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set {sn,i}ni=0 is obtained by adding the point sn,2ν−1 to the set {sn−1,i}n−1
i=0 . Hence,

there exists a unique function fn ∈ Sn, which is orthogonal to Sn−1 and ‖fn‖2 = 1.

Setting f0(x) = 1, f1(x) =
√

3(2x − 1) for x ∈ [0, 1], we obtain an orthonormal

system {fn(x)}∞n=0, which was de�ned equivalently by Franklin [2].

Here we quote a result by G. Gevorkyan [3] on restoration of coe�cients of series

by Franklin system.

Speci�cally, in [3] it was proved that if the Franklin series
∑∞
n=0 anfn(x) converges

a.e. to a function f(x) and

lim
λ→∞

(
λ · |{x ∈ [0, 1] : sup

k∈N
|Sk(x)| > λ}|

)
= 0,

where

Sk(x) =

k∑
j=0

ajfj(x)

then the coe�cients an of the Franklin series can be reconstructed by the following

formula,

an = lim
λ→∞

∫ 1

0

[
f(x)

]
λ
fn(x)dx,

where [
f(x)

]
λ

=

{
f(x), if |f(x)| ≤ λ,
0, if |f(x)| > λ.

Similar result on uniqueness is also obtained for the Haar system (see [5]).

Afterwards Gevorkyan's result was extended by V. Kostin [10] to the series by

generalized Haar system.

Consider the d-dimensional Franklin series∑
n∈Nd0

anfn(x),

where n = (n1, · · · , nd) ∈ Nd0 is a vector with non-negative integer coordinates,

N0 = N ∪ {0}, x = (x1, · · · , xd) ∈ [0, 1]d and

fn(x) = fn1
(x1) ···· ·fnd(xd).

The following theorem for multiple Franklin series was proved in [7].

Theorem A. If the partial sums

σ2k(x) =
∑

n:ni≤2k,i=1,··· ,d

anfn(x)

converge in measure to a function f and

lim
m→∞

(
λm · |{x ∈ [0, 1]d : sup

k
|σ2k(x)| > λm}|

)
= 0
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for some sequence λm → +∞, then for any n ∈ Nd0

an = lim
m→∞

∫
[0,1]d

[
f(x)

]
λm
fn(x)dx.

In this theorem instead of the partial sums σ2k(x) one can take square partial

sums σqk(x), where {qk} is any increasing sequence of natural numbers, for which

the ratio qk+1/qk is bounded. The following theorem is proved in [11].

Theorem B. Let {qk} be an increasing sequence of natural numbers such that the

ratio qk+1/qk is bounded. If the sums σqk(x) converge in measure to a function f

and there exists a sequence λm → +∞ so that

lim
m→∞

(
λm · |{x ∈ [0, 1]d : sup

k
|σqk(x)| > λm}|

)
= 0,

then for any n ∈ Nd0

an = lim
m→∞

∫
[0,1]d

[
f(x)

]
λm
fn(x)dx.

2. Lemmas and the main result

Let functions hm(x) : [0, 1]→ R, satisfy the following conditions:

(2.1) 0 ≤ h1(x) ≤ h2(x) ≤ · · · ≤ hm(x) ≤ · · · , lim
m→∞

hm(x) =∞,

there exists dyadic points

0 = tm,0 < tm,1 < tm,2 < · · · < tm,nm = 1,

so that the intervals

Imk = [tm,k−1, tm,k), k = 1, · · · , nm,

are dyadic as well, i.e. Imk is of the form

D =

{[
i

2j
,
i+ 1

2j

)
, 0 ≤ i ≤ 2j − 1, j ≥ 0

}
and the function hm(x) is constant on those intervals,

hm(x) = λmk , x ∈ Imk , k = 1, · · · , nm.

Moreover

(2.2) inf
m,k

∫
Imk

hm(x)dx = inf
m,k
|Imk |λmk > 0,

(2.3) sup
m,k

(
λmk
λmk−1

+
λmk−1

λmk

)
< +∞

and

(2.4) sup
m,k

(
|Imk |
|Imk−1|

+
|Imk−1|
|Imk |

)
< +∞.
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In other words, for any function hm the interval [0, 1] can be partitioned into dyadic

intervals, so that the values of the function on neighbouring intervals are equivalent

to each other and so are the lengths of neighbouring intervals. The following theorem

is proved in [9].

