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Ahstract. The Heun functions satisfy linear ordinary differential equations of second
order with certain singularities in the complex plane. The first order derivatives of the
Heun functions satisy linear second order differential equations with one more singularity,
[n this paper we compare these equations with linear differential equations isomonodromy

deformations of which are described by the Painlevé equations Prr — Pyg.
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1. INTRODUCOTION

The general Heun eguation is the most general second order linear Fuchsian
ordinary differential equation with four regular singular points in the complex plane
12, 3. 4, 5. Although it s a genaralization of the well-studied Gauss hypergeometric
sguation with three regular singularities, it is much more difficult to investigate
properties of the Heun functions. The additional singularity causes many complications
in comparison with the hypergeometric case (for instance, the solutions in general
have no integral representations involving simpler mathematical functions). There
also exist confluent Heun equations (see [3, 4]) which have rregular singularities.
There are many studies on the properties of solutions of the Heun equations from
different perspectives {see. for instance, 16, 7, 8. 9, 10, 11, 12, 13, 14, 15, 16, 17|
anel the references therein). The Heun functions (and their confluent cases) appear
extensively in many problems of mathematics, mathematical physics, physics and
engineering {e.g.. [18. 19, 20]}). An extensive hibliography can he found at [1].

The general Heun equation is given by the following equation:

d?u ~ ) g du aflz —q
a2 (‘* +—>E+z(z_1)(z_t)

z z—1 =z-t
where the parameters satisfy the Fuchsian relation

{1.1) uw=0

?

(1.2) l4+a+B=v+d+c
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This equation has four regular singular points at z = 0, 1, ¢ and oo. Its solutions,
the Heun functions, are usually denoted by uw = H(¢, ¢; «, 8, 7, d; z) assuming that
¢ is obtained from (1.2). The parameter ¢ is referred to as the accessory parameter.

It is well-known that the derivative of the hypergeometric function 5 F} is again
a hypergeometric function with different values of the parameters. However, for
the Heun function it is generally not the case. The first order derivative of the
general Heun function satisfies a second order Fuchsian differential equation with
five regular singular points [7, 8, 12]. It can be verified by direct computations
that the function v(z) = du/dz, where u = u(z) is a solution of (1.1), satisfies the

following equation:

(1.3)
d?v y+1 o041 e+1 af dv f(z) 0
dz? ( z +z—1 z—t_ozﬂz—q>dz z(z—l)(z—t)(a,@z—q)v_ ’

where f(z) = 2(aBz —2¢)(aB+v+d+¢e)+ (¢ +q(y+t(y+ ) + &) — aByt). We
see that an additional singularity at z = ¢/(«8) involving the accessory parameter
is added.

It is known that in some cases equation (1.3) reduces to a Heun equation (1.1)
with altered parameters [8]. Indeed, we can observe that in four cases when ¢ =
0, ¢ = aff, ¢ = aft and af = 0 the additional singularity in (1.3) disappears and
we obtain the Heun equation (1.1) with different parameters [8]. The equation for
the derivatives of the Heun functions allows one to construct several new expansions
of solutions of the Heun equations in terms of various special functions (e.g.,
hypergeometric functions) [7]. Similar results hold for confluent cases [12].

This paper is organized as follows. In Section 2 we give a list of all confluent Heun
equations together with linear second order equations for the derivatives of the Heun
functions. In Section 3 we briefly describe the theory of isomonodromy deformations
of linear equations and show how the famous Painlevé equations appear in this
context. Next, in Section 4 we present our main results. In particular, we will
compare linear equations for the Heun derivatives with linear differential equations,

isomonodromy deformations of which are described by the Painlevé equations.

2. CONFLUENT HEUN EQUATIONS AND EQUATIONS FOR DERIVATIVES OF

CONFLUENT HEUN FUNCTIONS

The general Heun equation is given by (1.1) together with (1.2) and the linear
equation for the derivative of the Heun functions is (1.3).
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The confluent Heun equation is written as

d?u 1) du az —q
2.1 — —_— —u=0
(2.1) d22+< + - +5) -+ o
and the linear equation for the function v = du/dz is given by
d*v v+1 §+1 @ dv g(2)
2.2 - S R N )
(22) d22+( P az—q) dz z(z—l)(az—q)v ’

where g(2) = (a +¢)(az? —2¢2) + (¢> — (Y + 35 — €)g + av).

The double-confluent Heun equation is

d*u v o6 du az—gq
2.3 — + - — =0
(2:3) dz2+<22+z+6> T
and the linear equation for the function v = du/dz is given by
d*v v o042 a dv h(z)
24 - 4+ — — 24 =0
(2.4) d2+<2+ PR az—q)dz+22(az—q)v ’

where h(z) = (a +¢)(az? — 2¢2) + (¢* — 6q — avy).

