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A necessary condition of n-correctness of Ls is: |Ls| = s = N.

A polynomial p ∈ Πn is called an n-fundamental polynomial for an operator

Lk ∈ Xs if

Lip = δik, i = 1, . . . , s,

where δ is the Kronecker symbol.

We denote the n-fundamental polynomial for L ∈ Ls by p?L = p?L,L. Sometimes

we also call fundamental a polynomial at which vanish all operators but one, since

it is a nonzero constant times the fundamental polynomial.

The following is a Linear Algebra fact:

Proposition 1.2. The set of operators LN , with |LN | = N =
(
n+2
2

)
, is n-poised if

and only if the following implication holds:

p ∈ Πn and Lip = 0, i = 1, . . . , N ⇒ p = 0.

1.1. n-independent and n-dependent sets. Next we introduce an important

concept of n-dependence of sets of operators:

De�nition 1.3. A set of operators L is called n-independent if each operator has

a fundamental polynomial in Πn. Otherwise, L is called n-dependent.

Clearly fundamental polynomials are linearly independent. Therefore a necessary

condition of n-independence of the set L is |L| ≤ N.
Suppose λ is a point in the plane. Consider the operator Lλ de�ned by Lλf =

f(λ). We say that a set of points X is n-independent (n-correct) if the set of

operators {Lλ : λ ∈ X} is n-independent (n-correct).
Suppose a set of operators L is n-independent. Then by using the Lagrange

formula:

p =
∑
L∈L

cLp
?
L,L, cL = Lp,

we obtain a polynomial p ∈ Πn satisfying the interpolation conditions (1.2).

Thus we get a simple characterization of n-independence:

A node set Ls is n-independent if and only if the interpolation problem (1.2) is

n-solvable, meaning that for any data {c1, . . . , cs} there exists a (not necessarily

unique) polynomial p ∈ Πn satisfying the conditions (1.2).

Now suppose that Ls is n-dependent. Then some operator Li0 , i0 ∈ {1, . . . , s},
does not possess an n-fundamental polynomial. This means that the following

implication holds:

p ∈ Πn, Li0p = 0 ∀i ∈ {1, . . . , s} \ {i0} ⇒ Li0p = 0.
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Let ` be a line. We say that p ∈ Π vanishes at λ ∈ ` with the multiplicity m if

(Da)ip
∣∣
λ

= 0, i = 0, . . . ,m− 1,

where a||` and Da is the directional derivative.

The following proposition is well-known (see, e.g., [6] Proposition 1.3):

Proposition 1.4. Suppose that ` is a line and a polynomial p ∈ Πn vanishes at

some points of ` with the sum of multiplicities n+ 1. Then we have

(1.3) p = `r, where r ∈ Πn−1.

Note that this relation also yields that the mentioned n + 1 conditions are

independent, since dim Πn − dim Πn−1 = n+ 1.

1.2. Multiple intersections. Let us start with the following well-known relation

for polynomial R and functions g and f (see, e.g., [3], formula (16)):

(1.4) R(D)[gf ] =
∑
i,j≥0

1

i!j!
g(i,j)R(i,j)(D)f.

Here we use the following notations

R(D) := R(
∂

∂x
,
∂

∂y
), R(i,j) := D(i,j)R :=

(
∂

∂x

)i(
∂

∂y

)j
R.

Notice that to verify (1.4) it su�ces to check it for R being a monomial, which

reduces (1.4) to Leibniz's rule.

To simplify notation, we shall use the same letter p, say, to denote the polynomial

p and the curve given by the equation p(x, y) = 0. Thus the notation λ ∈ p means

that the point λ belongs to the curve p(x, y) = 0. Similarly p ∩ q for polynomials

p and q stands for the set of intersection points of the curves p(x, y) = 0 and

q(x, y) = 0.

Below we bring the de�nition of multiplicities described by PD operators (see

[8], [4], [7]):

De�nition 1.5. The following space is called the multiplicity space of the polynomial

p ∈ Πn at the point λ ∈ p :

Mλ(p) =
{
h ∈ Π : Dαh(D)p(λ) = 0 ∀α ∈ Z2

+

}
.

Denote by Z0 = p∩ q the set of intersection points of curves (polynomials) p and q.

