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Inequality (1.3) was conjectured by Erd�os and later proved by Lax [8], where as

inequality (1.4) was proved by Ankeny and Rivlin [1], for which they made use of

(1.3).

Inequality (1.1) can be seen as a special case of the following inequality which is

also due to Bernstein [3].

Theorem A. Let F ∈ Pn, having all its zeros in |z| ≤ 1 and f(z) be a polynomial

of degree at most n. If |f(z)| ≤ |F (z)| for |z| = 1, then for |z| ≥ 1, we have∣∣f ′(z)∣∣ ≤ ∣∣F ′(z)∣∣.(1.5)

Equality holds in (1.5) for f(z) = eiηF (z), η ∈ R.
Inequality (1.1) can be obtained from inequality (1.5) by taking F (z) =Mzn, where

M = max
|z|=1
|f(z)|. In the same way, inequality (1.2) follows from a result which is a

special case of Bernstein-Walsh lemma ([10], Corollary 12.1.3).

Theorem B. Let F ∈ Pn, having all its zeros in |z| ≤ 1 and f(z) be a polynomial

of degree at most n. If |f(z)| ≤ |F (z)| for |z| = 1, then∣∣f(z)∣∣ < ∣∣F (z)∣∣, for |z| > 1,

unless f(z) = eiηF (z) for some η ∈ R.
In 2011, Govil et al. [5] proved a more general result which provides a compact

generalization of inequalities (1.1), (1.2), (1.3) and (1.4) and includes Theorem A

and Theorem B as special cases. In fact, they proved that if f(z) and F (z) are as

in Theorem A, then for any β with |β| ≤ 1 and R ≥ r ≥ 1, we have∣∣f(Rz)− βf(rz)∣∣ ≤ ∣∣F (Rz)− βF (rz)∣∣, for |z| ≥ 1.(1.6)

Further, as a generalization of (1.6), Liman et al. [6] in the same year 2011 and

under the same hypothesis as in Theorem A, proved that∣∣∣f(Rz)− βf(rz) + γ
{(R+ 1

r + 1

)n
− |β|

}
f(rz)

∣∣∣
≤
∣∣∣F (Rz)− βF (rz) + γ

{(R+ 1

r + 1

)n
− |β|

}
F (rz)

∣∣∣,(1.7)

for every β, γ ∈ C with |β| ≤ 1, |γ| ≤ 1 and R > r ≥ 1.

For f ∈ Pn, the polar derivative Dαf(z) of f(z) with respect to the point α is

de�ned as

Dαf(z) := nf(z) + (α− z)f ′(z).

Note that Dαf(z) is a polynomial of degree at most n−1. This is the so-called polar

derivative of f(z) with respect to α (see [9]). It generalizes the ordinary derivative

in the following sense:

lim
α→∞

{
Dαf(z)

α

}
:= f ′(z),
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uniformly with respect to z for |z| ≤ R,R > 0.

Recently, Liman et al. [7] besides proving some other results also proved the following

generalization of (1.6) to the polar derivative Dαf(z) of a polynomial f(z) with

respect to α, |α| ≥ 1.

Theorem C. Let F ∈ Pn, having all its zeros in |z| ≤ 1 and f(z) be a polynomial

of degree m(≤ n) such that |f(z)| ≤ |F (z)| for |z| = 1. If α, β, γ ∈ C be such that

|α| ≥ 1, |β| ≤ 1 and |λ| < 1, then for R > r ≥ 1 and |z| ≥ 1, we have∣∣∣z[(n−m)

{
f(Rz)− βf(rz)

}
+Dαf(Rz)− βDαf(rz)

]
+
nλ

2
(|α| − 1)

{
f(Rz)− βf(rz)

}∣∣∣
≤
∣∣∣∣z{DαF (Rz)− βDαF (rz)

}
+
nλ

2
(|α| − 1)

{
F (Rz)− βF (rz)

}∣∣∣.(1.8)

Equality holds in (1.8) for f(z) = eiηF (z), η ∈ R.
While making an attempt towards the generalization of the above inequalities,

the authors found that there is a room for the generalization of (1.6) to the

polar derivative of a polynomial which in turn induces inequalities towards more

generalized form. The essence in the papers by Liman et al. [7] and Govil et al. [5]

is the origin of thought for the new inequalities presented in this paper.

2. Main results

The main aim of this paper is to obtain some more general results for the

maximal modulus of the polar derivative of a polynomial under certain constraints

on |z| and on the functions considered. We �rst prove the following generalization

of inequalities (1.6) and (1.7) and of Theorem C.