The bi-confluent Heun equation is

d?u v du az—q
: R
(2.5) i z+6+sz LT u=0
and the linear equation for the function v = du/dz is given by
d*v v+1 Q dv k(z)
2.6 — ) -4+ ——v=0
(26) szJr( Totes z—q) dz+z(ozz—q)v ’

where k(2) = (a +€)z(az — 2q) + (¢* — 6qg — a).
The tri-confluent Heun equation is

d*u

dz?

and the linear equation for the function v = du/dz is given by

o ) dv pz)

az—q) dz  (az—q)

d
(2.7) + (v + 62 +¢e2?) CTZ +(az—qu=0

(2.8) i

v+(’y+52+522— =0,

dz?
where p(2) = (a +¢)(az? — 2¢2) + (¢* — §q — a).

3. [ISOMONODROMIC DEFORMATIONS OF LINEAR EQUATIONS AND THE PAINLEVE

EQUATIONS

In this section we briefly review the theory of isomonodromic deformations of
linear second order differential equations following [21, 22, 23]. We shall use notation
similar to [22].

The isomonodromic deformations of linear second order differential equations of
the form

d?v

dv
dz? =)y

7 + pa(2)v =0,
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with p1, p2 being rational functions of z and parameters of deformation ¢, ..., ¢,,
are governed by a completely integrable Hamiltonian system of partial differential
equations with respect to the parameters. When there is one parameter of deformation,
t, the Painlevé equations P; — Py ; appear as the compatibility condition of the

extended linear system consisting of equation (3.1) and equaton

(3.2) % = a(z,t)% + b(z, t)v.

The Painlevé equations P; — Py are nonlinear second order differential equations
with the so-called Painlevé property. They have many interesting properties and
appear in many areas of mathematics. See, for instance, [24, 25, 21] and numerous
references therein. The completely integrable Hamiltonian system is then equivalent
to a Painlevé equation for one of the variables. Below we shall present necessary
formulas for equations P;; — Py .

To get the sixth Painlevé equation one chooses

17/&04_17!41 1-46 1

(3.3) pi(z,t) = > 21  a—t z2-X\

B K t(t—1)Hyr AN =D
(34) p2(27t) - Z(Z—l) z(z;—l)(z—t) - Z(Z_ 1)('2_)\)7
where
t(t - 1)HV[ = )\(/\ - 1)(/\ - t)/’LQ

Lo = DA =)+ kA — 1) + (0 — DA — D+ w(A — 1),

Then the compatibility between (3.1) and (3.2) with certain a(z,¢) and b(z,t) (see
[21, 22, 23] for details) leads to the Hamiltonian system

d\ _9Hy; du  9Hy;

dt o T dt oA
and by eliminating the function p one can get the sixth Painlevé equation
U O IS S S W 20 S S SR B B2\
2 2\A A—1 X—t) \dt t t—1 Xx—t) at
AA=1)(A=1) t t—1 tt—1)
3.5 _ — ]
(3.5) + 2 —1) 046"'/86)\2“"76()\71)2"' Sopz)
where
1 1 1 1
016=§Hgoa [362—5’137 7625/@%’ 5625(1_92)

and

1 1
KZ:Z(I{0+I€1+9*1)2*1K/§O.
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To get the fifth Painlevé equation one chooses

_ 1— ko nt 1-0 1
(3.6) pi(z,t) = > +(271)2+271_Z*)\,

B K tHy AA=Dp
(3.7) pa(zt) = 2z-1) z2(z-1)2 " 2(z—1(z-\)
where

tHy = A\ — 122 — {ko\ = 12 + 0N\ — 1) — nt\ b + s(A — 1).

Then similarly to the previous case the corresponding Hamiltonian system with the

Hamiltonian Hy leads to the fifth Painlevé equation

d2\ 1 1 dA\\? 1dx  (A—1)2 Bs
o2 - (- ) (2) 22, AT A4+ 22
dt? (2>\+)\1)(dt> T (0‘5 +>\)
A AA+1)
. — 40—
(3.8) +75t+5 N1
where
L o L o L
a5 = Shoo, P = —5K0, V5= (1+0)n, 65 = 3"
and
1 1
KR = Z(HO + 9)2 — Zﬁlgo
To get the fourth Painlevé equation one chooses
1—ko 2z+4+2t 1
(39) pist) = —R-E
1 Hrv Ap
3.10 ) = =60, — 7
(3:.10) p2(2t) 2 2z * z2(z =)
where

Hyy = 227 — (0 4 2t + 260 it + O\
Then the corresponding Hamiltonian system with the Hamiltonian Hjy leads to
the fourth Painlevé equation
(3.11) 6572 - % (2)2 + %)\3 F A2 1 2(£2 — ag)h + %,
where
ay = —ko+200+1, By= 7253.
The standard third Painlevé equation is given by

2 1 2 9 2
However, for our purpose it is more convenient to consider an equation which can be
obtained from (3.12) by changing A(t) — A(t?)/t and by renaming the new variable
7 =12 as t again. This equation is given by
A1 [d\\® 1d\x  asA?2+3A3 B3 O3
( ) Tia T T e Twtan
25
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Equation (3.13), which will be denoted by Pj;;, appears in the result of isomonodromic

deformations of the linear equation (3.1) with

_omt 1= 1
(314) pl(zat) - ZQ + P Moo . — )\7
Noo(f0 +0o0)  tHpp; A
3.15 t) = _
(3:15) po(2,1) 2z 2 T 2(z—=N)’
where

