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Abstract. In this paper we obtain, that if the partial sums g, () of a Franklin
series converge in measure to a function f, the ratio q—“’;k‘—l is bounded and the
majorant of partial sums satisfies 1o a necessary condition, then the coeflicients
of the series are restored by the function f.
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1. INTRODUCTION

It is well known that there are frigonometric series converging almost everywhere
t0 zero and having ag least one non-zero coefficient. This also applies to the series
in other clagsical orthogonal systems, for instance, to the series in Haar, Walsh and
Franklin systems,

The wmiqueness problem and reconstruction of coefficients of series by various
orthogonal systems has been considered in a number of papers. Unigueness thecrems
for almost everywhere convergent or summable trigonometric series were obtained
in the papers [1] and [4], under some additional conditions imposed on the series.
Results on uniqueness and restoration of coeflicients for series by Haar, Franklin and
generalized Haar systems have been obtained, for instance, in the papers [3].]6].17]
and [9]-]12] .

In: this paper we will consider series by Franklin system,

The orthonormal Franklin system consists of piecewise linear and continuous functions.
This system was constructed by Franklin 2] as the first example of a complete
orthonormal system, which is a basis in C[0,1].

Let n =2* 4 v, p >0, where 1 < v < 2% Donote

. tr, for 0<i< 2y,
(L1) &, 5o g Or O MG BE Sl

» i—v

o, for 2w<i<n
By &, we denote the space of functions that are continuous and piccewise linear
on [0,1] with nodes {s,:}i¢. that is f € 8, if f € C[0,1], and it is lincar on cach
closed interval [sp, ;_1,8n3],¢ = 1,2,--- ,n. It is clear, that dim 5, = n+ 1, and the
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set {5} is obtained by adding the point s, 2,1 to the set {s,_1;}"=, . Hence,
there exists a unique function f,, € S,,, which is orthogonal to S,,_; and || f,||2 = 1.
Setting fo(z) = 1, fi(x) = v/3(22 — 1) for x € [0,1], we obtain an orthonormal
system {f,,(2)}52, which was defined equivalently by Franklin [2].

Here we quote a result by G. Gevorkyan [3] on restoration of coefficients of series
by Franklin system.

Specifically, in [3] it was proved that if the Franklin series > a, fn(z) converges
a.e. to a function f(z) and

lim ()\~ {z € 0,1] :21611N)|Sk<x)| > )\}|> =0,

A—00

where
k
S(w) = a;f;(x)
=0

then the coefficients a,, of the Franklin series can be reconstructed by the following

formula,
1
Ap = Ahm [f(l')})\fn(l')dﬂﬁ,
—o0 Jo
where
_ Jf@), it [f(@)] < A
@]y = {0, it |f(z)] > A

Similar result on uniqueness is also obtained for the Haar system (see [5]).
Afterwards Gevorkyan’s result was extended by V. Kostin [10] to the series by
generalized Haar system.
Consider the d-dimensional Franklin series

Z an fn (%),

neNg

where n = (ny,---,nq) € N& is a vector with non-negative integer coordinates,
No =NU{0}, x= (21, -+ ,74) €[0,1] and

fo(x) = fo, (1) oo frg (Ta)-

The following theorem for multiple Franklin series was proved in [7].
Theorem A. If the partial sums
O2k (w) = Z anfn(m)
nn; <2k i=1,.-- d

converge in measure to a function f and

lim <)\m Hzeo,1]¢: s%p |ogr (z)] > )\m}|) =0

m—r oo
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for some sequence \,, — +oo, then for any n € N¢

ap = lim [f(x)]kmfn(x)dx.

oo Jo0,1)4
In this theorem instead of the partial sums o,k (x) one can take square partial
sums o4, (x), where {g;} is any increasing sequence of natural numbers, for which
the ratio gi4+1/qx is bounded. The following theorem is proved in [11].
Theorem B. Let {q;} be an increasing sequence of natural numbers such that the
ratio qi+1/qr s bounded. If the sums o4, (x) converge in measure to a function f

and there exists a sequence \,, — +0oc so that

lim ()\m Hzeo,1]¢: Sl;p log, ()] > )\m}> =0,

m—r oo

then for any n € N¢

an = lim [f(x)]/\m fa(x)dx.