De�nition 1.6. Suppose that p, q ∈ Π and λ ∈ Z0. Then the following space is

called the multiplicity space of the intersection point λ :

Mλ(p, q) =Mλ(p) ∩Mλ(q).
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We have that (see [4]) the spacesMλ(p, q) are D-invariant, meaning that

(1.5) f ∈Mλ(p, q)⇒ ∂f

∂x
and

∂f

∂y
∈Mλ(p, q).

The number dimMλ(p, q) is called the arithmetical multiplicity of the point λ.

Denote

M(p, q) =
⋃
λ∈Z0

Mλ(p, q).

We say that f ∈ Πk vanishes atMλ(p, q) if h(D)f(λ) = 0 ∀h ∈Mλ(p, q).

We say also that the polynomials p and q have no intersection point at in�nity

if the leading homogeneous parts of p and q have no common factor.

Theorem 1.7 ([4], Theorem 3). Suppose that polynomials p, q ∈ Π, deg p =

m, deg q = n, have no intersection point at in�nity. Then the number of the

intersection points, counted with the arithmetical multiplicities, equals mn :

(1.6)
∑
λ∈Z0

dimMλ(p, q) = mn.

Let us bring the formulation of this result in the homogeneous case. Let Π0
n be

the space of trivariate homogeneous polynomials of total degree n. In analog way

we are de�ning the multiplicity spaceM0
λ(p, q).

Theorem 1.8 ([4], Corollary 3). Suppose that polynomials p ∈ Π0
m, q ∈ Π0

n have

no common component. Then the number of the intersection points, counted with

the arithmetical multiplicities, equals mn :∑
λ∈Z0

dimM0
λ(p, q) = mn.

2. The Noether theorem

Suppose that p, q ∈ Π, deg p = m, deg q = n, and p ∩ q := {λ1, . . . , λs}. Let us
choose a basis in the space Mλk

(p, q) in the following way. Let {Lkm1, . . . , L
k
mim
}

be a maximal independent set of linear operators with the highest degree m := mk.

Next we choose {Lkm−11, . . . , Lkm−1im−1
} to be a maximal independent set of linear

operators with the degree m−1. Continuing similarly for the degree 0 we have only

one operator Lk01.

It is easily seen that the above operators Lkµi, form a basis in the linear space

Mλk
(p, q). Denote

Lk(p, q) := Lλk(p, q) :=
⋃
i,µ

Lkµi, L(p, q) :=
⋃
k

Lk(p, q).

Notice that, according to Theorem 1.7, we have that |L(p, q)| = mn, provided that

p and q have no intersection point at in�nity.
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Lemma 2.1. The set of linear operators L(p, q) is γ0-independent for su�ciently

large γ0.

Proof. Consider the set of the linear operators of �xed node λk0 = (x0, y0) of

degrees up to ν, i.e.,

Sν,k0 :=
⋃
µ≤ν

Lk0µi .

Let us �rst �nd a fundamental polynomial p∗ for an operator of the highest degree

ν, say, for Lk0ν1 within Sν,k0 . We seek p∗ in the form

p∗(x, y) =
∑
i+j=ν

aij(x− x0)i(y − y0)j .

Then we readily get that Lk0µip
∗ = 0, if µ ≤ ν − 1. Now suppose that

Lk0νsf = ps

(
∂

∂x
,
∂

∂y

)
f
∣∣
(x0,y0)

, s = 1, . . . , is,

where ps(x, y) =
∑
i+j≤ν b

s
ij(x−x0)i(y−y0)j . Then the conditions of the fundamentality

of p∗ reduce to the following linear system:

Lkνip
∗ =

∑
i+j=ν

aijb
s
iji!j! = δij , s = 1, . . . , is.

The linear independence of highest degrees of the operators Lkνi means the independence

of the vectors {bsij}i+j=ν . Hence the above system has a solution.

Now notice that to complete the proof it is enough to obtain a fundamental

polynomial of Lkνi over the set Sν,k0 ∪
⋃
k 6=k0 L

k(p, q). To this purpose for each

k ∈ {1, . . . , s}\{k0} consider mk lines passing through λk, and not passing through

λk0 . Then by multiplying p∗ by the product of these lines we obtain, in view of the

formula (1.4), a polynomial which is a desired fundamental polynomial. �

Next, we are going to prove the Noether theorem with the multiplicities described

by PD operators.