1
tHy = N p® — {NooA? + 0o\ — mot b + 57700(90 +000)A

and the parameters are related by
a3 = _477009007 63 = 4770(1 + 90)a Y3 = 477207 63 = _477(2)

Finally, the second Painlevé equation

d2\ 3
(3.16) e 207 +tA + an
appears in the result of isomonodromic deformations of the linear equation (3.1)

with

1
(317) P1 (Z, t) = —222 —t— m7
(3.18) pa(zt) = —(20m+ 1)z — 2H + %
where
1 1 1
(319) H[]:§/,L2— ()\Q—Ft)ﬂ/— <a2+2) A

4. MAIN RESULTS

In this section we compare equations for the derivatives of the Heun functions
with the linear differential equations whose isomonodromy deformations are governed
by the Painlevé equations P;; — Pyy.

Let us consider the equation for the derivative of the general Heun function (1.3).

By choosing parameters

1
af = ko + K1 +0+k, 515@2%0*1*/40*/’»1*9)7
Y = —Ko, 5:7H13 5:703 q:aﬂ)‘a

we can calculate that the resulting equation is the same as equation (3.1) with (3.3),
(3.4) and the expression for Hyr provided that
- Ko K1 0
SRS U T
If now A and p are viewed as functions of ¢, substituting this condition into the

Hamiltonian system leading to the sixth Painlevé equation, we find that X\ satisfies
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the Riccati equation

d\ kot = (1+ ko + (ko + K1)t + 0N+ (1 + Ko + K1 + 0)N?
dat t(t—1)

and kg + k1 + 60+ k = 0. This gives classical solutions of the sixth Painlevé equation

provided that kg = £ko — 0 — k1 — 1. However, with this additional condition on
the parameters we have a8 = 0 and ¢ = 0.

In the equation for the derivative of the confluent Heun function (2.2) we first
make the change of variables v(z) — (1 — z/(z — 1))°v(z/(z — 1)), renaming the

new independent variable as z again, then put

Y= —kKo, 6 =ro+0+20, €=—in,
1 A 1
U:_i(ﬁoi"ioo"i_a)v q= )\a 1’ az*tn(2+"€0i"€°0+9)’

The resulting equation is the same as equation (3.1) with (3.6), (3.7) and the

expression for Hy provided that
_ ko tn . 0 — ko £ Koo
FE N "0-02 7 2000

Substituting this condition into the Hamiltonian system leading to the fifth Painlevé

equation, we see that A satisfies the Riccati equation
dA
taimm)ﬁ—(iﬁo@—mo—tn)—ﬁo =0

and 7(2+ ko £ koo +60) = 0. Again, with this additional condition on the parameters
we have « = 0 and ¢ = 0.
In the equation for the derivative of the bi-confluent Heun function (2.6) we take
0o +1 1

= — 6:—t = )\ = = ——,
Y R0, y 4 aA, « 2 , € 2

The resulting equation is the same as equation (3.1) with (3.9), (3.10) and the

expression for Hyy provided that

p=1t+ £o + i
A2
Substituting this condition into the Hamiltonian system leading to the fourth
Painlevé equation, we find that A satisfies the Riccati equation

% = A2+ 2\ + 250
and 0., + 1 = 0. Again, with this additional condition on the parameters we have
a=0and g=0.

In the equation for the derivative of the double-confluent Heun function (2.6) we

take

1
v=tn, 6=—1-0) q=a, a=§noo(90+9<>o+2), €= —Too-
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The resulting equation is the same as equation (3.1) with (3.14), (3.15) and the

expression for Hj;; provided that

Substituting this condition into the Hamiltonian system leading to the modified
third Painlevé equation Pj;;, we find that X satisfies the Riccati equation
dA
ta = 7700/\2 + (00 + 2))\ - tno
and 7s0 (6o + 0o +2) = 0. Again, with this additional condition on the parameters
we have @« = 0 and ¢ = 0.

In the equation for the derivative of the tri-confluent Heun function (2.8) we take
y=—t, 6=0, g=a), a=1-2ay, ¢=-2.

The resulting equation is the same as equation (3.1) with (3.17), (3.18) and the

expression for Hy; provided that
=222 +1.

Substituting this condition into the Hamiltonian system leading to the second
Painlevé equation, we see that A satisfies the Riccati equation

2% =2)\% + ¢
and 2as = 1. Again, with this additional condition on the parameters we have
a=0and g =0.

Hence, we see that in all cases we can reduce equations for the derivatives of the
Heun functions to certain linear equations, isomonodromy deformations of which
lead to the Painlevé equations with an additional constraint on A and u. However,
in order to get classical solutions of the Painlevé equations we need an additional
constraint on the parameters. Therefore, those linear equations isomonodromy
deformations of which are described by classical solutions of the Painlveé equations
cannot be obtained from the equations for the derivatives of the Heun functions.
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