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1. INTRODUCTION

T
Lot P, denote the space of all complex polynomials P(z) := > a,27 of degree n
7=0
and P/ (z) is the derivative of P(z). A famous result known as Bernstein’s mequality

{for reference, see [3]) states that if P € P, then

{1.1) max|P’(z)| <

|z|=1 |z|=

where as concerning the maximum modulus of P(2) on the circle |2/ = R > 1, we

have (for reference see [11)),
(1.2) ma \P )| <Rn‘m‘ax|P(z -
= o
Both the ahove inequalities are sharp and equality in each holds only when P(z) is
a constant multiple of 2.

It was ohserved by Bernsten [3] that (1.1) can be deduced from (1.2), by making
use of Gauss - Lucas theorem and the proof of this fact was given by Govil, Qazi
and Rahman [4].

I we restrict oumselves to the class of polynomials P € P, with P(z) # 0 in

|z| < 1, then {1.1) and (1.2) can be respectively replaced

(1.3) lmafﬂP’(z)\ <=
and
s i +1
{1.4) R>1|P( )| < lmli:i‘P(zﬂ
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Inequality (1.3) was conjectured by Erdds and later proved by Lax [8], where as
inequality (1.4) was proved by Ankeny and Rivlin [1], for which they made use of
(1.3).
Inequality (1.1) can be seen as a special case of the following inequality which is
also due to Bernstein [3].
Theorem A. Let F € P, having all its zeros in |z| < 1 and f(z) be a polynomial
of degree at most n. If | f(2)| < |F(2)| for |z| = 1, then for |z| > 1, we have
(1.5) FE)] < |FE).
Equality holds in (1.5) for f(z) = e"F(z),n € R.
Inequality (1.1) can be obtained from inequality (1.5) by taking F'(z) = Mz", where
M = |I£1|%>§| f(2)|. In the same way, inequality (1.2) follows from a result which is a
special case of Bernstein-Walsh lemma ([10], Corollary 12.1.3).
Theorem B. Let F € P,,, having all its zeros in |z] < 1 and f(z) be a polynomial
of degree at most n. If | f(2)| < |F(2)| for |z| = 1, then

|f(z)| < |F(z)|, for |z| > 1,
unless f(z) = e"F(z) for some n € R.
In 2011, Govil et al. [5] proved a more general result which provides a compact
generalization of inequalities (1.1), (1.2), (1.3) and (1.4) and includes Theorem A
and Theorem B as special cases. In fact, they proved that if f(z) and F(z) are as
in Theorem A, then for any 8 with |3| <1 and R > r > 1, we have

(1.6) ’f(Rz) —Bf(rz)| < ‘F(Rz) — BF(rz)|, for |z| >1.

Further, as a generalization of (1.6), Liman et al. [6] in the same year 2011 and

under the same hypothesis as in Theorem A, proved that
R+ 1\n
[£(R2) = B2y +o{ (F ) = 181} 1 02)]

r+1
(17) < |F(Re) - 572 +4{ (F5) " - 181} ),

for every 8,7 € C with |5] < 1,|y] <1land R >r > 1.

For f € P, the polar derivative D, f(z) of f(z) with respect to the point « is
defined as

Do f(2) == nf(z) + (a = 2)f'(2).
Note that D, f(z) is a polynomial of degree at most n— 1. This is the so-called polar

derivative of f(z) with respect to o (see [9]). It generalizes the ordinary derivative

im { 2HE ),

a—r 00
76

in the following sense:
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uniformly with respect to z for |z| < R, R > 0.

Recently, Liman et al. [7] besides proving some other results also proved the following
generalization of (1.6) to the polar derivative D, f(z) of a polynomial f(z) with
respect to «, |af > 1.

Theorem C. Let F € P,,, having all its zeros in |z] < 1 and f(z) be a polynomial
of degree m(< n) such that |f(z)| < |F(2)| for |z| = 1. If o, 8,y € C be such that
lal > 1,]8| <1 and |\| < 1, then for R>r > 1 and |z| > 1, we have

‘z [(n - m){f(Rz) - 5f(rz)} + Do f(Rz) — 5Daf(rz)}
+ "ol - 0){7(R2) -~ B162) )|

(1.8) < Z{DQF(RZ) - BDQF(TZ)} + %A(m - 1){F(Rz) - ﬁF(rz)} ]

Equality holds in (1.8) for f(z) = e"F(z),n € R.

While making an attempt towards the generalization of the above inequalities,
the authors found that there is a room for the generalization of (1.6) to the
polar derivative of a polynomial which in turn induces inequalities towards more
generalized form. The essence in the papers by Liman et al. [7] and Govil et al. [5]

is the origin of thought for the new inequalities presented in this paper.

