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1. INTRODUCTION

We consider the Dirichlet problem for degenerate ordinary differential equations

of the form: g
(1.1) ILu= (_l)m(tnu[m))(m] g a(_l)m—l(tu—lu(m})[m-lj +ptﬁu = f(#),

where ¢ € (1;+00), m € N, o #1,3,...,2m—1, B £ a—2m, a and p are real
constants, and f € Lg —g(1,+00).

The dependence of the setting of boundary conditions relative to £ for £ = 0 on the
order of degeneration o and on the sign of number a was first noticed in the paper
by M.S. Keldysh [1] for degenerating into parts of the boundary of a second-order
elliptic equation. The case m =1, 8 =0, 0 € a < 2 was studied in the papers by
A.A. Dezin [2] and V.V. Kornienko [3], while the casem =2, § =0, 0< o < 4 was
considered in [4] (on a finite interval). Notice that the problem (1.1) in the case where
A = 0 has been studied in the paper by L. Tepoyan [5].

The present paper is structured as follows. We first define the weighted Sobolev
spaces W™ (1,+400), and discuss some properties of functions u € W"(1,+c0) and
embedding theorems. Notice that weighted Sobolev spaces on infinite intervals have
been studied, in particular, in the papers by L.D. Kudryavcev [6] and P.A. Zharov
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[7]. Then we define the generalized solution of the Dirichlet problem for equation
(1.1) and study the spectral properties of the corresponding operator. Finally, in the
special case where 3 = —2m, we describe the domain of definition of the selfadjoint

operator. .

2. WEIGHTED SOBOLEV SPACES W™(1, +00)

Denote by C™[1, +00) the set of functions from u € C™[1,+00), satisfying the
boundary conditions:

(2.1) u®(1) =u®(+00) =0, k=0,1,...,m -1,
and define the space W;"(l, +00) to be the completion of Cm [1, +00) by the norm

400
““"ﬁ';'u.q-m) =[l £ 1ul™) ()2 dt.

The inner product in W"(1,+00) we denote by {u, v}a = (t%u(™, v(™) where
(4+) stands for the inner product in La(1,+00). Observe that for any function u €
W(1,+00) and any number #; € [1, +00) the boundary values u®(t) and u®)(1) =
0,k=0,1,...,m —1 exist (see [8]). The proofs of the next two propositions can be
found in [5].

Proposition 2.1. For functionsu € W™(1, +00), a#1,3,...,2m—1, the following
inegualities are satisfied:

22)  [pOEP el L, k=0,1,.,m -1,

It follows from Proposition 2.1 that in the case & > 2m—1 (weak degeneration), we
have u)(4-00) = 0 for j =0, 1,...,m~1, while for @ < 2m— 1 (strong degeneration)
not all conditions u)(+00) = 0 are "preserved". For instance, for 1 < a < 3 after
completion only the condition u{™~1)(+00) = 0 is "preserved”, and for a < 1 all the
values 4 (+00), = 0,1,...,m — 1, in general, can be infinite.

Let Ly 5(1, +00) := { FlEe R fe)Pde < +no}. Notice that for £ < f; we have
the embedding L g, (1, +00) C Ly g, (1, +00).

Proposition 2.2. For 8 < a — 2m the following continuous embedding holds:
(2.3) W:‘(l, +00) C La,5(1,00),

which is compact for f < a—2m.
65



L. P. TEPOYAN, 8. ZSCHORN

Notice that the embedding (2.3) is not compact for # = a—2m, and for 8 > a—2m
it fails. Let d(m,a) = 4~™(a — 1)*(a = 3)?--- (e — (2m — 1)) It is worth to note
that in the paper [10] was considered a question concerning the number of real roots
for a polynomial with constant term d(m, a). Using Hardy inequality (see [6]) it can
be shown that (see [5]) ¥
(24) [ R > dome) [ e mup e
It is important to note that in the inequality (2.4) the number d(m, ) is exact. Also,
as an immediate consequence of the inequality (2.4), for any 8 < a — 2m we have

2
(2.5) "u"%‘f“""(‘l,-}m) 2 d(m!a)“u"[.,.ﬂ(l,-i-m)'
3. DEGENERATE NONSELFADJOINT DIFFERENTIAL EQUATIONS

Now we define a generalized solution of the Dirichlet problem for equation (1.1)
for a # 0.