Theorem 2.1. Let F ∈ Pn, having all its zeros in |z| ≤ 1 and f(z) be a polynomial

of degree m(≤ n) such that∣∣f(z)∣∣ ≤ |F (z)|, for |z| = 1.

If α, β, γ, λ ∈ C be such that |α| ≥ 1, |β| ≤ 1, |γ| ≤ 1 and |λ| < 1, then for R > r ≥ 1

and |z| ≥ 1, we have∣∣∣z[(n−m)
{
f(Rz) + ψf(rz)

}
+Dαf(Rz) + ψDαf(rz)

]
+
nλ

2
(|α| − 1)

{
f(Rz) + ψf(rz)

}∣∣∣
≤
∣∣∣z{DαF (Rz) + ψDαF (rz)

}
+
nλ

2
(|α| − 1)

{
F (Rz) + ψF (rz)

}∣∣∣,(2.1)
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where

ψ = ψ(R, r, β, γ) = γ

{(R+ 1

r + 1

)n
− |β|

}
− β.

The result is sharp and equality in (2.1) holds for f(z) = eiηF (z), η ∈ R.

The following result immediately follows from Theorem 2.1.

Corollary 2.1. If f ∈ Pn, and f(z) does not vanish in |z| < 1, then for every

α, β, γ, λ ∈ C such that |α| ≥ 1, |β| ≤ 1, |γ| ≤ 1 and |λ| < 1, we have for R > r ≥ 1

and |z| ≥ 1,∣∣∣z{Dαf(Rz) + ψDαf(rz)
}
+
nλ

2
(|α| − 1)

{
f(Rz) + ψf(rz)

}∣∣∣
≤
∣∣∣z{DαQ(Rz) + ψDαQ(rz)

}
+
nλ

2
(|α| − 1)

{
Q(Rz) + ψQ(rz)

}∣∣∣,(2.2)

where Q(z) = znf( 1
z̄ ).

Equality holds in (2.2) for f(z) = eiηQ(z), η ∈ R. Taking λ = 0 in Corollary 2.1,

we get the following result.

Corollary 2.2. If f ∈ Pn, and f(z) 6= 0 in |z| < 1, then for every |α| ≥ 1, |β| ≤
1, |γ| ≤ 1, R > r ≥ 1 and |z| ≥ 1,∣∣∣Dαf(Rz)− βDαf(rz) + γ

((R+ 1

r + 1

)n
− |β|

)
Dαf(rz)

∣∣∣
≤
∣∣∣DαQ(Rz)− βDαQ(rz) + γ

((R+ 1

r + 1

)n
− |β|

)
DαQ(rz)

∣∣∣,(2.3)

where Q(z) = znf( 1
z̄ ).

Inequality (2.3) should be compared with a result of Liman, Mohapatra and

Shah ([6], Lemma 2.3), where f(z) is replaced by Dαf(z), |α| ≥ 1.

Taking r = 1 in Corollary 2.2, we get the following generalization of a result due

to Aziz and Rather [2].

Corollary 2.3. If f ∈ Pn, and f(z) does not vanish in |z| < 1, then for every

α, β, γ ∈ C with |α| ≥ 1, |β| ≤ 1 and R > 1,∣∣∣Dαf(Rz)− βDαf(z) + γ
((R+ 1

2

)n
− |β|

)
Dαf(z)

∣∣∣
≤
∣∣∣DαQ(Rz)− βDαQ(z) + γ

((R+ 1

2

)n
− |β|

)
DαQ(z)

∣∣∣, for |z| ≥ 1,

where Q(z) = znP ( 1
z̄ ).

If we take β = 0 in Theorem 2.1, we get the following.
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Corollary 2.4. Let F ∈ Pn, having all zeros in |z| ≤ 1 and f(z) be a polynomial

of degree m(≤ n) such that∣∣f(z)∣∣ ≤ ∣∣F (z)∣∣, for |z| = 1.

If α, γ, λ ∈ C be such that |α| ≥ 1, |γ| ≤ 1 and |λ| < 1, then for R > r ≥ 1 and

|z| ≥ 1, we have∣∣∣z[(n−m)
{
f(Rz) + γ

(R+ 1

r + 1

)n
f(rz)

}
+Dαf(Rz) + γ

(R+ 1

r + 1

)n
Dαf(rz)

]
+
nλ

2
(|α| − 1)

{
f(Rz) + γ

(R+ 1

r + 1

)n
f(rz)

}∣∣∣
≤
∣∣∣z{DαF (Rz) + γ

(R+ 1

r + 1

)n
DαF (rz)

}
+
nλ

2
(|α| − 1)

{
F (Rz) +

(R+ 1

r + 1

)n
F (rz)

}∣∣∣.
(2.4)

Equality holds in (2.4) for f(z) = eiηF (z), η ∈ R.

