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1. INTRODUCTION

Let TT be the space of all bivariate polynomials. Let also TI, be the space of

hivariate polynomials of total degree at most n:

I, = Z agjrty’

i+i<n
We have that

2
(1.1) A (“; )

Consider a set of s lincar operators (functionals) on II,, :
Le=AL1,..., L}
The problem of finding a polynomial p € [, which satisfies the conditions
(1.2 Lip = ¢, = T i 8,
is called the Lagrange interpolation problem with operagors.

In our paper we consider lnear operators L which are partial differential operators

evaluated at points:
a d

Lf =p (a: a_y> f‘(ﬂ‘:o,yo)’

where p € [I. We say that L has degree d, where d = degp.

Definition 1.1. A set of operators L, is called n-correct if for any data {e1,. .., e}
there exists a unique polynomial p € 11, sazisfying the conditions {1.2).
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A necessary condition of n-correctness of L is: |£5] = s = N.

A polynomial p € II, is called an n-fundamental polynomial for an operator
Ly € Xy if

Lip=0y, i=1,...,s,

where ¢ is the Kronecker symbol.

We denote the n-fundamental polynomial for L € L; by pj = pj . Sometimes
we also call fundamental a polynomial at which vanish all operators but one, since
it is a nonzero constant times the fundamental polynomial.

The following is a Linear Algebra fact:

Proposition 1.2. The set of operators Ly, with |[Ln| =N = (”;2), is n-poised if
and only if the following implication holds:

pell, and Lip=0, i=1,....,N=p=0.

1.1. n-independent and n-dependent sets. Next we introduce an important

concept of n-dependence of sets of operators:

Definition 1.3. A set of operators L is called n-independent if each operator has

a fundamental polynomial in II,,. Otherwise, £ is called n-dependent.

Clearly fundamental polynomials are linearly independent. Therefore a necessary
condition of n-independence of the set £ is |£| < N.

Suppose A is a point in the plane. Consider the operator L) defined by L) f =
f(A). We say that a set of points X is n-independent (n-correct) if the set of
operators {Ly : A € X'} is n-independent (n-correct).

Suppose a set of operators L is n-independent. Then by using the Lagrange
formula:

p= cipi e cr=LIp,
Lel

we obtain a polynomial p € II,, satisfying the interpolation conditions (1.2).

Thus we get a simple characterization of n-independence:
A node set L, is n-independent if and only if the interpolation problem (1.2) is
n-solvable, meaning that for any data {ci,...,cs} there exists a (not necessarily
unique) polynomial p € II, satisfying the conditions (1.2).

Now suppose that L, is n-dependent. Then some operator L;,, ig € {1,...,s},
does not possess an n-fundamental polynomial. This means that the following

implication holds:

pEHn, Llop:OVZG{l,,S}\{Z0}2>me:0
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Let ¢ be a line. We say that p € II vanishes at A € ¢ with the multiplicity m if
(Da)'p|, =0, i=0,...,m—1,

where al|¢ and D, is the directional derivative.

The following proposition is well-known (see, e.g., [6] Proposition 1.3):

Proposition 1.4. Suppose that ¢ is a line and a polynomial p € 11,, vanishes at

some points of £ with the sum of multiplicities n + 1. Then we have

(1.3) p = lr, where r € Il,,_;.

Note that this relation also yields that the mentioned n 4+ 1 conditions are

independent, since dimIl,, — dimIl,,_y =n + 1.

1.2. Multiple intersections. Let us start with the following well-known relation
for polynomial R and functions g and f (see, e.g., [3], formula (16)):
1 . .
(1.4) R(D)[gf] =D 9" R (D)f.
£~ glg!
i,7>0
Here we use the following notations

0o 0 - ¥ a\' [ 0Y
R(D) = R(5, @)’ R) .= DUIR .= (53:) <8y> R.

Notice that to verify (1.4) it suffices to check it for R being a monomial, which
reduces (1.4) to Leibniz’s rule.