m=o0 Jio,1]4
2. LEMMAS AND THE MAIN RESULT
Let functions h,,(x) : [0,1] — R, satisfy the following conditions:
1) 0<hi(@) < ho(@) S < (@) - lim h(a) = oo,
there exists dyadic points
0=tmo <tmi<tm2<-<tmn, =1,
so that the intervals
I = [t k=1, tm k), k=1, nm,

are dyadic as well, i.e. I}”* is of the form

(T it N
D_{|:2j32j),0§2§2_1,.720}

and the function h,,(z) is constant on those intervals,

ho@) =N, I, k=1 m.
Moreover
(2.2) ing/ ho(x)dz = in£ [T A >0,
m, I m,
AR A
(2.3) sup < n]f + | <400
mhk \ARLL AL
and
1
(2.4) sup < ot | < +o00.
mk \ Ll [
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In other words, for any function h,, the interval [0, 1] can be partitioned into dyadic
intervals, so that the values of the function on neighbouring intervals are equivalent
to each other and so are the lengths of neighbouring intervals. The following theorem
is proved in [9].

Theorem C. Let h,,(x) be sequence of functions satisfying conditions (2.1) —(2.3).

v

If the partial sums oov = Zizo an fn converge in measure to a function f and
lim hm(x)dz =0,
Mmoo Jlze0,1]; sup,|ow(2)|>hm ()}

then for any n € Ny

1
a, = lim [f(l‘)] hm(w)fn(z)dxa

m—r oo 0

where
~J f@), i [f(@)] < M),
@]y = {o, it |f(2)] > ).

Now we are in position to state the main result of this paper.

Theorem 2.1. Let h,,(x) be sequence of functions satisfying conditions (2.1) —
(2.3), and {gi} be an increasing sequence of natural numbers such that the ratio
Gk+1/qx is bounded. If the partial sums oy, (x) converge in measure to a function f
and
(2.5) lim hm(x)dz =0,

M0 J{z€(0,1]; supglog, (2)[>hm ()}

then for any n € Ny
1

(2.6) ap = lim [f(a:)]hm(z)fn(x)dx.

m—o0 0

To prove Theorem 2.1 we will need the following two lemmas.

Lemma 2.1. Let 0 = tg < t1 < - <tp, =1 and h(z) =X, if x €I =
[tk—1,tx) and Iy € D, when k=1,--- ,n. Moreover v >0
1 A
(2.7) —g—kgy, whenk=1,--- ,n—1,
Y Akt1
then there ezists points 0 =ty < &1 < --- < ts = 1 such that h(z) = S\l, rel =

[ti_1,t;) €D, 1 =1,---5. Besides that

1 |4
27 7 D4
1A
(2.9) - < A <~, whenl=1,--- ,s—1,
Y A

46



A UNIQUENESS THEOREM FOR FRANKLIN SERIES

(2.10) mlin hp(z)dr = Ink}n/ hm(x)dz > 0.
I; Iy

The proof of the Lemma 2.1 can be found in [9], but we present it here for the
sake of completeness.
Proof. Denote

c:min/ hom(2)dz = min A\ |I],
ko Jr, k

and let 1 < ko < n such that Ag,|Ik,| = c¢. From definition ¢ follows that for any 4,
—ko +1 <1 <n— kg there exists n; > 0 such that

(2.11) 2" e < Ao til I i| < 2™ e

Suppose that ng = 0 and denote

|Ik0+i|
2mi

tivj = tk0+i71 + j7 When j = Oa e 727“7

Ii,j = [ti7j_1,ti7j), and )\1;7]' = )\i, when j = 1, s 72711‘_

Therefore
/ h(z)dz = ¢ < / hon(x)dx = X 5|1 ;| < 2c.
Ion Lij
From the definition ¢, I; ;, (2.11) and (2.7) follows that
2c 2¢
i | = Li 1] < < T < 29| Li—y gmi-a ],
)‘ko-‘ri >\k‘0+i—1
similarly we obtain
c c 1
L =L+ > > > — |l oni-1].
Higl = ] 2 Meg+i  VAkoti=1 27' 2|

From the last two inequalities follows that the ratio of the lengths of intervals
I; ; with common endpoint is not greater than 2. By renumbering the intervals
{Lij;—ko+1<4i<n-—kyl<j<2"} in increasing order with respect to the
left endpoint, we obtain the intervals I;,l =1, - - - ,Z?::kzo“ 2™ which satisfy the
condition (2.8). From the definition I; it follows that the function hy,(z) is constant,

hm(CL‘) = 5\1, T € I~l

and from (2.7) we get (2.9), so :\5‘1 =1 or there exists k, such that
141

N\
S\H-l )\k-&-l.

