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This equation has four regular singular points at z = 0, 1, t and ∞. Its solutions,

the Heun functions, are usually denoted by u = H(t, q; α, β, γ, δ; z) assuming that

ε is obtained from (1.2). The parameter q is referred to as the accessory parameter.

It is well-known that the derivative of the hypergeometric function 2F1 is again

a hypergeometric function with di�erent values of the parameters. However, for

the Heun function it is generally not the case. The �rst order derivative of the

general Heun function satis�es a second order Fuchsian di�erential equation with

�ve regular singular points [7, 8, 12]. It can be veri�ed by direct computations

that the function v(z) = du/dz, where u = u(z) is a solution of (1.1), satis�es the

following equation:

(1.3)
d2v

dz2
+

(
γ + 1

z
+
δ + 1

z − 1
+
ε+ 1

z − t
− αβ

αβz − q

)
dv

dz
+

f(z)

z(z − 1)(z − t)(αβz − q)
v = 0,

where f(z) = z(αβz − 2q)(αβ + γ + δ + ε) + (q2 + q(γ + t(γ + δ) + ε)− αβγt). We

see that an additional singularity at z = q/(αβ) involving the accessory parameter

is added.

It is known that in some cases equation (1.3) reduces to a Heun equation (1.1)

with altered parameters [8]. Indeed, we can observe that in four cases when q =

0, q = αβ, q = αβt and αβ = 0 the additional singularity in (1.3) disappears and

we obtain the Heun equation (1.1) with di�erent parameters [8]. The equation for

the derivatives of the Heun functions allows one to construct several new expansions

of solutions of the Heun equations in terms of various special functions (e.g.,

hypergeometric functions) [7]. Similar results hold for con�uent cases [12].

This paper is organized as follows. In Section 2 we give a list of all con�uent Heun

equations together with linear second order equations for the derivatives of the Heun

functions. In Section 3 we brie�y describe the theory of isomonodromy deformations

of linear equations and show how the famous Painlev�e equations appear in this

context. Next, in Section 4 we present our main results. In particular, we will

compare linear equations for the Heun derivatives with linear di�erential equations,

isomonodromy deformations of which are described by the Painlev�e equations.

2. Confluent Heun equations and equations for derivatives of

confluent Heun functions

The general Heun equation is given by (1.1) together with (1.2) and the linear

equation for the derivative of the Heun functions is (1.3).
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The con�uent Heun equation is written as

(2.1)
d2u

dz2
+

(
γ

z
+

δ

z − 1
+ ε

)
du

dz
+

αz − q
z(z − 1)

u = 0

and the linear equation for the function v = du/dz is given by

(2.2)
d2v

dz2
+

(
γ + 1

z
+
δ + 1

z − 1
+ ε− α

αz − q

)
dv

dz
+

g(z)

z(z − 1)(αz − q)
v = 0,

where g(z) = (α+ ε)(αz2 − 2qz) + (q2 − (γ + δ − ε)q + αγ).

The double-con�uent Heun equation is

(2.3)
d2u

dz2
+

(
γ

z2
+
δ

z
+ ε

)
du

dz
+
αz − q
z2

u = 0

and the linear equation for the function v = du/dz is given by

(2.4)
d2v

dz2
+

(
γ

z2
+
δ + 2

z
+ ε− α

αz − q

)
dv

dz
+

h(z)

z2(αz − q)
v = 0,

where h(z) = (α+ ε)(αz2 − 2qz) + (q2 − δq − αγ).
The bi-con�uent Heun equation is

(2.5)
d2u

dz2
+
(γ
z
+ δ + εz

) du
dz

+
αz − q
z

u = 0

and the linear equation for the function v = du/dz is given by

(2.6)
d2v

dz2
+

(
γ + 1

z
+ δ + εz − α

αz − q

)
dv

dz
+

k(z)

z(αz − q)
v = 0,

where k(z) = (α+ ε)z(αz − 2q) + (q2 − δq − αγ).
The tri-con�uent Heun equation is

(2.7)
d2u

dz2
+
(
γ + δz + εz2

) du
dz

+ (αz − q)u = 0

and the linear equation for the function v = du/dz is given by

(2.8)
d2v

dz2
+

(
γ + δz + εz2 − α

αz − q

)
dv

dz
+

p(z)

(αz − q)
v = 0,

where p(z) = (α+ ε)(αz2 − 2qz) + (q2 − δq − αγ).

3. Isomonodromic deformations of linear equations and the Painlev�e

equations

In this section we brie�y review the theory of isomonodromic deformations of

linear second order di�erential equations following [21, 22, 23]. We shall use notation

similar to [22].

The isomonodromic deformations of linear second order di�erential equations of

the form

(3.1)
d2v

dz2
+ p1(z)

dv

dz
+ p2(z)v = 0,
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with p1, p2 being rational functions of z and parameters of deformation t1, . . . , tn,

are governed by a completely integrable Hamiltonian system of partial di�erential

equations with respect to the parameters. When there is one parameter of deformation,

t, the Painlev�e equations PI − PV I appear as the compatibility condition of the

extended linear system consisting of equation (3.1) and equaton

(3.2)
∂v

∂t
= a(z, t)

∂v

∂z
+ b(z, t)v.