To simplify notation, we shall use the same letter p, say, to denote the polynomial
p and the curve given by the equation p(z,y) = 0. Thus the notation A € p means
that the point A belongs to the curve p(z,y) = 0. Similarly p N ¢ for polynomials
p and ¢ stands for the set of intersection points of the curves p(z,y) = 0 and
q(z,y) = 0.

Below we bring the definition of multiplicities described by PD operators (see

(81, [4], [7]):

Definition 1.5. The following space is called the multiplicity space of the polynomial
p € II,, at the point A € p:

Mi(p) = {h €Il: D*h(D)p(A) =0 Va € Z% } .
Denote by Zy = pNgq the set of intersection points of curves (polynomials) p and q.

Definition 1.6. Suppose that p,q € Il and A € Z;. Then the following space is

called the multiplicity space of the intersection point A :

Mi(p,q) = Ma(p) N Mi(g).
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We have that (see [4]) the spaces M (p, ¢) are D-invariant, meaning that

0 0
(1.5 f e Myp.a) = 5 and e Myp.o)

The number dim M (p, q) is called the arithmetical multiplicity of the point .

Denote

AEZo
We say that f € IIj vanishes at M (p, q) if h(D)f(A) =0 Vh € Mx(p,q).

We say also that the polynomials p and ¢ have no intersection point at infinity

if the leading homogeneous parts of p and ¢ have no common factor.

Theorem 1.7 ([4], Theorem 3). Suppose that polynomials p,q € II, degp =
m, degq = mn, have no intersection point at infinity. Then the number of the
intersection points, counted with the arithmetical multiplicities, equals mn :
(1.6) > dim M (p,q) = mn.
AEZ
Let us bring the formulation of this result in the homogeneous case. Let 119 be
the space of trivariate homogeneous polynomials of total degree n. In analog way

we are defining the multiplicity space M$ (p, q).

Theorem 1.8 ([4], Corollary 3). Suppose that polynomials p € 110, q € TI2 have
no common component. Then the number of the intersection points, counted with
the arithmetical multiplicities, equals mn :

Z dim MS (p, ¢) = mn.

AEZ,

2. THE NOETHER THEOREM

Suppose that p,q € II, degp = m, degg =n, and pNgq:={A1,...,As}. Let us
choose a basis in the space My, (p,q) in the following way. Let {LF ... Lk, }

be a maximal independent set of linear operators with the highest degree m := my.

Next we choose {L¥ _;,...,L* _,} to be a maximal independent set of linear

m—1iy,

operators with the degree m — 1. Continuing similarly for the degree 0 we have only

one operator Lf;.

k

It is easily seen that the above operators L;, form a basis in the linear space

M., (p, q). Denote
LHp.q) =LY, q) =Lk, Lp9) =L D 9)-
N k

Notice that, according to Theorem 1.7, we have that |£(p, q)| = mn, provided that

p and ¢ have no intersection point at infinity.
33



H. HAKOPIAN, N. VARDANYAN

Lemma 2.1. The set of linear operators L(p,q) is vyo-independent for sufficiently
large ~g.

Proof. Consider the set of the linear operators of fixed node A, = (x0,y0) of
degrees up to v, i.e.,

S kg 1= U Lﬁ‘;

usv
Let us first find a fundamental polynomial p* for an operator of the highest degree

v, say, for L*9 within S, x,. We seek p* in the form
pry) = > ay@—z0)(y — o)
i+j=v
. k .
Then we readily get that Lﬂgp* =0, if 4 < v — 1. Now suppose that

LS =ps (;;, 88y> P
where ps(z,y) = >, <, bi; (r—20)*(y—v0)’. Then the conditions of the fundamentality
of p* reduce to the following linear system:
LEp™ = > aygbilj! =65, s=1,... i,
itj=v
The linear independence of highest degrees of the operators L*, means the independence
of the vectors {bf;}i1;=,. Hence the above system has a solution.