Definition 3.1. A function u € W(1,+00) is called a generalized solution of the
Dirichlet problem for eguation (1.1), if for anyv € W;"(l, +00) the following equality
is fulfilled:
(3.1) {u,v}a +a(=1)" (=" u™, o(m1) 4 p(tPu, v) = (£, ).
For the proof of the next theorem we refer to [9].

Theorem 3.1. Let the following conditions be satisfied:

a(a— 1) >0,
(3.2) a

9= d(m,a)-!—i(a =1)dm-1,a-2)+p>0.

Then a generalized solution of the Dirichlet problem Jor equation (1.1) egists and is
unique for every f € La,_pg(1,+00).

The definition of a generalized solution usually generates some linear operator
L : Lyp(1,+00) = L2 p(1,400) with dense iu Ly g(1,+00) domain of definition
D(L) € W(1,400) (see [5]). To obtain an operator acting in the same space, which
is necessary from spectral theory viewpoint, we define the operator L = =L, D(L) =
D(L). 1t is clear that the operator L acts in the space Lg,a(1, +00). In [9] it was proved
that under the condition (3.2) the inverse operator L' is bouuded in Lg (1, +c0)

for B < & — 2m and is a compact operator for 8 < a — 2m.
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This, in particular, implies that for 8 < a — 2m the spectrum of the.operator L is
For the conjugate to (1.1) equation
(33) " S=(=)m"™)™ — a(-1)m2 (e te(m-D)m) 4 iy = (1),

where g € L3 (1, +00), a generalized solution of the Dirichlet problem is defined as
follows:

Definition 8.2. A function v € Lz g(1,+00) is called a generalized solution of the
Dirichlet problem for equation (3.3), if for any u € D(L) the equality (Lu,v) = (u, g)
is fulfilled.

Now the existence and uniqueness of a generalized solution of the Dirichlet problem

for equation (3.3) for any g € La,—g(1, +00) follows from Theorem 3.1 and boundedness
of the operator L~ (see [9]). As above, we define the operator § = t=£S, D(S) =

D(S).

Remark 3.1. For a < 1 every generualized solution v € Ly g(1,+00) of equation
(3.3) satisfies the condition:

(3.4) (t““llu('“‘l’(t)P) AR
Also, notice that for a generalized solution u € W*(1,400) of equation (1.1) for

a < 1, it can be guaranteed only the finiteness of the left-hand side of (3.4). This is
some analog of the Keldysh theorem (see [1]).

Proposition 8.1. The spectra of operators L,S : L (1, +00) = L3 g(1,+00) lie on
the right half-space.

Proof. Since § = L*, it is enough to prove the proposition for the operator L.
Let Red < 0, fi = t=?f and f € Lg—p(1,+00). Then we have f € Ly s(1, +o0).
Consider the equation Lu — Au = f;. In view of the definition of the operator L, the
last equation can be written in the form:

(3.5) Lu—XPu=f, feLs_g(l,+).

From (3.1) for v = u we obtain

{u, u}a + a(=1)""1 (21, u(m=1) 4 (p = A)(HPu,u) = (f,u).
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It follows from the last equality and the proof of Theorem 3.1 (see [9]) that under
the conditions (3.2) and ReX < 0 the equation (3.5) is uniquely solvable for any
f € La.g(1,+00), that is, the equation Lu — Au = f; is uniquely solvable for every

fi € Ly,8(1,4+0). O

4, DESCRIPTION OF THE DOMAIN OF DEFINITION OF THE DEGENERATE
SELFADJOINT DIFFERENTIAL EQUATION

Consider the selfadjoint differential equation
@41) Lu= (-1)™(u™) 4 ptfy = f(t), f€ La-p(1,400), B<a-2m.

Define a generalized solution of the Dirichlet problem for equation (4.1) as in the
Definition 1 (for a = 0). Now consider the special case of equation (4.1) for p = 0:

(4.2) Bu= (-1)™(t"u™)™ = f,  fe Ly_s(1,+x).