Theorem C. Let hm(x) be sequence of functions satisfying conditions (2.1)−(2.3).

If the partial sums σ2ν =
∑2ν

n=0 anfn converge in measure to a function f and

lim
m→∞

∫
{x∈[0,1]; supν |σν(x)|>hm(x)}

hm(x)dx = 0,

then for any n ∈ N0

an = lim
m→∞

∫ 1

0

[
f(x)

]
hm(x)

fn(x)dx,

where [
f(x)

]
λ(x)

=

{
f(x), if |f(x)| ≤ λ(x),

0, if |f(x)| > λ(x).

Now we are in position to state the main result of this paper.

Theorem 2.1. Let hm(x) be sequence of functions satisfying conditions (2.1) −
(2.3), and {qk} be an increasing sequence of natural numbers such that the ratio

qk+1/qk is bounded. If the partial sums σqk(x) converge in measure to a function f

and

(2.5) lim
m→∞

∫
{x∈[0,1]; supk|σqk (x)|>hm(x)}

hm(x)dx = 0,

then for any n ∈ N0

(2.6) an = lim
m→∞

∫ 1

0

[
f(x)

]
hm(x)

fn(x)dx.

To prove Theorem 2.1 we will need the following two lemmas.

Lemma 2.1. Let 0 = t0 < t1 < · · · < tn = 1 and h(x) = λk, if x ∈ Ik :=

[tk−1, tk) and Ik ∈ D, when k = 1, · · · , n. Moreover γ > 0

(2.7)
1

γ
≤ λk
λk+1

≤ γ, when k = 1, · · · , n− 1,

then there exists points 0 = t̃0 < t̃1 < · · · < t̃s = 1 such that h(x) = λ̃l, x ∈ Ĩl =

[t̃l−1, t̃l) ∈ D, l = 1, · · · s. Besides that

(2.8)
1

2γ
≤ |Ĩl|
|Ĩl+1|

≤ 2γ,

(2.9)
1

γ
≤ λ̃l

λ̃l+1

≤ γ, when l = 1, · · · , s− 1,
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(2.10) min
l

∫
Ĩl

hm(x)dx = min
k

∫
Ik

hm(x)dx > 0.

The proof of the Lemma 2.1 can be found in [9], but we present it here for the

sake of completeness.

Proof. Denote

c = min
k

∫
Ik

hm(x)dx = min
k
λk|Ik|,

and let 1 ≤ k0 ≤ n such that λk0
|Ik0
| = c. From de�nition c follows that for any i,

−k0 + 1 ≤ i ≤ n− k0 there exists ni ≥ 0 such that

(2.11) 2nic ≤ λk0+i|Ik0+i| < 2ni+1c.

Suppose that n0 = 0 and denote

ti,j = tk0+i−1 +
|Ik0+i|

2ni
j, when j = 0, · · · , 2ni ,

Ii,j = [ti,j−1, ti,j), and λi,j = λi, when j = 1, · · · , 2ni .

Therefore ∫
I0,1

hm(x)dx = c ≤
∫
Ii,j

hm(x)dx = λi,j |Ii,j | < 2c.

From the de�nition c, Ii,j , (2.11) and (2.7) follows that

|Ii,j | = |Ii,1| <
2c

λk0+i
≤ 2cγ

λk0+i−1
≤ 2γ|Ii−1,2ni−1 |,

similarly we obtain

|Ii,j | = |Ii,1| ≥
c

λk0+i
≥ c

γλk0+i−1
≥ 1

2γ
|Ii−1,2ni−1 |.

From the last two inequalities follows that the ratio of the lengths of intervals

Ii,j with common endpoint is not greater than 2γ. By renumbering the intervals

{Ii,j ;−k0 + 1 ≤ i ≤ n − k0, 1 ≤ j ≤ 2ni} in increasing order with respect to the

left endpoint, we obtain the intervals Ĩl, l = 1, · · · ,
∑n−k0

i=−k0+1 2ni , which satisfy the

condition (2.8). From the de�nition Ĩl it follows that the function hm(x) is constant,

hm(x) = λ̃l, x ∈ Ĩl

and from (2.7) we get (2.9), so λ̃l
λ̃l+1

= 1 or there exists k, such that

λ̃l

λ̃l+1

=
λk
λk+1

.