Theorem 2.2. Suppose that polynomials p, q ∈ Π, deg p = m, deg q = n, have no

intersection point at in�nity. Suppose also that f ∈ Πk vanishes at Mλ(p, q) for

each λ ∈ p ∩ q. Then we have that

(2.1) f = Ap+Bq,

where A ∈ Πk−m, B ∈ Πk−n.

Note that the inverse theorem is true. Indeed, if (2.1) holds then f ∈ Πk and,

in view of the formula (1.4), we have that and f vanishes at Mλ(p, q) for each

λ ∈ p ∩ q.
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Proof. Step 1. Suppose that k ≥ k0 = max{m+n, γ0}, where γ0 is chosen such

that the set of linear operators L(p, q) is γ0-independent.

Consider two linear spaces

V = {f ∈ Πk : f vanishes atMλ(p, q) ∀λ ∈ p ∩ q} ,

W = {Ap+Bq : A ∈ Πk−m, B ∈ Πk−n} .

In view of the formula (1.4) we have that W ⊂ V. To prove the relation (2.1) we

need to verify that W = V. To this end it su�ces to show that dimW = dimV.
Since the set of linear operators L(p, q) is γ0-independent we obtain readily that

the set is also k-independent, where k ≥ γ0.
Hence, in view of Theorem 1.7, we have that

dimV = dim Πk − |L(p, q)| =
(
k + 2

2

)
−mn.

Denote

W1 = {Ap : A ∈ Πk−m} , W2 = {Bq : B ∈ Πk−n} .

Since p and q have no common component we conclude that

W1 ∩W2 = {Cpq : C ∈ Πk−m−n} .

Now we readily obtain that

(2.2) dimW = dim(W1 +W2) = dimW1 + dimW2 − dim(W1 ∩W2)

=

(
k −m+ 2

2

)
+

(
k − n+ 2

2

)
−
(
k −m− n+ 2

2

)
=

(
k + 2

2

)
−mn.

The last equality here holds since k ≥ m+ n (actually it holds for k ≥ m+ n− 2).

Step 2. n+m ≤ k ≤ k0.
Let us apply decreasing induction with respect to k. The �rst step k = k0 was

checked in Step 1. Assume Theorem is true for all f with deg f = k and let us prove

that it is true also for all f with deg f = k − 1.

Suppose that f0 is an arbitrary polynomial with deg f0 = k − 1. Choose a line

`0 such that

(i) `0 ∩ p ∩ q = ∅, and
(ii) `0 intersects q at n points, counted also multiplicities, i.e., it does not intersect

q at in�nity.

We have that deg f0`0 = k. Also, in view of the formula (1.4) and (1.5), i.e., the

D-invariance ofMλ(p, q), we have that f0`0 vanishes atMλ(p, q) for each λ ∈ p∩q.
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Hence, in view of the induction hypothesis, we get

(2.3) f0`0 = Ap+Bq,

where A ∈ Πk−m, B ∈ Πk−n.

We have that `0 intersects q at n points, counted also multiplicities. In view of

(2.3) these (multiple) points are also zeros of A since p di�ers from zero there.

For every polynomial C0 ∈ Πk−m−n we have also that

(2.4) f0`0 = (A− C0q)p+ (B + C0p)q.

Consider arbitrary k − m − n + 1 points λ1, . . . , λk−m−n, in `0 \ q. Choose C0 ∈
Πk−m−n such that A−C0q is zero at these points. For this, according to Proposition

1.4, we just solve an independent interpolation problem

C0(λi) =
A(λi)

q(λi)
, i = 0, . . . , k −m− n.

Note that the common n (multiple) zeros of `0 and q also are zeroes of A−C0q.

Thus, altogether we have that A − C0q is zero at k −m − n + 1 + n = k −m + 1

points in `0. Thus, in view of Proposition 1.4, `0 divides A − C0q ∈ Πk−m. From

(2.4) we readily conclude that `0 divides B + C0p.

Finally by dividing the relation (2.4) by `0 we get that

(2.5) f0`0 = A′p+B′q,

where A′ ∈ Πk−m−1, B ∈ Πk−n−1.

Step 3. k ≤ n+m− 1.

Let us again apply decreasing induction with respect to k. The �rst step k =

m+ n− 1 was checked in Step 2. Assume Theorem is true for all f with deg f = k

and let us prove that it is true also for all f with deg f = k − 1.