O

Lemma 2.2. Let h,,(x) be sequence of functions satisfying conditions (2.1) — (2.3),
then there exists dyadic points 0 = Em,O < Em,l < e < fm,ﬁm = 1 so that the
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intervals f,Z" = [tmk—1,tmr) € D, k = 1,-++ iy, are dyadic as well and the

function hp,(x) is constant on those intervals,

hm(z) :5\}?7 if x€f£n7 k=1, npm
and the conditions (2.2) — (2.4) are satisfied.

3. THE PROOF OF THE MAIN THEOREM

Let {sp,i}1, be the points given in (1.1), s,,,—1 = 0 and $,, ,+1 = 1. Let us define

the function N*(z) as follows. It is linear on intervals (s, ;_1, Sn ], 7 =1,2, -+ ,n,
and
1, if i=4j,
N (snj) = j=0,1,--- n.
0, if ¢ #j,

Let {g } be an increasing sequence of natural numbers and M be a number satisfying
the inequality

4L < M for all k € N.
qk

For any j € {0,1,--- ,q,} denote

AY = [sq,,j-1, 5¢,.5+1];
N (x) )
j‘-]”(ac) = N;” = 1AV Jq”(a:).
N7 (2l [AY]
Obviously
4
(3.1) <lar <=,

E qv
1
supp M = AY and / M (z)dx = 1.
0
Recall that

oq, (z) = EV: an fn ().

n=0
Let’s denote

0" (z) = sup |og, (z)],
v

and prove that for any jo, vy the following statement is true:

1 1
/0 g, (€)M (2)dz = lim [f(x)]hm(z)Mfo”"(x)dx.

m—00 0
For any m € N denote
En:={z€ supp(M;-IO”O) =AY 0" (x) > hyp ()}
From (2.3),(2.4) it follows that there exists v > 0 such that
>\m m m Im m m
(3.2 E g <op ana B <y <o,
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Denote

go = inf hom(2)dz = inf NI > 0.
m,k I;n m,k
Let € be an arbitrary positive number. Under the conditions of the theorem a

number mg can be chosen to satisfy
2"TM / x)dx < e, m > mg.

Take
o< P,
0
Let M; be a number such that

hm (z) > My, for all x € [0,1], when m > my,

then
M |E,,| < / B (2)dz < ﬁ,when m > max(mg, my) =: Ma.
Therefore
€
E,| <
| B < 27MM
let’s take
My =14
Hence from (3.1) we obtain
22 1 A
(33) |Em‘ < € _ < | Jo

2"Mgq,,e  2°Mgqy,, ~ 24M°
Let’s fix a number m > ms and prove that

'
4 E,NI" k=1 - nm.

(3 ) | n k | < 8M ) ,

Suppose that there exists kg, such that
E,,NI"| > |I,?;\
B O T 2 8M’

therefore

m|rm m m € €0
€0 S Ako‘lk()' S 8M)‘k:0|E’m ﬂ[k0| S 8MA hm(x)da: S ? S 7’}/ < €0,

which is a contradiction.

Note that for any J € D, which can represented in the form Ui:l I?, from (3.4)

we get
1
|JnEm\—;|fk N Bl < MZ|fk|—8—M|J|
therefore
17| T
(3.5) [T Ey| < 53p for any J=|JIyen.

k=l
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It is clear that if J € D and J D I}, then J = (Ji_, I, when [ <k < j.
Suppose v > vy. We set

Qy = {A A= [Squ,j—hsqy,j] and A C A;’g .

Obviously

1 2
— < JA| < —, forall A€Q,.
2qy qv

If v = 1y, then we set
1
1 . =
Quo = {AE Quo : |AﬂEm| > 8]\4|A|}’ Qvo - U A’
Aeq}
and

Q?/o:{AEQVOIA¢Qvo}’ PVOZ U A.

AeQd,
From (3.3) we have, that

QVU - 07 a‘nd PVO = Supp(MJqOUO)

Now suppose we have defined the sets Q1,, Q2,, @, for all v/ < v. Let’s denote

v v

1
1 _ . _ ’
(3.6) Q, = {A €O |ANE,| > 3 |A] and A ¢ Qv },

v'<v

Q=4 @2=4eca,:a¢ JQ . P=J A

AeQ} v/ <v AeQ?
Thus we have defined the families Q1, Q2 and the sets Q,, P, satisfying to the
following conditions,

Qlca,, 2ca,

(3.7) Supp(M;-IO”O) =P, U U Q, |, PN U Q. | =0,
v/ <v v/ <v
(3.8) Q. NQur =10, if v #+ v,

From (3.6) and (3.8) we obtain

U Q| < 8M|E,,|, for any wv.