�

Lemma 2.2. Let hm(x) be sequence of functions satisfying conditions (2.1)−(2.3),

then there exists dyadic points 0 = t̃m,0 < t̃m,1 < · · · < t̃m,ñm = 1 so that the
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intervals Ĩmk = [t̃m,k−1, t̃m,k) ∈ D, k = 1, · · · , ñm are dyadic as well and the

function hm(x) is constant on those intervals,

hm(x) = λ̃mk , if x ∈ Ĩmk , k = 1, · · · , ñm

and the conditions (2.2)− (2.4) are satis�ed.

3. The proof of the main theorem

Let {sn,i}ni=0 be the points given in (1.1), sn,−1 = 0 and sn,n+1 = 1. Let us de�ne

the function Nn
i (x) as follows. It is linear on intervals [sn,j−1, sn,j ], j = 1, 2, · · · , n,

and

Nn
i (sn,j) =


1, if i = j,

j = 0, 1, · · · , n.
0, if i 6= j,

Let {qk} be an increasing sequence of natural numbers andM be a number satisfying

the inequality
qk+1

qk
≤M, for all k ∈ N.

For any j ∈ {0, 1, · · · , qν} denote

∆ν
j := [sqν ,j−1, sqν ,j+1],

Mqν
j (x) :=

Nqν
j (x)

‖Nqν
j (x)‖1

=
2

|∆ν
j |
Nqν
j (x).

Obviously

(3.1)
1

2qν
≤ |∆ν

j | ≤
4

qν
,

suppMqν
j = ∆ν

j and

∫ 1

0

Mqν
j (x)dx = 1.

Recall that

σqν (x) =

qν∑
n=0

anfn(x).

Let's denote

σ∗(x) = sup
ν
|σqν (x)|,

and prove that for any j0, ν0 the following statement is true:∫ 1

0

σqν0 (x)M
qν0
j0

(x)dx = lim
m→∞

∫ 1

0

[
f(x)

]
hm(x)

M
qν0
j0

(x)dx.

For any m ∈ N denote

Em := {x ∈ supp(M
qν0
j0

) = ∆ν0
j0

: σ∗(x) ≥ hm(x)}.

From (2.3), (2.4) it follows that there exists γ > 0 such that

(3.2)
λmk
γ
≤ λmk+1 ≤ γλmk and

|Imk |
γ
≤ |Imk+1| ≤ γ|Imk |.
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Denote

ε0 = inf
m,k

∫
Imk

hm(x)dx = inf
m,k

λmk |Imk | > 0.

Let ε be an arbitrary positive number. Under the conditions of the theorem a

number m0 can be chosen to satisfy

27M

∫
Em

hm(x)dx < ε, m ≥ m0.

Take

ε ≤ 23ε0

γ
.

Let M1 be a number such that

hm(x) ≥M1, for all x ∈ [0, 1], when m ≥ m1,

then

M1|Em| ≤
∫
Em

hm(x)dx <
ε

27M
,when m ≥ max(m0,m1) =: m2.

Therefore

|Em| ≤
ε

27MM1
,

let's take

M1 =
qν0
ε

22
.

Hence from (3.1) we obtain

(3.3) |Em| <
22ε

27Mqν0ε
=

1

25Mqν0

≤
|∆ν0

j0
|

24M
.

Let's �x a number m ≥ m2 and prove that

(3.4) |Em ∩ Imk | <
|Imk |
8M

, k = 1, · · · , nm.

Suppose that there exists k0, such that

|Em ∩ Imk0
| ≥
|Imk0
|

8M
,

therefore

ε0 ≤ λmk0
|Imk0
| ≤ 8Mλmk0

|Em ∩ Imk0
| ≤ 8M

∫
Em

hm(x)dx ≤ ε

24
≤ ε0

2γ
< ε0,

which is a contradiction.