Now notice that to complete the proof it is enough to obtain a fundamental
polynomial of Lf; over the set S, x, U Uy, £5(p, ). To this purpose for each
ke{l,...,s}\{ko} consider my, lines passing through Ay, and not passing through
Ak, - Then by multiplying p* by the product of these lines we obtain, in view of the
formula (1.4), a polynomial which is a desired fundamental polynomial. (I

Next, we are going to prove the Noether theorem with the multiplicities described

by PD operators.

Theorem 2.2. Suppose that polynomials p,q € 11, degp = m, degq = n, have no
intersection point at infinity. Suppose also that f € 1 vanishes at Mx(p,q) for
each A € pNq. Then we have that

(2.1) f = Ap+ By,
where A € llg_,,, B € Ili_,.

Note that the inverse theorem is true. Indeed, if (2.1) holds then f € II; and,
in view of the formula (1.4), we have that and f vanishes at M,(p,q) for each

AEpNng.
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Proof. Step 1. Suppose that k > kg = max{m+mn,~y}, where 7 is chosen such
that the set of linear operators L(p, q) is yo-independent.

Consider two linear spaces
V={fe€lly : f vanishes at Mx(p,q) YA € pNngq},

W:{AP+BQ : Aelly_,,, BEHk,n}.

In view of the formula (1.4) we have that W C V. To prove the relation (2.1) we
need to verify that YW = V. To this end it suffices to show that dim W = dim V.

Since the set of linear operators L(p, q) is vyp-independent we obtain readily that
the set is also k-independent, where k > ~q.

Hence, in view of Theorem 1.7, we have that

dimV = dimII; — |L(p,q)| = (k ;_ 2> —mn.

Denote
Wy ={4p : Acly_nn}, Wa={Bq : Bellj_,}.
Since p and ¢ have no common component we conclude that

WiNWy={Cpq : Ce€llj_p_n}.

Now we readily obtain that

(2.2) dimW = dim(W; + Ws) = dim W + dim W, — dim(W; N Ws)
_ (k—m+2) N (k:—n—i—Z) B (k:—m—n—i—Q)
2 2 2
k+2
- ( : ) .
The last equality here holds since k& > m + n (actually it holds for k > m +n — 2).

Step 2. n+m < k < kg.

Let us apply decreasing induction with respect to k. The first step k& = kg was
checked in Step 1. Assume Theorem is true for all f with deg f = k and let us prove
that it is true also for all f with deg f =k — 1.

Suppose that fy is an arbitrary polynomial with deg fo = k — 1. Choose a line
lo such that

(i) oNpng=10, and

(ii) £y intersects ¢ at n points, counted also multiplicities, i.e., it does not intersect
q at infinity.

We have that deg foly = k. Also, in view of the formula (1.4) and (1.5), i.e., the

D-invariance of M (p, q), we have that fofo vanishes at M(p, ¢) for each A € pNg.
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Hence, in view of the induction hypothesis, we get
(2.3) Jolo = Ap + By,
where A € Ily_,,, B € II;_,.

We have that ¢y intersects ¢ at n points, counted also multiplicities. In view of
(2.3) these (multiple) points are also zeros of A since p differs from zero there.

For every polynomial Cy € II_,,,—,, we have also that
(2.4) folo = (A — Coq)p + (B + Cop)g.

Consider arbitrary £k —m —n + 1 points A1, ..., Ag—m—n, in £y \ ¢. Choose Cj €
k1 —n such that A—Cyq is zero at these points. For this, according to Proposition

1.4, we just solve an independent interpolation problem
A(N)
a(Ni)’
Note that the common n (multiple) zeros of ¢y and ¢ also are zeroes of A — Cygq.

Thus, altogether we have that A — Cygiszeroat k—m—-n+14+n=k—m+1

Co(N\i) =

1=0,....k—m—n.

points in £g. Thus, in view of Proposition 1.4, £y divides A — Cyq € II;_,,. From
(2.4) we readily conclude that ¢y divides B + Cyp.
Finally by dividing the relation (2.4) by ¢, we get that

(2.5) folo = A'p + B'q,

where A’ € Ij_,—1, BE€lp__1.