Suppose that f0 is an arbitrary polynomial with deg f0 = k− 1. Choose a line `0

in the same way as in Step 2. Then we get the relation (2.3) where the polynomial

A ∈ Πk−m has n zeros in `0, counting also the multiplicities. In this case we have

that k −m ≤ n − 1. Thus, in view of Proposition1.4, `0 divides A. From (2.4) we

readily conclude that `0 divides also B. Finally by dividing the relation (2.3) by `0

we complete the proof as in Step 2. �

At the end let us bring the formulation of Theorem 2.2 in the homogeneous case.

Theorem 2.3. Suppose that p ∈ Π0
m and q ∈ Π0

n have no common component.

Suppose also that f ∈ Π0
k vanishes at M0

λ(p, q) for each λ ∈ p ∩ q. Then we have

that

f = Ap+Bq,

where A ∈ Π0
k−m, B ∈ Π0

k−n.
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It is known that the set Z0 := p∩ q, where p and q are polynomials, of degree m

and n, respectively, is (m + n − 2)-independent, provided that |Z0| = mn. Below

we prove this result without the last restriction (cf. [4], Corollary 1).

Corollary 2.4. Suppose that polynomials p, q ∈ Π, deg p = m, deg q = n, have no

common component. Then the set of linear operators L(p, q) and consequently the

set Z0 are (m+ n− 2)-independent.

Proof. Let us assume �rst that p and q have no intersection point at in�nity.

Then we have that |L(p, q)| = mn. By using the evaluation (2.2) in the case k =

m+ n− 2 we obtain

(2.6) dimW = dim(W1 +W2) = dimW1 + dimW2 − dim(W1 ∩W2)

=

(
n

2

)
+

(
m

2

)
− 0 =

(
m+ n

2

)
−mn.

Thus we have that dim Πm+n−2 − dimW = mn. This means that the set of linear

operators L(p, q) and consequently Z0 is (m+ n− 2)-independent.

Now assume only that p and q have no common component. Let us use the

concept of the associate polynomial (see section 10.2, [9]).

Let p(x, y) =
∑
i+j≤m aijx

iyj and deg p = m. Then the following trivariate

homogeneous polynomial is called associated with p :

p̄(x, y, z) =
∑

i+j+k=m

aijx
iyjzk.

Evidently we have that

p = p1p2 ⇔ p̄ = p̄1p̄2.

It is easily seen from here that polynomials p and q have no common component if

and only if p̄ and q̄ have no common component. By applying Theorem 2.3 to the

polynomials p̄ and q̄ we get that the set of linear operators L0(p, q) is (m+ n− 2)-

independent. Therefore its subset corresponding to the �nite intersection points,

i.e., to Z0, is (m+ n− 2)-independent, which implies the desired result. �

3. The Cayley-Bacharach theorem

The evaluation (2.2) in the case k = m+ n− 3 gives

(3.1) dimW = dim(W1 +W2) = dimW1 + dimW2 − dim(W1 ∩W2)

=

(
n− 1

2

)
+

(
m− 1

2

)
− 0 =

(
m+ n− 1

2

)
− (mn− 1).

Thus we have that dim Πm+n−2−dimW = mn−1, i.e., out of mn linear operators

in L(p, q) only mn− 1 are linearly independent.
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According to the Cayley-Bacharach classic theorem (see, e.g., [1], [5]), i.e., in the

case |Z0| = mn, where Z0 := p ∩ q, we have that any subset of Z0 of cardinality

mn − 1 is (m + n − 3)-independent. This means that no point from Z0 has a

fundamental polynomial of degree (m + n − 3), i.e., for any point λ0 ∈ Z0 the

following implication holds:

p ∈ Πm+n−3, p(λ) = 0 ∀λ ∈ Z0 \ {λ0} ⇒ p(λ) = 0 ∀λ ∈ Z0.

In this section we are going to study the situation in the general multiple

intersection case. Suppose p ∈ Πm,

p(x, y) =
∑

i+j≤m

aijx
iyj .

Denote the kth homogeneous part of p by p{k}, i.e.,

p{k}(x, y) =
∑
i+j=k

aijx
iyj .