Note that for any J ∈ D, which can represented in the form
⋃j
k=l I

m
k , from (3.4)

we get

|J ∩ Em| =
j∑
k=l

|Imk ∩ Em| ≤
1

8M

j∑
k=l

|Imk | =
1

8M
|J |,

therefore

(3.5) |J ∩ Em| ≤
|J |
8M

, for any J =

j⋃
k=l

Imk ∈ D.
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It is clear that if J ∈ D and J ⊃ Imk0
, then J =

⋃j
k=l I

m
k , when l ≤ k0 ≤ j.

Suppose ν ≥ ν0. We set

Ων := {A : A = [sqν ,j−1, sqν ,j ] and A ⊂ ∆ν0
j0
}.

Obviously
1

2qν
≤ |A| ≤ 2

qν
, for all A ∈ Ων .

If ν = ν0, then we set

Ω1
ν0

=

{
A ∈ Ων0

: |A ∩ Em| >
1

8M
|A|
}
, Qν0

=
⋃

A∈Ω1
ν0

A,

and

Ω2
ν0

= {A ∈ Ων0
: A 6⊂ Qν0

} , Pν0
=

⋃
A∈Ω2

ν0

A.

From (3.3) we have, that

Qν0
= ∅, and Pν0

= supp(M
qν0
j0

).

Now suppose we have de�ned the sets Ω1
ν′ , Ω2

ν′ , Qν′ for all ν
′ < ν. Let's denote

(3.6) Ω1
ν =

{
A ∈ Ων : |A ∩ Em| >

1

8M
|A| and A 6⊂

⋃
ν′<ν

Qν′

}
,

Qν =
⋃
A∈Ω1

ν

A, Ω2
ν =

A ∈ Ων : A 6⊂
⋃
ν′≤ν

Qν′

 , Pν =
⋃
A∈Ω2

ν

A.

Thus we have de�ned the families Ω1
ν ,Ω

2
ν and the sets Qν , Pν , satisfying to the

following conditions,

Ω1
ν ⊂ Ων , Ω2

ν ⊂ Ων ,

(3.7) supp(M
qν0
j0

) = Pν ∪

 ⋃
ν′≤ν

Qν′

 , Pν ∩

 ⋃
ν′≤ν

Qν′

 = ∅,

(3.8) Qν′ ∩Qν′′ = ∅, if ν′ 6= ν′′.

From (3.6) and (3.8) we obtain∣∣∣∣∣∣
⋃
ν′≤ν

Qν′

∣∣∣∣∣∣ < 8M |Em|, for any ν.

Now let us prove that for any A ∈ Ω1
ν , ν ≥ ν0, there exists k such that A ⊂ Imk .

Otherwise, there exists k0 such that A ⊃ Imk0
. Since A =

⋃j
k=l I

m
k , l ≤ k0 ≤ j,

therefore from (3.5) we get |A ∩ Em| ≤ |A|/8M, but A ∈ Ω1
ν . For any ν > ν0

denote

Jν = {j : ∆ν
j ∩Qν 6= ∅, ∆ν

j ⊂ Pν−1}.
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Now let us prove that

(3.9) |σqν (x)| ≤ 3hm(x), if x ∈ ∆ν
j , j ∈ Jν .

Suppose A ∈ Ω1
ν , with A ⊂ ∆ν

j , therefore A ⊂ Iml for some l. Let's prove that

(3.10) ∆ν
j ⊂ Imk ∪ Imk+1, when k = l − 1 or k = l.

Without loss of generality suppose that ∆ν
j ⊃ Iml+1. From (3.2) we get

2|A| = |∆ν
j | > |Iml+1| ≥

|Iml |
γ

,

therefore

ε0 ≤ |Iml |λml < 2γ|A|λml ≤ 16γM |A ∩ Em|λml ≤ 16γM

∫
Em

hm(x)dx

<
16γMε

27M
≤ 16 · 23γε0

27γ
= ε0,

which is a contradiction.

Let ∆1 and ∆2 be respectively the left and right halves of the interval ∆ν
j , ∆1 ⊂ ∆ν

j ,

∆2 ⊂ ∆ν
j . From (3.10) we get, that there exists l1, l2 such that ∆1 ⊂ Iml1 , ∆2 ⊂ Iml2 ,

it is clear that |l1 − l2| ≤ 1. Therefore

(3.11) hm(x) = λmlj , x ∈ ∆j , j = 1, 2.