Remark 1.1. For γ = 0, Corollary 2.4 reduces to Theorem C.

Theorem 2.2. Let F ∈ Pn, having all its zeros in |z| ≤ 1 and f(z) be a polynomial

of degree m(≤ n) such that∣∣f(z)∣∣ ≤ |F (z)|, for |z| = 1.

If α, β, γ, λ ∈ C be such that |α| ≥ 1, |β| ≤ 1 and |γ| ≤ 1, then for R > r ≥ 1 and

|z| ≥ 1, we have∣∣∣z[(n−m)
{
f(Rz) + ψf(rz)

}
+Dαf(Rz) + ψDαf(rz)

]∣∣∣
+
n

2
(|α| − 1)

∣∣F (Rz) + ψF (rz)
∣∣

≤
∣∣∣z{DαF (Rz) + ψDαF (rz)

}∣∣∣+ n

2
(|α| − 1)

∣∣f(Rz) + ψf(rz)
∣∣,(2.5)

where ψ is de�ned in Theorem 2.1.

Equality holds in (2.5) for f(z) = eiηF (z), η ∈ R.
From Theorem 2.2, we have the following:

Corollary 2.5. If f ∈ Pn, and f(z) does not vanish in |z| < 1, then for every

α, β, γ, λ ∈ C with |α| ≥ 1, |β| ≤ 1, |γ| ≤ 1, we have for R > r ≥ 1, and |z| ≥ 1,∣∣∣z{Dαf(Rz) + ψDαf(rz)
}∣∣∣+ n

2
(|α| − 1)

∣∣Q(Rz) + ψQ(rz)
∣∣

≤
∣∣∣z{DαQ(Rz) + ψDαQ(rz)

}∣∣∣+ n

2
(|α| − 1)

∣∣f(Rz) + ψf(rz)
∣∣,

where Q(z) = znf( 1
z̄ ). and ψ is de�ned in Theorem 2.1.

Remark 1.2. For γ = 0, Corollary 2.5 reduces to a result of Liman et al. [7].
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3. Lemmas

We need the following lemmas to prove our theorems. The �rst lemma is due to

Liman, Mohapatra and Shah [6].

Lemma 3.1. Let f ∈ Pn, having all its zeros in |z| ≤ 1, then for every R > r ≥ 1,∣∣f(Rz)∣∣ > (R+ 1

r + 1

)n∣∣f(rz)∣∣, for |z| = 1.

Lemma 3.2. Let f ∈ Pn, having all its zeros in |z| ≤ 1, then for every α with

|α| ≥ 1,

2
∣∣zDαf(z)

∣∣ ≥ n(|α| − 1)
∣∣f(z)∣∣, for |z| = 1.

The above lemma is due to Shah [12].

Lemma 3.3. Let f ∈ Pn, having all its zeros in |z| ≤ k, then for |α| ≥ k, the polar

derivative

Dαf(z) := nf(z) + (α− z)f ′(z),

of f(z) at the point α also has all its zeros in |z| ≤ k.

The above lemma is due to Laguerre ([9], p.49).

4. Proofs of theorems

Proof of Theorem 2.1. If F (z) has a zero on |z| = 1, then the result is obvious,

so we assume that F (z) has no zeros on |z| = 1. Since |f(z)| ≤ |F (z)| for |z| = 1,

therefore, for every δ ∈ C with |δ| > 1, we have |f(z)| < |δF (z)|, for |z| = 1. Also

all the zeros of F (z) lie in |z| < 1, it follows by Rouche's theorem that all the zeros

of g(z) = f(z)− δF (z) lie in |z| < 1. Now by Lemma 3.1, we have in particular

|g(rz)| < |g(Rz)|, for |z| = 1 and R > r ≥ 1.

Since g(Rz) has all its zeros in |z| ≤ 1
R < 1, a direct application of Rouche's theorem

shows that the polynomial g(Rz)−βg(rz) has all its zeros in |z| < 1 for every β ∈ C
with |β| ≤ 1. Again by using Lemma 3.1, we have∣∣g(Rz)− βg(rz)∣∣ ≥ ∣∣g(Rz)∣∣− |β|∣∣g(rz)∣∣

>

{(R+ 1

r + 1

)n
− |β|

}∣∣g(rz)∣∣,
for |z| = 1 and R > r ≥ 1.
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That is {(R+ 1

r + 1

)n
− |β|

}∣∣g(rz)∣∣ < ∣∣g(Rz)− βg(rz)∣∣,
for |z| = 1 and R > r ≥ 1.