We accept a very common restriction from the theory of intersection. Namely, we

assume that the two polynomials p and q have no common tangent line at an

intersection point λ ∈ Z0. This means that the lowest homogeneous parts of the

polynomials have no common factor at this point.

Theorem 3.1. Suppose that polynomials p, q ∈ Π, deg p = m, deg q = n, have

no intersection point at in�nity and λ ∈ Z0. Suppose also that p and q have no

common tangent line at λ. Then we have that the set of linear operators Lλ(p, q)

contains only one operator of the highest degree: L̄. Suppose also that f ∈ Πm+n−3

vanishes at L(p, q) \ {L̄}. Then we have that f vanishes at all L(p, q).

Proof. Assume, without loss of generality, that λ = θ := (0, 0). Suppose that p

and q are bivariate polynomials having n0 andm0-fold zero at the origin, respectively,

n0,m0 ≥ 1 :

p(x, y) =
∑

m0≤i+j≤m

aijx
iyj , q(x, y) =

∑
n0≤i+j≤n

bijx
iyj .

Suppose also that p and q have no common tangent line at the origin, i.e., p{m0}

and q{n0} have no common factor.

Let L̄ := {L̄1, . . . , L̄s} be a maximal independent set of linear operators with the

highest degree in the spaceMθ(p, q).

Assume that f ∈ Πm+n−3 vanishes at L(p, q) \ L̄. We are going to prove that f

vanishes at L(p, q).
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This shall complete the proof of Theorem. Indeed, as was veri�ed above, there

are mn−1 linearly independent operators in the set of mn linear operators L(p, q),

which clearly implies here that s = 1.

Let ` be any line passing through θ. By using the formula (1.4) with g = `, f = f

and R ∈ L(p, q), we obtain that the polynomial `f vanishes at L(p, q). Therefore,

since deg `f = m+ n− 2, we get from Theorem 2.2 that

(3.2) `f = A(`)p+B(`)q,

where A(`) ∈ Πn−2, B(`) ∈ Πm−2. Assume, without loss of generality, that m0 ≤
n0. Assume also that m0 ≥ 2. If m0 = 1 we go to the �nal part of the proof. Now

we are going to prove that

(3.3) A(`){k} = `A′k−1 k = 0, . . . , n0 − 2,

where A′k−1,∈ Π0
k−1, do not depend on `, and

(3.4) B(`){k} = `B′k−1 k = 0, . . . ,m0 − 2,

where B′k−1,∈ Π0
k−1, do not depend on `.

First let us prove (3.3) for k ≤ n0−m0−1. Let us apply induction on k. Consider

the case k = 0. Then we get from the relation (3.2) that A(`){0}p{m0} = `f{m0−1}.

Thus we have xf{m0−1} = c1p
{m0} and yf{m0−1} = c2p

{m0}, where c1 and c2 are

constants. Therefore we have that (c2x− c1y)f{m0−1} = 0, i.e., f{m0−1} = 0. Thus

A(`){0} = 0 = ` · 0. Assume that (3.3) is true for all k not exceeding s and let us

prove it for k = s+ 1. We readily get from the relation (3.2) that

(3.5) A(`){s+1}p{m0} +A(`){s}p{m0+1} + · · ·+A(`){0}p{m0+s+1} = `f{m0+s+1}.

We have that all terms above except possibly the �rst have factor `. Hence we get

that A(`){s+1} = `A′s. In fact we have this relation for all ` except m0 tangent lines

of p at θ. Then by a continuity argument we get the relation for all `.

Next, by dividing (3.9) by ` we see that A′s does not depend on `.

Now assume that n0 −m0 ≤ k ≤ n0 − 2. Here we are going to prove (3.3) for

k and (3.4) for k − n0 +m0. Let us again apply induction on k. Consider the case

k = n0 −m0. We get from the relation (3.2) that

(3.6)

A(`){n0−m0}p{m0} +A(`){n0−m0−1}p{m0+1} + · · ·+A(`){0}p{n0} +B(`){0}q{n0}

= `f{n0−1}.

Now let us use ` = `1 which is a tangent line of q at θ, i.e., q{n0} = `1q̃, where

q̃ ∈ Πn0−1.
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We have that all terms in (3.6) except possibly the �rst have factor `1. Hence

we get that A := A(`1){n0−m0} = `1A
′
n0−m0−1.

