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Ahgtract. This note is framed in the field of complex analysis and deals with some types
of interpolating sequences for Lipschitz functions in the unit disk. We introduce recursion
between each point of 4 sequence and the next. We also add interpolation by the derivative,
finking its values to those that the function takes. On the supposition that the sequences
are quite contractive and lie in a Stolg angle, we relate the interpolating ones for each type

to the uniformly separated sequences.
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1. INTRODUCTION

We denote by D the disk in the complex plane C and by Lip the Linschitz class,

that is, the space of all analytic functions f on D, continuous on D and such that

M — sup PO = ]
z#w |z — w|
It is well-known that f € Lip if and only if f/ € H° (the space of hounded analytic
functions on ). We put A = (A,,) for bounded sequences of complex numbers and
[*° for their space (|A]e = sup,, |A.|}. We denote by Z = (z,) any sequence in D
satisfying the Blaschke condition >, (1 — |z|) < co. We write 7(z,w) = %
so that |7(2, w)| is the pseudo-hyperbolic distance hbetween 2z and w. We put B for
the Blaschke product in I with zervos at 7, that is,
Zn
B(z) = H o T(2n, 2),

n
and By ;  for the Blaschke product with zeros at 7\ {#,..., 2, }

We recall that a sequence 7 is called k-contractive if there s a constant 0 < kb < 1
such that

|2ma1 — 2m| < k2w — 2m 1|, m2>2.
We also recall thag a sequence 7 is called uniformily separated {(wo will abbreviage
hy writing u.s.} if
|Brilzm)| 26 >0, mel.
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Carleson’s theorem ([1]) ensures that the u.s. sequences are the interpolating ones
for H> (it means that given any A € [°°, there is f € H* such that f(z,) = A,
for all n).

First, we bring up two types of interpolating sequences for Lip.

Definition 1.1. Z is called an interpolating sequence for Lip if given any sequence

(wy) satisfying
(1.1) sup lwi = wj|
i#i 17— 7l

there exists f € Lip such that f(z,) = w, for all n.

< o0,

Definition 1.2. Z is called a double interpolating sequence for Lip if given any
sequences (wy) satisfying (1.1) and (\,) € 1*°, there exists f € Lip such that
f(zn) =wpn and f'(z,) = A\, for all n.

Both types are characterized in the following two Theorems, but only when the

sequence Z is in a Stolz angle, that is, when for some ( € D and 1 < p < oo,
lzn = ¢l < (1 —]zn|), neN.

For example, the radial sequence (1 —27") satisfies the Blaschke condition, is (1/2)-

contractive and lies in a Stolz angle (¢ = 1).

Theorem 1.1. ([2], [3]). A sequence Z in a Stolz angle is interpolating for Lip if

and only if Z is the union of two u.s. sequences.

Theorem 1.2. ([3]). A sequence Z in a Stolz angle is double interpolating for Lip
if and only if Z is u.s.

The interpolation by Lipschitz functions for a closed set in D has also been
studied (see [4]).

Our purpose is to introduce some new types of interpolating sequences for Lip.
For that, we modify the above Definitions for the case that a recursive relationship
of the interpolating function in two consecutive points of the sequence is required.
On the other hand, we impose a rather natural ligature between the interpolating
function and its derivative, also adding a recursive relationship for the derivative.
We are interested in knowing if doing this, we have to restrict ourselves to some sort
of sequences to obtain the same results as if recursion is not considered. Recursive
interpolating sequences for the space H* have already been addressed in [5], and
in this note, we check the effect of introducing recursion in a space of functions that
are regular up to the boundary of the disk.

Specifically, we introduce the following sequences.
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Definition 1.3. We say that Z is a recursive interpolating sequence for Lip if
given any o € C and A = (\,,) € I°°, there exists f € Lip such that f(z1) = « and

recursively, for each n € N,

J(Znt1) — f(2n)

Zn+1 — Zn

(1.2) = An.

Note that all quotients in (1.2) are bounded, because f € Lip.

Definition 1.4. If we include f'(z,) = A\, in Definition 1.3, we say that Z is a

double and recursive interpolating sequence for Lip.

In this Definition, the requirement for the derivative is added to relate its value
in a point to a difference quotient of the function in that point. Finally, taking into
account that if g € H*°, then

l9(2) — g(w)| < e|7(z,w)]

for a constant ¢ > 0, we can state:

Definition 1.5. We say that Z is an interpolating sequence in a general sense for
Lip if given any a, 8, n € C, there exists f € Lip such that f(z1) = «, f'(z1) =

and, recursively, for each n € N,

"y ) = f(zn+1) — f(zn)
(1.3) fzn) = Znyl — Zn
f/(ZnJrl) = f/(zn) +07(2n, 2nt1)

Note that these two equalities can be interpreted as a certain system of recurrence
equations. The next section is devoted to examining these types of interpolating

sequences.

2. Statement and proof of results

We will use the following two Lemmas.