V<
Now let us prove that for any A € QL, v > vy, there exists k such that A C .
Otherwise, there exists ko such that A D Ij7. Since A = Ui:l Il <k <4,
therefore from (3.5) we get |[AN E,,| < |A|/8M, but A € QL. For any v > 1y
denote
Jo={i:AYNQu #£0, AYC Py,
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Now let us prove that
(3.9) log, (2)] < 3hm(z), if xe Al jeJ,.
Suppose A € Q, with A C AY, therefore A C I} for some I. Let’s prove that
(3.10) AYC LUy, when k=I0-1 or k=1
Without loss of generality suppose that AY O I},. From (3.2) we get

24| = |AY] > |1y > U

Al = |AS] > I | = ——,
Y

therefore

go < I[P < 29]AIN < 16YM|AN Ep |\ < 16'yM/ hom (z)dz
Em

16yMe < 16 - 23yeq
2TM T 27y

= €0,

which is a contradiction.

Let Ay and Az be respectively the left and right halves of the interval A7, Ay C AY,
Ay C AY. From (3.10) we get, that there exists Iy, [y such that Ay C I[", Ay C I}V,
it is clear that |l; — lo| < 1. Therefore

(3.11) h(z) = A, w€A;,j=1,2.

Since A1, Ay C AY C P, 1,(j € J,), then there exists Al,Ag € Q,_1, so that
A;CA,CP,q,i=1,2 we get that

12 1A
. < )
8M qv—1 4QV -2

Suppose that « € Ay, (the case x € Ay is considered similarly). Since oy, (z) is a

<

N 1 -
(3.12) [AiNEn| <|A;NE,| < 8—M|Ai| <

linear function on Ay = [a, 8], we have set
Ii={te Ay :|og, (t)] <A}

is an interval. From (3.11) and (3.12) we get

1
(313) U=t € At log, (0] < hn(0} > |1 N EG| > S]Au]
Since o, (t) is linear, then
/ 2" AN
3.14 o, (t)| < L = L.
(3.14) 0 01 < T = 5

From (3.14) we get

4N —
no B 0423)\?1’
08—« 2 !

similarly we obtain

log, (B)] < 3A7.
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Using the last inequalities and (3.10), we get
log, ()] < 3hp(t), t€[a,f]=A.
Similarly we obtain (according to definition of P,), that if AY C P, then
log, (2)] < 3hp(z), if z€AYCP,.

Now let’s define by induction expansions v, for M ;10”0,

qu, v n
B1) M e =X XM Y M
v<njeld, JIATCP,
where
616 Y Y et Y aj=1 alzoa)z0
v<n jeJ, J:ATCP,

Since P,, = supp(M fﬂ”"), then t,, = M ;-10”0. Suppose we have defined expansions
Yooy, Un, satisfying (3.15) and (3.16). Clearly for any A”? C P,, we have
(3.17) M (z) = > By M+ (x), B, >0.
v: AT Csupp M}Z"
Note that if A} C P, and Ap*T! C supp MJ" = A, then either AJ™' N Qpp1 # 0
and, therefore v € J,,1, or A" C P,,;. Therefore, inserting the expressions
(3.17) in (3.15) and grouping similar terms, we obtain
vy __ _ n+1 7 rqv n+1 1 rdn+1
M =tny1 = ) Z ap M+ > et
v<n+1j€eJ, FATTIC Py
Since the integrals of all functions M j‘?“ are 1, we get that
+1 +1 _
> et > at=n
v<n+ljed, jiA?+lCP,L+1
therefore for any n
qv v n
(anijUO):Z Zag,j(aqu]q )+ Z a;l(o'qn7M_;1 )
v<njed, JARCPy

Note that

1
(fp,qu”):/ folx) M} (z)dz =0, if v>uv and p>gq,.
0

Therefore

(3.18) (ananqu) = Zap(fpanqu) = Zap(fpanqu) = (UQWMJ('IU)-
p=0

p=0

Hence we have

(3.19) /O Tavg (VML (t)dt — /0 [FO)] My ()t = (oq, — [f], M)
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:ZZ@ZJ(UQU—U]}L M) + Z af(og, = [f], M) = I+ 1.