If γ is any complex number with |γ| ≤ 1, then it follows by Rouche's theorem that

all the zeros of T (z) := g(Rz)− βg(rz) + γ

{(
R+1
r+1

)n
− |β|

}
g(rz)

lie in |z| < 1. Using Lemma 3.2, we get for every α ∈ C with |α| ≥ 1 and |z| = 1,

2
∣∣zDαT (z)

∣∣ ≥ n(|α| − 1)
∣∣T (z)∣∣.

Hence for any complex number λ with |λ| < 1, we have for |z| = 1,

2
∣∣zDαT (z)

∣∣ > n|λ|(|α| − 1)
∣∣T (z)∣∣.

Therefore, it follows by Lemma 3.3, that all the zeros of

W (z) := 2zDαT (z) + nλ(|α| − 1)T (z)

= 2zDαg(Rz) + 2zψDαg(rz) + nλ
(
|α| − 1

)(
g(Rz) + ψg(rz)

)
(4.1)

lie in |z| < 1.

Replacing g(z) by f(z)− δF (z) and using de�nition of polar derivative gives

W (z) = 2z

[
n
{
f(Rz)− δF (Rz)

}
+ (α−Rz)

{
f(Rz)− δF (Rz)

}′]
+ 2zψ

[
n
{
f(rz)− δF (rz)

}
+ (α− rz)

{
f(rz)− δF (rz)

}′]
+ nλ(|α| − 1)

{
f(Rz)− δF (Rz)

}
+ nλψ(|α| − 1)

{
f(rz)− δF (rz)

}
,

which on simpli�cation gives

W (z) = 2z

[
(n−m)f(Rz) +mf(Rz) + (α−Rz)

(
f(Rz)

)′ − δ{nF (rz) + (α− rz)
(
F (Rz)

)′}]
+ 2zψ

[
(n−m)f(rz) +mf(rz) + (α− rz)

(
f(rz)

)′ − δ{nF (rz) + (α− rz)
(
F (rz)

)′}]
+ nλ(|α| − 1)

{
f(Rz)− δF (Rz)

}
+ nλψ(|α| − 1)

{
f(rz)− δF (rz)

}
= 2z

{
(n−m)f(Rz) +Dαf(Rz)− δDαF (Rz)

}
+ 2zψ

{
(n−m)f(rz) +Dαf(rz)− δDαF (rz)

}
+ nλ(|α| − 1)

{
f(Rz)− δF (Rz)

}
+ nλψ(|α| − 1)

{
f(rz)− δF (rz)

}
= 2z

{
(n−m)f(Rz) + ψ(n−m)f(rz) +Dαf(Rz) + ψDαf(rz)

}
+ nλ(|α| − 1)f(Rz) + nλψ(|α| − 1)f(rz)− δ

{
2zDαF (Rz) + 2zψDαF (rz)

+ nλψ(|α| − 1)F (Rz) + nλψ(|α| − 1)f(rz)
}
.

(4.2)
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Since by (4.1), W (z) has all its zeros in |z| < 1, therefore, by (4.2), we get for

|z| ≥ 1,∣∣∣∣z[(n−m)
{
f(Rz) + ψf(rz)

}
+Dαf(Rz) + ψDαf(rz)

]
+
nλ

2
(|α| − 1)

{
f(Rz) + ψf(rz)

}∣∣∣∣
≤
∣∣∣∣z{DαF (Rz) + ψDαF (rz)

}
+
nλ

2
(|α| − 1)

{
F (Rz) + ψF (rz)

}∣∣∣∣.
(4.3)

To see that the inequality (4.3) holds, note that if the inequality (4.3) is not true,

then there is a point z = z0 with |z0| ≥ 1, such that∣∣∣∣z0

[
(n−m)A+Dαf(Rz0) + ψDαf(rz0)

]
+
nλ

2
(|α| − 1)A

∣∣∣∣
>

∣∣∣∣z0

{
DαF (Rz0) + ψDαF (rz0)

}
+
nλ

2
(|α| − 1)

{
F (Rz0) + ψF (rz0)