Let B = t7#B, D(B) = D(B). In paper [5], it was proved the unique solvability
of the Dirichlet problem for equation (4.2) for every f € L —g(1,+0c0), as well as,
the positiveness and self-adjointness of the operator B : Lz s(1, +00) = L g(1, +00),
and the boundedness of the inverse operator B~ : L3 (1, +00) — Ly (1, +00) for
B < a — 2m and its compactness for 8 < a — 2m. Thus, for 8 < « — 2m the
operator B! is compact and selfadjoint. Therefore the spectrum of the operator B
for f < a—2m is discrete and the system of eigenfunctions is complete in Ly (1, +00)
(see [11]). Also, notice that the spectrum of the operator B for f = a — 2m is purely
continuous and coincides with the ray (see [5]):

0(B) = 0¢(B) = [d(m, a); +00).
Now we give the description of the domain of definition of the obera.t.or L for
B = —2m, that is, consider the equation
(4.3) Lu = (=1)™(@*u™)™ 4 pt=2my = £, f € Lyom(1,+00),
a#1,3,...,2m~1,a > 0. Observe that D(B) = D(L), hence it is enough to describe
D(B).

Theorem 4.1. The domain of definition of the operator B consists of functions
u € WZ'(1,+00), for which the value u™)(+00) is finite for 1 < a <1, and for
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2m-2k-2<a<2m-2k-1,k=0,1,...,m—2, the values u™ (+00) also are
finite.

Proof. Let m > 2. To find a general solution of the equation
(=1)™(Eu)m = £(z)
observe first that
a, (m) 1 HE 1
tTu (t)=(—,r1)!"/i‘ (r=t)"f(r)dr +co+ it + ... + ey t™ L.

Let 3 < a < 1. It follows from u € W'(1,+00) that t#u(™ € Ly(1,+00). It is easy

to check that co = 1 = ... = em—1 = 0, because the functions ¢t~ %, ¢1-%,.. . ¢m-1-%
do not belong to the space W™ (1, +00). Thus, we have
—a +oc
[T el _ pym=1
(44) )= [ - gmsrar.

Let G(t) = [,"*(r — t)™1f(r) dr. Applying Cauchy-Schwarz inequality we get

+00
COP < [ (=™ ar IR, ,_ 1 seey

implying that
(4.5) IG@) < 74 £llLs 3m(1,400)-
Now from (4.4) we obtain

(m=1) (4 1 i —a

u ()—-c—fm_—l)!/; T %G(7) dr.
Therefore
+00 +o00

-/' T™%G(1) dr Sj‘. =2 dr. |1 Laam(1450) S CY | fll 13 0 (1,400)»

implying that for § < a < 1 the value u(™~")(+c0) is finite. Now let 2 < @ < 3. It
follows from u € WI*(1,400) that ¢; = ... = ¢n—) = 0. An integration yields

+00
__(mi o /‘. 7 *G(7) dr,

because for 2 < & < 3 we have u(™~1)(+00) = 0. Therefore

u(m-l) ()‘.) Al Cntl_“ o

(m—-2) N s _._]___ 400 p+too .
48 w0 =0+ Gt f; f 7-°G(n) dn dr.
. Using (4.5) we can estimate the integral in (4.6) to obtain

[ [ reemanss
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Similarly, for 2m — 2 < @ < 2m — 1 we obtain

u(t) = s | T tr = tym172G(r) dr +C + Cot ™ + ... + G gt?™-3-e,
(m—-1)1)2 J;

The integral on the right-hand side of the last relation can be estimated as follows

fm(r - t)m_l‘r_“G(T) dr S ctm-ﬂ-'-i |If||ld.!m[1n+m"
t

Here it is important to note that for m > 2 we have m—a+% < @ < 2m—2—a. In the
case m < 2 the proof is evident. Notice that the conditions of Theorem 4.1 are exact,
in the sense that their violation, generally, can cause the nonexistence of the values
u®(+00), k=1,...,m— 1. Also, note that the values u*)(+o0), k=0,1,...,m—1
cannol be given arbitrarily, they are defined by the right-hand side of the equation
(4.3) (see [2], [4)). _ 0
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