2. MAIN RESULTS

The main aim of this paper is to obtain some more general results for the
maximal modulus of the polar derivative of a polynomial under certain constraints
on |z| and on the functions considered. We first prove the following generalization
of inequalities (1.6) and (1.7) and of Theorem C.

Theorem 2.1. Let F € P, having all its zeros in |z| < 1 and f(2) be a polynomial
of degree m(< n) such that

|f)| < |F ()|, for |2 =1.

If a, 8,7, A € C be such that |a] > 1,|8] < 1,|v| <1 and |\| < 1, then for R >r > 1

and |z| > 1, we have
’z [(n - m){f(Rz) + Tﬁf(rz)} + D, f(Rz) + 1/1Daf(rz)}
+ 2ol - D{7(R) + 410}

(2.1) < ‘z{DaF(RZ) + wDaF(rz)} + %)\(|oz\ - 1){F(Rz) + wF(rz)}

)

7
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where

¥ =(R.7.8,7) :v{(fjf)" - 5|} -5

The result is sharp and equality in (2.1) holds for f(z) = e"F(z),n € R.
The following result immediately follows from Theorem 2.1.

Corollary 2.1. If f € P,,, and f(z) does not vanish in |z| < 1, then for every
o, B,7v, A € C such that |« > 1,|8] < 1,|v] <1 and || < 1, we have for R >r >1
and |z| > 1,

{ Daf(R2) +9Daf(r2)} + "2 (0] = D{7(R2) +7(r2)}|

22 <[o{DaQ(ra) + 90.000) b+ ol - Df () + 000} |
).

Equality holds in (2.2) for f(2) = €"Q(z),n € R. Taking A = 0 in Corollary 2.1,

we get the following result.

where Q(z) = 2" f(

NI =

Corollary 2.2. If f € P,,, and f(z) # 0 in |z| < 1, then for every |a| > 1,|5] <
LIV <L,R>r>1and|z| > 1,

Daf(B2) = 8Daf (=) +9 (T )" = 181) Daf(02)
23 < [DaQR) - 8D.Q0=) +((Tg) " - 181) Dar2)]

where Q(z) = 2" f(2).

=

Inequality (2.3) should be compared with a result of Liman, Mohapatra and
Shah ([6], Lemma 2.3), where f(z) is replaced by D, f(z),|a| > 1.

Taking r = 1 in Corollary 2.2, we get the following generalization of a result due
to Aziz and Rather [2].

Corollary 2.3. If f € P,, and f(z) does not vanish in |z| < 1, then for every
a, B,y € C with |a| > 1,|8] <1 and R > 1,
R4 1\n
|Daf(R2) = 8Daf(2) +((75=) " = 18) Dat(2)]

2
< [Da@(R2) — Da@(2) +4((F52)" ~ 181) Dat2()

, Jor [z =1,

where Q(z) = z"P(1).

If we take 8 = 0 in Theorem 2.1, we get the following.
78
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Corollary 2.4. Let F € P,,, having all zeros in |z| < 1 and f(2) be a polynomial
of degree m(< n) such that

|f(2')| < |F(Z)|, for |z| = 1.

If a,y, A € C be such that |a| > 1,|v| < 1 and |A| < 1, then for R > r > 1 and

|z| > 1, we have

2| n = m){ s (k=) +

(B

Hl)"f( 2)} + Daf (R2) +19

1 Daf ”}
7)) T
(2.4)
Z{DQF(RZ) + y(ﬂ)"DaF(m)} + 712—)\(|04\ —D{F(R2) + (R+ 1)”F(m)}].

r+1 r+1
Equality holds in (2.4) for f(z) = e"F(z),n € R.

H+

R

(|oz|—1{ F(R2) +

Remark 1.1. For v = 0, Corollary 2.4 reduces to Theorem C.

Theorem 2.2. Let F' € P,,, having all its zeros in |z| <1 and f(z) be a polynomial
of degree m(< n) such that

‘f(z)‘ < |F(z)], for |z|=1.
If a, 8,7, A € C be such that |«| > 1,|58| < 1 and |y| < 1, then for R >r > 1 and

|z| > 1, we have

o[ =m){s(R2) + 0 (r)} + Daf (R2) +vDaf(r2)|
+ 5 (lal = D|F(R2) + wF(r)

2
25) < |{DaF(R2) + 9DaF(r2) }| + T(lal = D|F(R2) +wf (r2)],
where 1 is defined in Theorem 2.1.

Equality holds in (2.5) for f(z) = ¢ F(z),n € R.