}∣∣∣∣,(4.4)

where A = f(Rz0) + ψf(rz0). Now, because by hypothesis all the zeros of F (z) lie

in |z| ≤ 1, the polynomial F (Rz) has all its zeros in |z| ≤ 1
R < 1, and therefore,

if we use Rouche's theorem and Lemmas 3.1 and 3.3 and argument similar to the

above, we will get that all the zeros of

z
(
DαF (Rz) + ψDαF (rz)

)
+
nλ

2
(|α| − 1)

{
F (Rz) + ψF (rz)

}
lie in |z| < 1 for every |α| ≥ 1, |λ| < 1 and R > r ≥ 1, that is

z
(
DαF (Rz0) + ψDαF (rz0)

)
+
nλ

2
(|α| − 1)

{
F (Rz0) + ψF (rz0)

}
6= 0

for every z0 with |z0| ≥ 1.

Therefore, if we take

δ =

z0

[
(n−m)A+Dαf(Rz0) + ψDαf(rz0)

]
+ nλ

2 (|α| − 1)A

z0

(
DαF (Rz0) + ψDαF (rz0)

)
+ nλ

2 (|α| − 1)
{
F (Rz0) + ψF (rz0)

} ,
then δ is a well-de�ned real or complex number, and in view of (4.4) we also have

|δ| > 1. Hence, with the choice of δ, we get from (4.2) that W (z0) = 0 for some

z0, satisfying |z0| ≥ 1, which is clearly a contradiction to the fact that all the zeros

of W (z) lie in |z| < 1. Thus for every R > r ≥ 1, |α| ≥ 1, |λ| < 1 and |z| ≥ 1,

inequality (4.3) holds and this completes the proof of

Theorem 1.1.

Proof of Corollary 2.1. Since the polynomial f(z) does not vanish in |z| < 1,

therefore, all the zeros of the polynomial Q(z) = znf( 1
z̄ ) ∈ Pn, lie in |z| ≤ 1 and

|f(z)| = |Q(z)| for |z| = 1. Applying Theorem 1.1 with F (z) replaced by Q(z), the

result follows.
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Proof of Theorem 2.2. Since all the zeros of F (z) lie in |z| ≤ 1, for R > r ≥
1, |β| ≤ 1, |γ| ≤ 1, it follows as in the proof of Theorem 2.1, that all the zeros of

h(z) = F (Rz)− βF (rz) + γ

{(
R+ 1

r + 1

)n
− |β|

}
F (rz) = F (Rz) + ψF (rz)

lie in |z| ≤ 1. Hence by Lemma 3.2, we get for |α| ≥ 1,

2
∣∣zDαh(z)

∣∣ ≥ n(|α| − 1)
∣∣h(z)∣∣, for |z| ≥ 1.

This gives for every λ with |λ| < 1 and for |z| ≥ 1

(4.5)

∣∣∣∣z{DαF (Rz) + ψDαF (rz)
}∣∣∣∣− n|λ|

2
(|α| − 1)

∣∣F (Rz) + ψF (rz)
∣∣ ≥ 0.

Therefore, it is possible to choose the argument of λ in the right hand side of (4.3)

such that for |z| ≥ 1,∣∣∣∣z{DαF (Rz) + ψDαF (rz)
}
+
nλ

2
(|α| − 1)

{
F (Rz) + ψF (rz)

}∣∣∣∣
=

∣∣∣∣z{DαF (Rz) + ψDαF (rz)
}∣∣∣∣− n|λ|

2
(|α| − 1)

∣∣∣F (Rz) + ψF (rz)
∣∣∣.(4.6)

Hence from (4.3), we get by using (4.6) for |z| ≥ 1,∣∣∣∣z[(n−m)

{
f(Rz) + ψf(rz)

}
+Dαf(Rz) + ψDαf(rz)

]∣∣∣∣
− n|λ|

2
(|α| − 1)

∣∣f(Rz) + ψf(rz)
∣∣

≤
∣∣∣∣z{DαF (Rz) + ψDαF (rz)

}∣∣∣∣− n|λ|
2

(|α| − 1)
∣∣F (Rz) + ψF (rz)

∣∣.(4.7)

Letting |λ| → 1 in (4.7), we immediately get (2.5) and this completes proof of

Theorem 2.2 completely.

Proof of Corollary 2.5. By hypothesis, the polynomial f(z) has all its zeros

in |z| ≥ 1, therefore, all the zeros of the polynomial Q(z) = znf( 1
z̄ ) ∈ Pn, lie in

|z| ≤ 1 and |f(z)| = |Q(z)| for |z| = 1. Applying Theorem 2.2 with F (z) replaced

by Q(z), the result follows.
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