Step 3. k<n+m—1.

Let us again apply decreasing induction with respect to k. The first step k& =
m +n — 1 was checked in Step 2. Assume Theorem is true for all f with deg f =k
and let us prove that it is true also for all f with deg f =k — 1.

Suppose that fj is an arbitrary polynomial with deg fy = k£ — 1. Choose a line £,
in the same way as in Step 2. Then we get the relation (2.3) where the polynomial
A € IIy_,, has n zeros in £y, counting also the multiplicities. In this case we have
that k —m < n — 1. Thus, in view of Propositionl.4, ¢, divides A. From (2.4) we
readily conclude that ¢y divides also B. Finally by dividing the relation (2.3) by ¢y
we complete the proof as in Step 2. (]

At the end let us bring the formulation of Theorem 2.2 in the homogeneous case.

Theorem 2.3. Suppose that p € 112, and q € 11 have no common component.
Suppose also that f € 119 vanishes at MS(p,q) for each A € p N q. Then we have
that
f=Ap+ Bgq,
where A € Hg_m, B e H%_n.
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It is known that the set Zy := pNgq, where p and ¢ are polynomials, of degree m
and n, respectively, is (m + n — 2)-independent, provided that |Zy| = mn. Below

we prove this result without the last restriction (cf. [4], Corollary 1).

Corollary 2.4. Suppose that polynomials p,q € I, degp = m, degq = n, have no
common component. Then the set of linear operators L(p,q) and consequently the

set Zy are (m + n — 2)-independent.

Proof. Let us assume first that p and ¢ have no intersection point at infinity.
Then we have that |£(p,q)| = mn. By using the evaluation (2.2) in the case k =

m + n — 2 we obtain

n m m+n
~(2)+ (5) o= (") e

Thus we have that dimIl,,,_2 —dim W = mn. This means that the set of linear
operators L(p, q) and consequently Zy is (m + n — 2)-independent.

Now assume only that p and ¢ have no common component. Let us use the
concept of the associate polynomial (see section 10.2, [9]).

Let p(z,y) = Z'L+j§m ai;z'y? and degp = m. Then the following trivariate
homogeneous polynomial is called associated with p :

p(z,y,2) = Z aijriyl 28
it+j+k=m
Evidently we have that
P = p1p2 < P = P1P2.

It is easily seen from here that polynomials p and ¢ have no common component if
and only if p and ¢ have no common component. By applying Theorem 2.3 to the
polynomials p and g we get that the set of linear operators £°(p, q) is (m +n — 2)-
independent. Therefore its subset corresponding to the finite intersection points,

ie., to Zy, is (m 4 n — 2)-independent, which implies the desired result. O

3. THE CAYLEY-BACHARACH THEOREM

The evaluation (2.2) in the case k = m + n — 3 gives

(3.1) dim W = dim(W1 + WQ) =dimW; + dim W5 — dim(W1 N Wz)

_ <n21>+(m21>0 <m+2nl)(mn1).

Thus we have that dimIl,,;,—2 —dim W = mn — 1, i.e., out of mn linear operators

in L(p, q) only mn — 1 are linearly independent.
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According to the Cayley-Bacharach classic theorem (see, e.g., [1], [5]), i.e., in the
case | Zy| = mn, where Z, := p N ¢q, we have that any subset of Zy of cardinality
mn — 1 is (m + n — 3)-independent. This means that no point from Z; has a
fundamental polynomial of degree (m + n — 3), i.e., for any point Ay € Z; the

following implication holds:
P € Upmyn-3, p(A) =0VA € Zo\ {Xo} = p(A) =0 VA € 2.

In this section we are going to study the situation in the general multiple
intersection case. Suppose p € II,,,
p(z,y) = Z aijxiyj-
i+j<m
Denote the kth homogeneous part of p by p{¥}, ie.,
p(z,y) = Z aijr'y’.
itj=k
We accept a very common restriction from the theory of intersection. Namely, we
assume that the two polynomials p and ¢ have no common tangent line at an

intersection point A € Zy. This means that the lowest homogeneous parts of the

polynomials have no common factor at this point.