From Theorem 2.2, we have the following;:

Corollary 2.5. If f € P, and f(z) does not vanish in |z| < 1, then for every
o, B,v, A € C with || > 1,|8] <1,|y] <1, we have for R >r > 1, and |z| > 1,

|#{Daf(B2) + ¥Daf(r2) }| + 2 (0l = D|Q(R2) +4Q(2)|
< | PaQ(R2) +D2Q(r2) }| + S (lal = V[ £(B2) + v f(r2)].

where Q(z) = 2" f(L). and 1 is defined in Theorem 2.1.

Remark 1.2. For v = 0, Corollary 2.5 reduces to a result of Liman et al. [7].
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3. LEMMAS

We need the following lemmas to prove our theorems. The first lemma is due to
Liman, Mohapatra and Shah [6].

Lemma 3.1. Let f € P, having all its zeros in |z| < 1, then for every R > r > 1,
R+1
|f(Rz)|>< ) |f rz ’, for |z] =1.

Lemma 3.2. Let f € P, having all its zeros in |z| < 1, then for every a with
laf > 1,

2|2Da f(2)] > n(lo] - 1)|/(2)

for |z| =1.

The above lemma is due to Shah [12].

Lemma 3.3. Let f € P,,, having all its zeros in |z| < k, then for |a] > k, the polar

derivative

Daf(z) :=nf(z) + (a = 2)f'(2),

of f(z) at the point a also has all its zeros in |z| < k.

The above lemma is due to Laguerre ([9], p.49).

4. PROOFS OF THEOREMS

Proof of Theorem 2.1. If F(z) has a zero on |z| = 1, then the result is obvious,
so we assume that F(z) has no zeros on |z| = 1. Since |f(z)| < |F(z)]| for |z| = 1,
therefore, for every 6 € C with |§| > 1, we have |f(z)| < |0F(z)|, for |z| = 1. Also
all the zeros of F'(z) lie in |z| < 1, it follows by Rouche’s theorem that all the zeros
of g(z) = f(2) — §F(2) lie in |z| < 1. Now by Lemma 3.1, we have in particular

lg(rz)| < |g(Rz)|, for |z| =1 and R>r>1.

Since g(Rz) has all its zeros in [z| < & < 1, a direct application of Rouche’s theorem
shows that the polynomial g(Rz) fﬁg(m) has all its zeros in |z| < 1 for every 5 € C
with |3] < 1. Again by using Lemma 3.1, we have

|9(Rz) — Bg(rz)| = |g(Rz)| — |Bl[g(r2)]

= {(E50)" - atflacal,

for |z|=1 and R>r>1.

80
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That is

{(fill)n - |ﬂ}\9(7"2)| < |9(Rz) — By(r=)

for |z2]=1 and R>r>1.

)

If v is any complex number with || < 1, then it follows by Rouche’s theorem that

all the zeros of T'(z) := g(Rz) — Bg(rz) + ’y{ (fill)n - |5|}9(7‘3)

lie in |z| < 1. Using Lemma 3.2, we get for every « € C with || > 1 and |z| = 1,
2|2DoT(2)| = n(la| — 1)|T(2)|.
Hence for any complex number A with |A| < 1, we have for |z| = 1,
2|2DaT(2)| > n|A|(Jo| — 1)|T(z)].
Therefore, it follows by Lemma 3.3, that all the zeros of
W(z) :=22D,T(z) + nA(la] — 1)T(z)
(4.1) =22Dog(Rz2) + 22¢0Dyog(rz) + n/\(|a| — 1) (g(Rz) + wg(rz))

lie in |z| < 1.
Replacing g(z) by f(z) — 0F(z) and using definition of polar derivative gives

W(z) = 22 [n{ F(R2) — 6F (R2)} + (o — R2){ f(Re) - 5F(Rz)}l}
+ 229 [n{f(rz) — 6F(7“z)} + (o — rz){f(rz) - (5F(’I“Z)}/:|
+nA(lal = D{F(R2) = SF(R2)} + naw(lal = ){f(r2) = 6F(r2)
which on simplification gives

W(z) = 22 {(n — m)f(Rz) + mf(Rz) + (a — Rz)(f(Rz)) — 6{nF(7‘z) ¥ (a—72) (F(Rz))/}}

+ 2290 [(n = m)f(r2) +mf(rz) + (@ =) (f(r2) = 8{nF(r2) + (@ = 1) (F(m))’}}
+ (o] - 1){f(Rz) - 5F(Rz)} + (|l — 1){f(rz) - 5F(7‘z)}

- 22{(n —m)f(Rz) + Daf(Rz) — 6DQF(Rz)}
+ 2z¢{(n —m)f(rz) + Daf(rz) — 5DQF(TZ)}
+nA(lal = D{F(R2) = SF(R2)} + na(lal = ){ f(r2) = 6F(r2) |