Since ∆1,∆2 ⊂ ∆ν
j ⊂ Pν−1, (j ∈ Jν), then there exists ∆̃1, ∆̃2 ∈ Ων−1, so that

∆i ⊂ ∆̃i ⊂ Pν−1, i = 1, 2, we get that

(3.12) |∆i ∩ Em| ≤ |∆̃i ∩ Em| ≤
1

8M
|∆̃i| ≤

1

8M
· 2

qν−1
≤ 1

4qν
≤ |∆i|

2
.

Suppose that x ∈ ∆1, (the case x ∈ ∆2 is considered similarly). Since σqν (x) is a

linear function on ∆1 = [α, β], we have set

I := {t ∈ ∆1 : |σqν (t)| < λml1 }

is an interval. From (3.11) and (3.12) we get

(3.13) |I| = |{t ∈ ∆1 : |σqν (t)| < hm(t)}| ≥ |∆1 ∩ Ecm| ≥
1

2
|∆1|.

Since σqν (t) is linear, then

(3.14) |σ
′

qν (t)| <
2λml1

1
2 (β − α)

=
4λml1
β − α

.

From (3.14) we get

|σqν (α)| < λml1 +
4λml1
β − α

· β − α
2

= 3λml1 ,

similarly we obtain

|σqν (β)| < 3λml1 .
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Using the last inequalities and (3.10), we get

|σqν (t)| < 3hm(t), t ∈ [α, β] = ∆1.

Similarly we obtain (according to de�nition of Pν), that if ∆ν
j ⊂ Pν , then

|σqν (x)| ≤ 3hm(x), if x ∈ ∆ν
j ⊂ Pν .

Now let's de�ne by induction expansions ψn for M
qν0
j0

,

(3.15) M
qν0
j0

= ψn =
∑
ν≤n

∑
j∈Jν

αnν,jM
qν
j +

∑
j:∆n

j ⊂Pn

αnjM
qn
j ,

where

(3.16)
∑
ν≤n

∑
j∈Jν

αnν,j +
∑

j:∆n
j ⊂Pn

αnj = 1, αnν,j ≥ 0, αnj ≥ 0.

Since Pν0 = supp(M
qν0
j0

), then ψν0 = M
qν0
j0

. Suppose we have de�ned expansions

ψν0 , · · · , ψn, satisfying (3.15) and (3.16). Clearly for any ∆n
j ⊂ Pn we have

(3.17) Mqn
j (x) =

∑
ν:∆n+1

ν ⊂suppMqn
j

βνM
qn+1
ν (x), βν ≥ 0.

Note that if ∆n
j ⊂ Pn and ∆n+1

ν ⊂ suppMqn
j = ∆n

j , then either ∆n+1
ν ∩Qn+1 6= ∅

and, therefore ν ∈ Jn+1, or ∆n+1
ν ⊂ Pn+1. Therefore, inserting the expressions

(3.17) in (3.15) and grouping similar terms, we obtain

M
qν0
j0

= ψn+1 =
∑

ν≤n+1

∑
j∈Jν

αn+1
ν,j M

qν
j +

∑
j:∆n+1

j ⊂Pn+1

αn+1
j M

qn+1

j .

Since the integrals of all functions Mqν
j are 1, we get that∑

ν≤n+1

∑
j∈Jν

αn+1
ν,j +

∑
j:∆n+1

j ⊂Pn+1

αn+1
j = 1,

therefore for any n

(σqn ,M
qν0
j0

) =
∑
ν≤n

∑
j∈Jν

αnν,j(σqn ,M
qν
j ) +

∑
j:∆n

j ⊂Pn

αnj (σqn ,M
qn
j ).

Note that

(fp,M
qν
j ) =

∫ 1

0

fp(x)Mqν
j (x)dx = 0, if ν ≥ ν0 and p > qν .

Therefore

(3.18) (σqn ,M
qν
j ) =

qn∑
p=0

ap(fp,M
qν
j ) =

qν∑
p=0

ap(fp,M
qν
j ) = (σqν ,M

qν
j ).