v<njed, j:A;LCPn

Using (3.9) and (3.18), for I} we will have the estimate

=YY al(og, — [£],, - M)| < S ap(log, | + b, M)

v<njed, v<njeJ,
<4 > au (b, M) =A(hm, 3 Y ap M),
v<njed, v<njed,
By
v qu,
DD an M < M,
v<njeJ,
we have
Il <4 / i () M2 (1)
U u av
v<nj€Jy
Denote

Jy={jed,: 3k st. A CI'}, J =0\ J,

“UUan me=UUar

v<njeJl v<n jeJ?2
It is easy to notice that

| < ( /A (8 M0 (£)dt + /B i (£) M2 (t)dt) <cC < /A B (£)dt + /B hm(t)dt>

=: C(I3 + I,).
From (3.10) we get that for any j € J2 there exists k, such that
AY C LU LT,
and the definitions Q! and Q,, we obtain that for any k there exists (v(k),j(k))
pair, such that
j(k) € J2 and AV C I UIE,.
Applying (3.2) we get
- m v(k
I3 < 3 OR + A DIATGE < (v + 1) ZA ol
and from (3.6) we get

v(k)
A% < 20Quu NI VIR <2 | Qun (I U I,

v<n
Therefore
I <2(y+1) me Ue.nm +72/\k+1 U e nni,
v<n v<n
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MNm,
=2(y+ 1)) A | Q| = 2(y+1)°I5.
k=1

v<n

Using (3.6) we can estimate I3 as follows,

L<8MY M ERn | Q| NI <8M Y A |En NI :SM/ B (£)dt
k=1 v<n k=1 Em
< 8Me €
2TM 247

If j € J! ,then there exists k, such that AY C Ii", therefore
|AY] < 2[AF N Q|
from the last inequality we get,

An NI <2l | Qun il

v<n
Therefore
= [ =Y xpianngp <2y el U @onp| =2
A, k=1 k=1 v<n
So
(v+1)2% 2 Ce(1+ (v +1)?)

Now let us estimate I2. Since
n dn qv
E aij SM]-OO, then

j:A;‘CP71

BI< (o0, - [, 5 s [ o0 [F0)],, M5 0

m
]’:A;1 CPp,

An
JATTCPp
<¢ [ - (0],
JA?CPnA;L
Denote
Co= |J A'NE. D.= |J APNELN{tlog, ()~ f()] <e),
JATCP, JIATCP,
Fo= |J ATNE,N{t]og, (1) — f(t)] > e}
JATCP,

It is clear see that
C,UD,UF,= |J A} and |f(t)| < hm(t) a e, when t€ D, UF,C Ej,.
JATCP,
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Therefore

1< ([ oo - 15, glt+ [ low = ol [ .0~ solar)

= OIS+ 17+ IY).
Ift € Cp, then
04, (8) = [FD], | < 100, DI+ I[FD], | < 40 (®),
2%¢ €
hm (t)dt < 4 ho (B)dt <

I <4 / < S =
c., B, 2TM  25M
From definition of D,, it follows that if ¢ € D,,, then

and

<eE.

|0q.. (t) — f(t)| < e, therefore IT < / e<e.
D,

Since o4, (z) converge in measure to the function f, then there exists n such that

{t,]oq, (8) = F(O)] > e} <

€
max{h.,(t), t € [0,1]}’

and
100 (8) = FO)] < low, (O] + |F(®)] < dhm(t), fora e., te FyC EF,.
Therefore
< 4/F hon(£)dt < Amax{hm (t), ¢ € [0, 1]} - [{t |00, () — F(O)] > £} < 4e.

n

So |I%| < 6e, therefore by (3.19) and (3.20), we get

1
(O—q'fo ’ M;IOVO) o /0 [f(t)] hm(t)MJ('IOVO (t)dt = C’Yg'

Now let’s prove that for any n € Ny the coefficient a,, can be reconstructed by (2.6).
Take arbitrary n and choose v so that ¢, > n, then f, € S, . Taking into account

that the system of functions {MJ‘?” }i€{0,1,-- ,q,} 18 @ basis in the space S, , one can

“squ

find number B;,j € {0,1,--- ,¢,}, such that

= Y BM ().
j€{0717”'1qu}
Therefore
1

qv qv
an = (0q, Ja) = 3 _By(o0, M) = 3 B lim | [f(@)],,, M (@)da
j=0 j=0

= lim [f(;v)]hm(ﬂ)fn(x)dx.
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