 и 10) проявляли умеренную противоопухолевую активность (торможение роста на 30—59%). Однако, интересно указать, что ни один препарат из ранее описанной группы 2-алкокси-5-бромчто пи один препарат на этот штамм опухоли противоопухо-бензил-бис-(2-хлорэтил)аминов на этот штамм опухоли противоопухолевого действия не проявлял.

Наибольшая чувствительность к препаратам, как и следовало ожидать, выявлена при лечении асцитной карциномы Эрлиха. За

OR

Таблица 1 Токсичность 2-алкокси-5-хлорбензил- и 4-алкокси-3-хлорбензил--бис-(3-хлорэтил)аминов

OR

20

22

22 10

22 10

11

11

11

40

53

24

24

Условные обозначения: ДЛ₁₀₀ — абсолютно смертельная доза; ССЛ — МПД — максимально переносимая доза; средняя смертельная доза; Ікта — индекс куммуляции токсичного действия.

25

33

10 33

15

33

6

6

6

 C_3H_7

C₄H₉

C5H11

9

10

11

исключением препаратов 10 и 11 все остальные соединения в 2 раза продлили жизнь подопытных мышей, по сравнению с контрольными (см. табл. 2). При сравнении противоопухолевых свойств 2-алкокси-5-хлорбензил- и 4-алкокси-3-хлорбензил-бис-(β-хлорэтил)аминов с 2о-хлороензил- и ч алионов с 2-алкокси-5-бромбензил-бис-(β-хлорэтил)аминами не трудно заметить, что некоторые хлорсодержащие соединения по активности несколько превосходят свои бромсодержащие аналоги.

Таким образом, замена атома брома атомом хлора в ряду алкокси-бромбензил-бис-(β-хлорэтил)аминов приводит к усилению токсичности препаратов, которая в отдельных случаях сопровождается повышением противоопухолевой активности.

Таблица 2

Противоопухолевая активность 2-алкокси-5-хлорбензил- и 4-алкокси-3-хлорбензил-бис-(3-хлорэтил)аминов

4-алкокси-о-хлороснаил-оис-(д-хлорэтил)аминов													
-		Крысы						Мыши					
eii		сарк	ома 45	саркома М-1			сарко	ома-180	асцит Эрлиха				
Me npena-	доза, жк/кг	Ka	K _n	Ka	Kn	доза,	Ka	K _n	Ka				
1	8 10/8	±+	-3 -18	+	-11	20	+	-17	++++				
2	8 10/8	++	- '6 -17	++	_ 9	20	+	+ 3	1+++				
3	8 10/8	± +	+ 3	+	- 8	20	+	+ 6	++				
4	8 10/8	+ ±	- 2 -12	++	- 2	20	0	+ 4	+++				
-5	8 10/8	+ ±	$-2 \\ -11$	+ ,	- 3	20	0	- 2	+++				
-6	8 10/8	++	+ 1 -18	+	+ 8	20	±	- 2	++				
7	8 10/8	++	+ 3 -17	+	-11	20	+	- 9	++,				
8	8 10/8	++	$^{+2}_{-15}$	+	-10	20	± -5		++				
9	8 10/8	++	-13	+	- 5	20	+	± -5 +					
10	8 10/8	± ±	$\begin{array}{c c} -3 \\ -20 \end{array}$	土	- 8	20	+	+ 2	0				
11	8 10/8	<u>+</u> <u>+</u>	$-1 \\ -15$	±	+ 6	20	0	+ 5	0				

Условные обозначения: K_a — коэффициент активности; 0 — отсутствие эффекта; \pm — торможение роста опухоли до $30^0/_0$; + — то же на $30-59^0/_0$; + — то же на $60-79^0/_0$; + — то же на $89-95^0/_0$; + — то олее чем на $95^0/_0$; K_n — коэффициент прироста: со знаком + указывает на большую прибавку в весе или меньшее похудание, со знаком — на меньшую прибавку в весе животных подопытной группы или на большее их похудание за время опыта по сравнению с контролем.

Экспериментальная часть

2-Алкокси-5-хлорбензилхлориды. Синтезированы хлорметилированием *п*-алкоксихлорбензолов параформальдегидом и хлористым водородом в присутствии безводного хлористого цинка [3].

2-Алкокси-5-хлорбензил-бис-(β-оксиэтил)амины. Смесь 0,1 моля 2-алкокси-5-хлорбензилхлорида, 0,2 моля диэтаноламина и 40—50 мл диоксана нагревают на водяной бане в течение 8—10 часов. Затем в вакууме водоструйного насоса отгоняют диоксан, к содержимому

колбы приливают 25-30 мл раствора поташа, 5 мл $50^{\circ}/_{0}$ -ного раствора едкого натра и 2-3 раза экстрагируют эфиром. Соединенные эфирные экстракты высушивают над прокаленным сернокислым натрием и после отгонки растворителя остаток перегоняют в вакууме (табл. 3).

$$\bigcap_{\mathsf{CI}}^{\mathsf{OR}} \mathsf{CH_2N}(\mathsf{C_2H_4CI})_2 \cdot \mathsf{HCI}$$

Таблица 3.