Meanwhile, let us verify also that if `1 = y − k1x is a factor of multiplicity µ of

q{n0} then it is a factor of multiplicity at least µ in A. Assume that

A = C1

∏
i

(y − aix), q{n0} = C2

∏
i

(y − bix).

Assume also ` is given by an equation y − kx = 0. By setting in (3.6) y = kx, and

by using the induction hypothesis, we obtain

(3.7) C1p
{m0}(x, kx)

∏
i

(k − ai)x = C2B(`){0}(x, kx)
∏
i

(k − bi)x.

Consider both sides of (3.7) as polynomials on k. Now k1 is a root of the right

hand side of multiplicity at least µ. On the other hand k = k1 is not a root of

p{m0}(x, kx) since p and q have no common factor. Thus we get that k = k1 is a

root of multiplicity at least µ in q{n0}(x, kx), i.e., y− k1x is a factor of multiplicity

at least µ in q{n0}(x, y).

Next, we have that

(3.8) A(`){n0−m0} = A(`1){n0−m0} +A(`− `1){n0−m0}

= `A′n0−m0−1 + (`− `1)A′n0−m0−1 +A(`− `1){n0−m0}

= `A′n0−m0−1 − (k − k1)xA′n0−m0−1 − (k − k1)A(x){n0−m0}

= `A′n0−m0−1 − (k − k1)
[
xA′n0−m0−1 −A(x){n0−m0}

]
.

We have that A(`){n0−m0} contains all factors of qn0 . Thus the polynomial of degree

n0 − m0 in the square brackets contains all factors of qn0 except possibly `1, in

all n0 − 1 factors. Hence this polynomial is identically zero and A(`){n0−m0} =

`A′n0−m0−1. As above we readily conclude that A′n0−m0−1 does not depent on `.

Similarly by using tangent lines of p we get that B(`){0} = 0 = ` · 0.
Now assume that (3.3) is true for k not exceeding s and (3.4) is true for k not

exceeding s+m0−n0. Let us prove (3.3) for k = s+1 and (3.4) for k = s+m0−n0+1.

We get from the relation (3.2) that

(3.9) A(`){s+1}p{m0} +A(`){s}p{m0+1} + · · ·+A(`){0}p{m0+s+1}

+B(`){s+m0−n0+1}q{n0} +B(`){s+m0−n0}q{n0+1} + · · ·+B(`){0}q{m0+s+1}

= `f{m0+s+1}.

Here, in the same way as above, by using tangent lines of p and q at θ, we complete

the proof of this part.
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Now let us go to the �nal part of the proof. Let us choose a line `0 whose

intersection multiplicity with p at θ equals to m0.We also require that `0 intersects

Z only at θ. We have that outside of θ the line `0 intersects p at m −m0 points,

counting also the multiplicities. We deduce from the relation (3.2), with ` = `0,

that these m−m0 points are roots for B(`0), since q does not vanish there. Then,

in view of the relation (3.4), we have that

B(`0) =

m−2∑
i=0

B{i}(`0) =

m−2∑
i=m0−1

B{i}(`0).

Thus, by assuming that `0 = y−k0x, we see that the trace of the polynomial B(`0)

on the line `0 has the form

B(`0)(x, k0x) =

m−2∑
i=m0−1

bix
i = xm0−1

m−m0−1∑
i=0

bi+m0−1x
i.

On the other hand this polynomial vanishes at m −m0 nonzero points, counting

also the multiplicities. Hence, in view of Proposition 1.4, we conclude that B(`0)

has a factor `0. Now we readily get from the relation (3.2), with ` = `0, that A(`0)

also has a factor `0. Then by dividing the relation (3.2) by `0 we get that

f = Ap+Bq,

where A ∈ Πn−3, B ∈ Πm−3. Finally from this relation we readily conclude that f

vanishes at L(p, q). �

At the end let us consider a simple example. Let p(x, y) = xm and q(x, y) = yn.

Then we have that

L(p, q) = Lθ(p, q) =
{
xiyj : i ≤ m− 1, j ≤ n− 1

}
.

It is easily seen that in this set there is only one operator of the highest degree:

L̄ =

(
∂

∂x

)m−1(
∂

∂y

)n−1
.

Also for this operator we have that the set of the operators L(p, q)\{L̄} is (m+n−3)-

independent. Moreover, only the operator L̄ ∈ L(p, q) has this property.
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