Theorem 3.1. Suppose that polynomials p,q € 11, degp = m, degq = n, have
no intersection point at infinity and A € Zy. Suppose also that p and q have no
common tangent line at \. Then we have that the set of linear operators L (p, q)
contains only one operator of the highest degree: L. Suppose also that f € Il,, 1 pn_3
vanishes at L(p,q) \ {L}. Then we have that f vanishes at all L(p, q).

Proof. Assume, without loss of generality, that A = 6 := (0,0). Suppose that p
and q are bivariate polynomials having ny and mg-fold zero at the origin, respectively,
ng,mg > 1 :

p(z,y) = Z agz'y’,  qla,y) = Z bija'y’.
mo<i+j<m no<i+j<n
Suppose also that p and ¢ have no common tangent line at the origin, i.e., pt™o}
and ¢t} have no common factor.

Let £ :={Li,..., L.} be a maximal independent set of linear operators with the
highest degree in the space My(p, q).

Assume that f € I1,, 4,3 vanishes at L£(p,q) \ £. We are going to prove that f

vanishes at L(p, q).
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This shall complete the proof of Theorem. Indeed, as was verified above, there
are mn — 1 linearly independent operators in the set of mn linear operators L(p, q),
which clearly implies here that s = 1.

Let ¢ be any line passing through 6. By using the formula (1.4) withg=¢, f = f
and R € L(p,q), we obtain that the polynomial ¢f vanishes at L(p,q). Therefore,
since deg {f = m +n — 2, we get from Theorem 2.2 that

(3-2) tf = A(Op+ B(l)g,

where A(¢) € II,,_2, B(¥) € I,,,_5. Assume, without loss of generality, that my <
ng. Assume also that mg > 2. If mg = 1 we go to the final part of the proof. Now

we are going to prove that

(3.3) A = ¢A, | k=0,...,n0—2,
where A),_,,€IIY_,, do not depend on ¢, and

(3.4) B =¢B, | k=0,...,mo—2,

where Bj,_,,€ II?_,, do not depend on /.

First let us prove (3.3) for k < ng—mo—1. Let us apply induction on k. Consider
the case k = 0. Then we get from the relation (3.2) that A(¢){0}plmo}l = pglmo—1}
Thus we have z f{"0—1} = ¢;plmo} and yfimo—1} = ¢ypimo} where ¢; and ¢, are
constants. Therefore we have that (cox — cyy) fFimo—1 =0, i.e., fimo—1} = 0. Thus
A% =0 = ¢-0. Assume that (3.3) is true for all k£ not exceeding s and let us
prove it for k = s + 1. We readily get from the relation (3.2) that

(3.5) A(e)tsttiplimod o g(p)tstpimotit ooy A(p){0hptmotst1} — ppimotsti}

We have that all terms above except possibly the first have factor . Hence we get
that A(¢)1st1} = ¢ A’ In fact we have this relation for all £ except mg tangent lines
of p at 6. Then by a continuity argument we get the relation for all /.

Next, by dividing (3.9) by ¢ we see that A/, does not depend on /.

Now assume that ng — mo < k < ng — 2. Here we are going to prove (3.3) for
k and (3.4) for k — ng + mo. Let us again apply induction on k. Consider the case
k = ng — mg. We get from the relation (3.2) that

(3.6)
A(e)tro=molplmot 1 g(py{no—mo—1hplmottl oy g(g)10dplno} 4 B ()10t glno}

_ gf{no*l}_
Now let us use ¢ = ¢; which is a tangent line of ¢ at 6, i.e., ¢t™} = ¢1§, where

gell,,—1.
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We have that all terms in (3.6) except possibly the first have factor ¢;. Hence
we get that A := A(fy){ro—mob =47 .

Meanwhile, let us verify also that if {1 = y — kyx is a factor of multiplicity p of
g7} then it is a factor of multiplicity at least p in A. Assume that

A=C4 H(y —a;x), q{”‘)} =Cs H(y — b;x).