Hence we have

(3.19)

∫ 1

0

σqν0 (t)M
qν0
j0

(t)dt−
∫ 1

0

[
f(t)

]
hm(t)

M
qν0
j0

(t)dt = (σqn −
[
f
]
hm
,M

qν0
j0

)
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=
∑
ν≤n

∑
j∈Jν

αnν,j(σqν −
[
f
]
hm
,Mqν

j ) +
∑

j:∆n
j ⊂Pn

αnj (σqn −
[
f
]
hm
,Mqn

j ) =: I1
n + I2

n.

Using (3.9) and (3.18), for I1
n we will have the estimate

|I1
n| =

∣∣∣∣∣∣
∑
ν≤n

∑
j∈Jν

αnν,j(σqν −
[
f
]
hm
,Mqν

j )

∣∣∣∣∣∣ ≤
∑
ν≤n

∑
j∈Jν

αnν,j(|σqν |+ hm,M
qν
j )

≤ 4
∑
ν≤n

∑
j∈Jν

αnν,j(hm,M
qν
j ) = 4(hm,

∑
ν≤n

∑
j∈Jν

αnν,jM
qν
j ).

By ∑
ν≤n

∑
j∈Jν

αnν,jM
qν
j ≤M

qν0
j0

,

we have

|I1
n| ≤ 4

∫
⋃
ν≤n

⋃
j∈Jν

∆ν
j

hm(t)M
qν0
j0

(t)dt.

Denote

J1
ν := {j ∈ Jν : ∃k s.t. ∆ν

j ⊂ Imk }, J2
ν := Jν \ J1

ν ,

An :=
⋃
ν≤n

⋃
j∈J1

ν

∆ν
j , Bn :=

⋃
ν≤n

⋃
j∈J2

ν

∆ν
j .

It is easy to notice that

|I1
n| ≤

(∫
An

hm(t)M
qν0
j0

(t)dt+

∫
Bn

hm(t)M
qν0
j0

(t)dt

)
≤ C

(∫
An

hm(t)dt+

∫
Bn

hm(t)dt

)
=: C(I3

n + I4
n).

From (3.10) we get that for any j ∈ J2
ν there exists k, such that

∆ν
j ⊂ Imk ∪ Imk+1,

and the de�nitions Ω1
ν and Qν , we obtain that for any k there exists (ν(k), j(k))

pair, such that

j(k) ∈ J2
ν and ∆

ν(k)
j(k) ⊂ I

m
k ∪ Imk+1.

Applying (3.2) we get

I4
n ≤

nm∑
k=1

(λmk + λmk+1)|∆ν(k)
j(k) | ≤ (γ + 1)

nm∑
k=1

λmk |∆
ν(k)
j(k) |,

and from (3.6) we get

|∆ν(k)
j(k) | ≤ 2|Qν(k) ∩ (Imk ∪ Imk+1)| ≤ 2|

⋃
ν≤n

Qν ∩ (Imk ∪ Imk+1)|.

Therefore

I4
n ≤ 2(γ + 1)

nm∑
k=1

λmk

∣∣∣∣∣∣
⋃
ν≤n

Qν ∩ Imk

∣∣∣∣∣∣+ γ

nm∑
k=1

λmk+1

∣∣∣∣∣∣
⋃
ν≤n

Qν ∩ Imk+1

∣∣∣∣∣∣
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= 2(γ + 1)2
nm∑
k=1

λmk

∣∣∣∣∣∣
⋃
ν≤n

Qν ∩ Imk

∣∣∣∣∣∣ =: 2(γ + 1)2I5
n.

Using (3.6) we can estimate I5
n as follows,

I5
n ≤ 8M

nm∑
k=1

λmk

∣∣∣∣∣∣Em ∩
⋃
ν≤n

Qν

 ∩ Imk
∣∣∣∣∣∣ ≤ 8M

nm∑
k=1

λmk |Em ∩ Imk | = 8M

∫
Em

hm(t)dt

<
8Mε

27M
=

ε

24
.

If j ∈ J1
ν ,then there exists k, such that ∆ν

j ⊂ Imk , therefore

|∆ν
j | ≤ 2|∆ν

j ∩Qν |,

from the last inequality we get,

|An ∩ Imk | ≤ 2|
⋃
ν≤n

Qν ∩ Imk |.