R		Выход, °/0	Т. пл. гидро- хлорида, °C	Молекулярная	А нализ, 0/0						
					C		H		N		
				формула	найдено	вычис- лено	найдено	вычис- лено	найдено	вычис-	
	CH ₃	68,0	135—136	C ₁₂ H ₁₇ Cl ₄ NO	43,45	43,26	5,23	5.14	4,41	4,20	
	C ₂ H ₅	75,6	106—107	C ₁₃ H ₁₉ Cl ₄ NO	45,06	44,98	5,02	5.51	4,30	4,03	
	C ₃ H ₇	70,0	132-133	C ₁₄ H ₂₁ Cl ₄ NO	46,74	46,56	5,62	5.86	4,11	3,87	
изо-С ₃ Н ₇ С ₄ Н ₉ изо-С ₄ Н ₉		67,7	120121	C ₁₄ H ₂₁ Cl ₄ NO	46,83	46,56	5,83	5.86	4,17	3,87	
		63,0	109-110	C ₁₅ H ₂₃ Cl ₄ NO	47,79	48,02	6,31	6,18	4,10	3,73	
		60,8	135—136	C ₁₅ H ₂₃ Cl ₄ NO	48,19	48,02	5,92	6.18	4,03	3,73	
	C ₅ H ₁₁	61,2	76-77	C ₁₆ H ₂₅ Cl ₄ NO	49,31	49,37	6,61	6,47	3,77	3,59	
изс	o-C ₅ H ₁₁	60,0	масло	C ₁₆ H ₂₅ Cl ₄ NO	49,58	49,37	6,71	6,47	3,80	3,59	

Гидрохлориды 2-алкокси-5-хлорбензил-бис-(β-хлорэтил)аминов-К смеси 0,1 моля 2-алкокси-5-хлорбензил-бис-(β-оксиэтил)амина и 50 мл абсолютного бензола при охлаждении льдом прикапывают 0,4 моля хлористого тионила, растворенного в 20 мл абсолютного бензола. Реакционную смесь нагревают умеренно на водяной бане в течение 8—10 часов. Отгоняют бензол и осаждают продукт добавлением абсолютного эфира. В таком виде продукт нуждается в дальнейшей очистке. Для этого добавляют 30—40 мл раствора поташа, несколько капель раствора едкого натра и экстрагируют эфиром. Эфирные экстракты высушивают над прокаленным сульфатом натрия, фильтруют и к фильтрату добавляют эфирный раствор хлористого водорода. Гидрохлорид отфильтровывают и промывают абсолютным эфиром (табл. 4).

CH₂N(C₂H₄OH)₃

Таблица 4

ՄԻ ՔԱՆԻ ՆՈՐ, ՏԵՂԱԿԱԼՎԱԾ ԲԵՆԶԻԼ–բիս-(β-ՔԼՈՐԷԹԻԼ)ԱՄԻՆՆԵՐԻ ՍԻՆԹԵԶ ԵՎ ԿԵՆՍԱԲԱՆԱԿԱՆ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆ

թ. Տ. ՂԱՐԻԲԶԱՆՅԱՆ, Հ. Մ. ՍՏԵՓԱՆՅԱՆ և Հ. Ա. ՀԱՐՈՅԱՆ

Ամփոփում

2-Ալկօքսի-5-քլորենղիլքլորիղների և դիէβանոլամինի փոխազդմամբ սինթեղված են 2-ալկօքսի-5-քլորենղիլ-բիս-(β-օքսիէթիլ)ամիններ, որոնք թիոնիլի քլորիդի հետ տաքացնելիս առաջացնում են 2-ալկօքսի-5-քլորբեն-գիլ-բիս-(β-քլորեթիլ)ամինների քլորջրածնական աղեր։ Սրանց, ինչպես նաև նախկինում սինթեղված 3-քլոր-4-ալկօքսիբենղիլ-բիս-(β-քլոր-էթիլ)ամինների կենսարանական փորձարկումները ցույց տվեցին, որ սրանք ավելի թունավոր են, քան նախկինում նկարագրված 2-ալկօքսի-5-բրոմրենդիլ-բիս-(β-քլոր-էթիլ)ամինների նրանցից մի քանիսն ի հայտ են բերում ավելի մեծ հակաուռուցքային ակտիվություն։

JIHTEPATYPA

- 1. А. А. Ароян, Б. Т. Гарибджанян, С. А. Саркисян, Г. М. Степанян, Арм. хим. ж., 20, 908 (1967).
- 2. А. А. Ароян, Т. Р. Овсепян, Р. Г. Мелик-Оганджанян, В. В. Ледяев, Арм. хим. ж., 22, 406 (1969).
- 3. А. А. Ароян, М. А. Ирадян. Арм. хим. ж., 22, 140 (1969).