Assume also ¢ is given by an equation y — kx = 0. By setting in (3.6) y = kx, and
by using the induction hypothesis, we obtain
(3.7) Cipt™d (a, ka) [ [(k — ai)x = CoB(0) (2, k) [ [ (k — bi)z.
Consider both sides of (3.7) as polynomials on k. Now k; is a root of the right
hand side of multiplicity at least u. On the other hand k& = k7 is not a root of
p{mO}(ac, kz) since p and ¢ have no common factor. Thus we get that k = k; is a
root of multiplicity at least p in "0} (z, kx), i.e., y — kyz is a factor of multiplicity
at least u in ¢{"o}(z, y).

Next, we have that

(3.8)  A(f)tro=mod = A(gy)tno=mod 4 A(f — gy)tno=mol

= CAL o1+ (= )AL g+ AL — £y)trommod
- EA;LO*WO*l — (k- kl)xA;mfmoq — (k- kl)A(x){”()—mo}

- €A’no_m0_1 — (k= k1) [mA;zo—mo—l - A(;U){”O*mo}} )

We have that A(¢){"0="0} contains all factors of Qno- Thus the polynomial of degree
ng — mo in the square brackets contains all factors of ¢,, except possibly ¢, in
all ng — 1 factors. Hence this polynomial is identically zero and A(¢){mo—mo} =
AL o1

Similarly by using tangent lines of p we get that B(£){% =0=¢-0.

As above we readily conclude that Aj, _,, _, does not depent on .

Now assume that (3.3) is true for k not exceeding s and (3.4) is true for k not
exceeding s+mg—ng. Let us prove (3.3) for k = s+1 and (3.4) for k = s+mo—no+1.
We get from the relation (3.2) that

(3.9)  A(){sHUplmol 4 g(p)tstplmotid Lo A(p) {0} plmots+1}
+ B(f){s+m0_n0+l}q{n0} + B(e){s—l—mo—no}q{no—&-l} 4ot B(é){o}q{m0+s+l}
= ¢flmots+i}
Here, in the same way as above, by using tangent lines of p and ¢ at 8, we complete

the proof of this part.
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Now let us go to the final part of the proof. Let us choose a line ¢, whose
intersection multiplicity with p at 8 equals to mg. We also require that ¢y intersects
Z only at . We have that outside of 0 the line ¢y intersects p at m — mg points,
counting also the multiplicities. We deduce from the relation (3.2), with ¢ = /g,
that these m — mg points are roots for B({y), since g does not vanish there. Then,

in view of the relation (3.4), we have that

m—2 m—2
B(ty) =Y B = Y B (k).
=0 i=mo—1

Thus, by assuming that ¢y = y — kox, we see that the trace of the polynomial B({)

on the line ¢y has the form

m—2 m—mo—1
§ i mo—1 § 4
B(fo)(.’)&‘, kioa'}) = bﬂ? =" bi+m0,1l‘ .
i=mo—1 =0

On the other hand this polynomial vanishes at m — mg nonzero points, counting
also the multiplicities. Hence, in view of Proposition 1.4, we conclude that B({p)
has a factor £y. Now we readily get from the relation (3.2), with £ = ¢y, that A(¢p)
also has a factor £y. Then by dividing the relation (3.2) by ¢y we get that

f=Ap+ By,

where A € I1,,_3, B € Il,,,_3. Finally from this relation we readily conclude that f
vanishes at L(p, q). O

At the end let us consider a simple example. Let p(z,y) = 2™ and ¢(x,y) = y™.
Then we have that

L(p,q) = Lo(p,q) = {a'y :i<m—1, j<n—1}.

It is easily seen that in this set there is only one operator of the highest degree:

m—1 n—1
i=(2 LA
Ox oy
Also for this operator we have that the set of the operators £(p, ¢)\{L} is (m-+n—3)-
independent. Moreover, only the operator L € L(p, ) has this property.
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