= 2:{(n— M) f(R2) + (n — m) [(r2) + Daf(R2) + ¥Da f(r2)}
+ (ol = Df(R2) + n(la] = 1)f(r2) — 6{2:DaF(Rz2) + 22:Da F(r2)

(4.2)

+ nAb(lal = DF(R2) +ndu(la] = 1)f(r2)}.
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Since by (4.1), W(z) has all its zeros in |z| < 1, therefore, by (4.2), we get for

2] > 1,

o= { s + 05690} + g + 0001 02) | + el = {50 + w50}
(4.3)

Z{DQF(Rz) + wDaF(rz)} + %)\(|a| — 1){F(Rz) + ’(/JF(TZ)}’

<

To see that the inequality (4.3) holds, note that if the inequality (4.3) is not true,

then there is a point z = zg with |z > 1, such that

20 [(n —m) A+ D, f(Rz) + wDaf(rzo)} + %)\(\04 -1) A‘

44) > zo{DaF(Rzo) + wDaF(rzo)} + %)\(|a| - 1){F(Rz0) + 1/}F(rzo)}

)

where A = f(Rz) + ¢ f(rzp). Now, because by hypothesis all the zeros of F(z) lie
in |z| < 1, the polynomial F(Rz) has all its zeros in |z| < % < 1, and therefore,
if we use Rouche’s theorem and Lemmas 3.1 and 3.3 and argument similar to the

above, we will get that all the zeros of
Z(D,IF(RZ) + ¢DQF(TZ)) + %)\(|a| - 1){F(Rz) + wF(m)}
lie in |z| < 1 for every |a| > 1,|A\| <1 and R > r > 1, that is
Z(DQF(RZO) + 1/)DaF(rzo)) + %A(|a| - 1){F(Rz0) + wF(rzo)} £0

for every zo with |z > 1.

Therefore, if we take

20 [(n —m)A+ D, f(Rz) + wDaf(rzo)} + "7)‘(\04 -1)A
5=

2 (DaF(Rzo) ¥ wDaF(rzo)) + (o] — 1){F(Rzo) + wF(rzo)} ’

then § is a well-defined real or complex number, and in view of (4.4) we also have
|6] > 1. Hence, with the choice of §, we get from (4.2) that W(zp) = 0 for some
20, satisfying |zg| > 1, which is clearly a contradiction to the fact that all the zeros
of W(z) lie in |z| < 1. Thus for every R > r > 1,]a| > 1,|A\] < 1 and |z| > 1,
inequality (4.3) holds and this completes the proof of

Theorem 1.1.

Proof of Corollary 2.1. Since the polynomial f(z) does not vanish in |z| < 1,

therefore, all the zeros of the polynomial Q(z) = 2"f(1) € P,,, lie in || < 1 and
|f(2)| = |Q(2)| for |z| = 1. Applying Theorem 1.1 with F(z) replaced by Q(z), the

result follows.
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Proof of Theorem 2.2. Since all the zeros of F'(z) lie in |z| < 1, for R > r >
1,18] <1, |y| <1, it follows as in the proof of Theorem 2.1, that all the zeros of

R+1

m>n _ |5|}F(m) = F(Rz) + ¢ F(rz)

h(z) = F(Rz) - BF(rz) + 7{ <

lie in |z| < 1. Hence by Lemma 3.2, we get for |a| > 1,

2|2Dah(2)| > n(|al — 1)|h(2)

, for |z| > 1.

This gives for every A with |A\| < 1 and for |z| > 1
n|A|

(4.5) ;

(lo| = 1)|F(Rz) + ¥ F(rz)| > 0.

Z{DQF(Rz) + wDaF(rz)}‘

Therefore, it is possible to choose the argument of A in the right hand side of (4.3)
such that for |z| > 1,

z{DaF(Rz) + zpDaF(rz)} + %)\(|a\ - 1){F(Rz) + wF(rz)}’

_nAl
2

(4.6) - (Jof — 1)]F(Rz) + ¢F(rz)’.

Z{DQF(RZ) + wDaF(rz)}’

Hence from (4.3), we get by using (4.6) for |z| > 1,

= m{ ey + wse) | + Do)+ wDas2)|

- @(lal —D|f(R2) + ¢ f(r2)]

47 < z{DaF(Rz) + wDaF(m)H - @

(la] — 1)‘F(Rz) + 1/)F(rz)|

Letting |A\| — 1 in (4.7), we immediately get (2.5) and this completes proof of
Theorem 2.2 completely.

Proof of Corollary 2.5. By hypothesis, the polynomial f(z) has all its zeros

in |z| > 1, therefore, all the zeros of the polynomial Q(z) = z"f(%) € P,, lie in
|z| <1 and |f(2)] = |Q(z)] for |z| = 1. Applying Theorem 2.2 with F(z) replaced
by Q(z), the result follows.
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