Therefore

I3
n =

∫
An

hm(t)dt =

nm∑
k=1

λmk |An ∩ Imk | ≤ 2

nm∑
k=1

λmk |
⋃
ν≤n

Qν ∩ Imk | = 2I5
n.

So

(3.20) |I1
n| ≤ C

(
(γ + 1)2ε

23
+

2ε

24

)
=
Cε(1 + (γ + 1)2)

23
= εCγ .

Now let us estimate I2
n. Since∑

j:∆n
j ⊂Pn

αnjM
qn
j ≤M

qν0
j0

, then

|I2
n| ≤ (|σqn −

[
f
]
hm
|,

∑
j:∆n

j ⊂Pn

αnjM
qn
j ) ≤

∫
⋃

j:∆n
j
⊂Pn

∆n
j

|σqn(t)−
[
f(t)

]
hm(t)

|Mqν0
j0

(t)dt

≤ C
∫

⋃
j:∆n

j
⊂Pn

∆n
j

|σqn(t)−
[
f(t)

]
hm(t)

|dt.

Denote

Cn =
⋃

j:∆n
j ⊂Pn

∆n
j ∩ Em, Dn =

⋃
j:∆n

j ⊂Pn

∆n
j ∩ Ecm ∩ {t, |σqn(t)− f(t)| ≤ ε},

Fn =
⋃

j:∆n
j ⊂Pn

∆n
j ∩ Ecm ∩ {t, |σqn(t)− f(t)| > ε}.

It is clear see that

Cn ∪Dn ∪ Fn =
⋃

j:∆n
j ⊂Pn

∆n
j and |f(t)| ≤ hm(t) a. e., when t ∈ Dn ∪ Fn ⊂ Ecm.
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Therefore

|I2
n| ≤ C

(∫
Cn

|σqn(t)−
[
f(t)

]
hm(t)

|dt+

∫
Dn

|σqn(t)− f(t)|dt+

∫
Fn

|σqn(t)− f(t)|dt
)

=: C(I6
n + I7

n + I8
n).

If t ∈ Cn, then

|σqn(t)−
[
f(t)

]
hm(t)

| ≤ |σqn(t)|+ |
[
f(t)

]
hm(t)

| ≤ 4hm(t),

and

I6
n ≤ 4

∫
Cn

hm(t)dt ≤ 4

∫
Em

hm(t)dt ≤ 22ε

27M
=

ε

25M
< ε.

From de�nition of Dn it follows that if t ∈ Dn, then

|σqn(t)− f(t)| ≤ ε, therefore I7
n ≤

∫
Dn

ε ≤ ε.

Since σqn(x) converge in measure to the function f , then there exists n such that

|{t, |σqn(t)− f(t)| > ε}| < ε

max{hm(t), t ∈ [0, 1]}
,

and

|σqn(t)− f(t)| ≤ |σqn(t)|+ |f(t)| ≤ 4hm(t), for a. e., t ∈ Fn ⊂ Ecm.

Therefore

I8
n ≤ 4

∫
Fn

hm(t)dt ≤ 4 max{hm(t), t ∈ [0, 1]} · |{t, |σqn(t)− f(t)| > ε}| < 4ε.

So |I2
n| ≤ 6ε, therefore by (3.19) and (3.20), we get∣∣∣∣(σqν0 ,Mqν0

j0
)−

∫ 1

0

[
f(t)

]
hm(t)

M
qν0
j0

(t)dt

∣∣∣∣ ≤ Cγε.
Now let's prove that for any n ∈ N0 the coe�cient an can be reconstructed by (2.6).

Take arbitrary n and choose ν so that qν ≥ n, then fn ∈ Sqν . Taking into account

that the system of functions {Mqν
j }j∈{0,1,··· ,qν} is a basis in the space Sqν , one can

�nd number βj , j ∈ {0, 1, · · · , qν}, such that

fn(x) =
∑

j∈{0,1,··· ,qν}

βjM
qν
j (x).

Therefore

an = (σqν , fn) =

qν∑
j=0

βj(σqν ,M
qν
j ) =

qν∑
j=0

βj lim
m→∞

∫ 1

0

[
f(x)

]
hm(x)

Mqν
j (x)dx

= lim
m→∞

∫ 1

0

[
f(x)

]
hm(x)

fn(x)dx.
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