Lemma 2.1. ([3]). If a function f € Lip vanishes on a sequence Z, then for each
m € N,

[f(2)] < My |z = zm| [ B (2)]-

Lemma 2.2. If Z is a k-contractive sequence and k < ko < 1/2, then given any
integer p > 2,
[Zm+1 — Zm| < Ko |Zmtp — 2m|, mEN,
where Ko = (1 —ko)/(1 — 2ko + kF).
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Proof. By the triangle inequality and since Z is k-contractive,
[Zm+1 = Zml| < [Zmap = 2m| + [2mip = Zmap-1l + -+ |2mr2 — Zmaa
<|zmtp = Zm| + (B + - 4 F)|2mg1 — 2m.
Since k < ko < 1/2, then kP~' 4 ... 4+ k<K' 4 ... + kg < 1, and
1
L— (kB 4+ + ko)
The proof is complete. O

|Zm41 — 2m| < [Zmtp — Zm| = Ko |2m4p — 2ml.

Our results are the following ones.

Theorem 2.1. Let Z be a sequence in a Stolz angle and k-contractive for some
k < ko < 1/2. Then, Z is recursive interpolating for Lip if and only if Z is the

union of two u.s. sequences.

Proof. Suppose that Z is recursive interpolating for Lip. Take o = 0 and for a

fixed m € N, let A be defined by: A, = ~F2 = Zm+l y o — 1and A, = 0,
Zerl — Zm
otherwise. Because Z is k-contractive, we have |\,,,| < k and then, ||A|l. = 1. Since

the operator given by the quotient on the left in (1.2) is linear and surjective, by
the open mapping theorem there is a function f,, € Lip and a constant ¢ > 0 such
that My, < cl||Alloc = c¢. We have fp,(2m) = 2Zm+1 — 2m and fp,(2,) =0, if n # m.
Applying Lemma 2.1 to Z \ {2z},

[fm(2)] < €|z = zmsr| | Bmm+1(2)],

and evaluating at z,,,

|Zm41 — Zm| = |fm(zm)| < C|Zm — Zmy1| ‘Bm,mﬁ-l(zm)‘v

that is,

(2.1) | Bm,m+1(2m)| = ¢

This condition (2.1) implies that Z is the union of two u.s. sequences (see [6], p.
1202).
Reciprocally, to meet the requirement in (1.2) we look for f verifying f(z,) = vn,

where v, = « and for each n > 2,
Yo =a+A(z2 —21) + -+ Ao1(2n — 2n1)-
Suppose i > j. Taking into account that Z is k-contractive,
v =il = iz — 25) + - + Aica (2 — 2im0))|
< J[Alloo (l2j41 = 25| + -+ 4 2 — zi-1])

< JAlloo (k4 + K7 2540 = 2l
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If i« > j+ 1, then by Lemma 2.2,

11—k
1—2ko + ki
The existence of the desired interpolating function f follows from Theorem 1.1. [J

1vi — Vil < [[Alloo |zi — z;].

Theorem 2.2. Let Z be a sequence in a Stolz angle and k-contractive for some
k <ko < 1/2. Then, Z is double and recursive interpolating for Lip if and only if

Z 18 u.S.

Proof. The necessity for the sequence Z to be u.s. is a consequence of the
requirement that the function f/ in H° must interpolate the sequence A in [
(Carleson’s theorem). As for sufficiency, take (A,) € [°°. By Theorem 2.1, there is
g € Lip verifying (1.2). It is proved in [3] that if Z in a Stolz angle is u.s., then
given any sequence (a,) € [°°, there is a function h € Lip such that h(z,) = 0
and h'(z,) = ay, for all n. Taking a,, = A\, — ¢'(2y), it follows that the function
f = g+ h performs (1.2) and f'(z,) = A, for all n. d

Theorem 2.3. If Z is a sequence in a Stolz angle and k-contractive for some
k < ko < 1/2, it verifies the condition

(2.2) Z |7(2n, 2Znt1)| < 00

n

and is u.s., then Z is interpolating in a general sense for Lip.

Proof. Equivalently, instead of looking for a function f € Lip that verifies (1.3),
we look for it so that f(z,) = v, and f/(z,) = 7/,, where
71 = Q, 7220é+ﬁ(22—21)7

n -2
Yo =+ Bz —2) 0y (Z T(zm,zm+1)> (21— z-1), n=3;

Suppose i > j. By (2.2), there is a constant ¢ > 0 such that

i -2
e =l <1811z — 2l +0 Y ( |T(Zm72m+1)> |2t — 211
1

I=j+1

m=

<1Bl1zi =zl +en D |z -zl
I=j+1
As in the proof of Theorem 2.1, if ¢ > j + 1, then
1— kg
Yi =yl < | 1Bl +en————= | |2 — %l
= <|| 1_2k0+,€0j> ;
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On the other hand, (7)) € I* by (2.2). So, the existence of the interpolating
function f follows now from Theorem 1.2. (I

The sequence (1 —27™) is also an example for the condition (2.2).
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