The Painlev�e equations PI−PV I are nonlinear second order di�erential equations
with the so-called Painlev�e property. They have many interesting properties and

appear in many areas of mathematics. See, for instance, [24, 25, 21] and numerous

references therein. The completely integrable Hamiltonian system is then equivalent

to a Painlev�e equation for one of the variables. Below we shall present necessary

formulas for equations PII − PV I .
To get the sixth Painlev�e equation one chooses

p1(z, t) =
1− κ0
z

+
1− κ1
z − 1

+
1− θ
z − t

− 1

z − λ
,(3.3)

p2(z, t) =
κ

z(z − 1)
− t(t− 1)HV I

z(z − 1)(z − t)
+

λ(λ− 1)µ

z(z − 1)(z − λ)
,(3.4)

where

t(t− 1)HV I = λ(λ− 1)(λ− t)µ2

−{κ0(λ− 1)(λ− t) + κ1λ(λ− t) + (θ − 1)λ(λ− 1)}µ+ κ(λ− t).

Then the compatibility between (3.1) and (3.2) with certain a(z, t) and b(z, t) (see

[21, 22, 23] for details) leads to the Hamiltonian system

dλ

dt
=
∂HV I

∂µ
,

dµ

dt
= −∂HV I

∂λ

and by eliminating the function µ one can get the sixth Painlev�e equation

d2λ

dt2
=

1

2

(
1

λ
+

1

λ− 1
+

1

λ− t

)(
dλ

dt

)2

−
(
1

t
+

1

t− 1
+

1

λ− t

)
dλ

dt

+
λ(λ− 1)(λ− t)
t2(t− 1)2

(
α6 + β6

t

λ2
+ γ6

t− 1

(λ− 1)2
+ δ6

t(t− 1)

(λ− t)2

)
,(3.5)

where

α6 =
1

2
κ2∞, β6 = −1

2
κ20, γ6 =

1

2
κ21, δ6 =

1

2
(1− θ2)

and

κ =
1

4
(κ0 + κ1 + θ − 1)2 − 1

4
κ2∞.
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To get the �fth Painlev�e equation one chooses

p1(z, t) =
1− κ0
z

+
ηt

(z − 1)2
+

1− θ
z − 1

− 1

z − λ
,(3.6)

p2(z, t) =
κ

z(z − 1)
− tHV

z(z − 1)2
+

λ(λ− 1)µ

z(z − 1)(z − λ)
,(3.7)

where

tHV = λ(λ− 1)2µ2 − {κ0(λ− 1)2 + θλ(λ− 1)− ηtλ}µ+ κ(λ− 1).

Then similarly to the previous case the corresponding Hamiltonian system with the

Hamiltonian HV leads to the �fth Painlev�e equation

d2λ

dt2
=

(
1

2λ
+

1

λ− 1

)(
dλ

dt

)2

− 1

t

dλ

dt
+

(λ− 1)2

t2

(
α5λ+

β5
λ

)
+γ5

λ

t
+ δ5

λ(λ+ 1)

λ− 1
,(3.8)

where

α5 =
1

2
κ2∞, β5 = −1

2
κ20, γ5 = (1 + θ)η, δ5 =

1

2
η2

and

κ =
1

4
(κ0 + θ)2 − 1

4
κ2∞.

To get the fourth Painlev�e equation one chooses

p1(z, t) =
1− κ0
z
− z + 2t

2
− 1

z − λ
,(3.9)

p2(z, t) =
1

2
θ∞ −

HIV

2z
+

λµ

z(z − λ)
,(3.10)

where

HIV = 2λµ2 − (λ2 + 2tλ+ 2κ0)µ+ θ∞λ.

Then the corresponding Hamiltonian system with the Hamiltonian HIV leads to

the fourth Painlev�e equation

d2λ

dt2
=

1

2λ

(
dλ

dt

)2

+
3

2
λ3 + 4tλ2 + 2(t2 − α4)λ+

β4
λ
,(3.11)

where

α4 = −κ0 + 2θ∞ + 1, β4 = −2κ20.

The standard third Painlev�e equation is given by

(3.12)
d2λ

dt2
=

1

λ

(
dλ

dt

)2

− 1

t

dλ

dt
+
α3λ

2 + β3
t

+ γ3λ
3 +

δ3
λ
.

However, for our purpose it is more convenient to consider an equation which can be

obtained from (3.12) by changing λ(t)→ λ(t2)/t and by renaming the new variable

τ = t2 as t again. This equation is given by

(3.13)
d2λ

dt2
=

1

λ

(
dλ

dt

)2

− 1

t

dλ

dt
+
α3λ

2 + γ3λ
3

4t2
+
β3
4t

+
δ3
4λ
.
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Equation (3.13), which will be denoted by P ′
III , appears in the result of isomonodromic

deformations of the linear equation (3.1) with

p1(z, t) =
η0t

z2
+

1− θ0
z
− η∞ −

1

z − λ
,(3.14)

p2(z, t) =
η∞(θ0 + θ∞)

2z
− tH ′

III

z2
+

λµ

z(z − λ)
,(3.15)

where

tH ′
III = λ2µ2 − {η∞λ2 + θ0λ− η0t}µ+

1

2
η∞(θ0 + θ∞)λ

and the parameters are related by

α3 = −4η∞θ∞, β3 = 4η0(1 + θ0), γ3 = 4η2∞, δ3 = −4η20 .

Finally, the second Painlev�e equation

(3.16)
d2λ

dt2
= 2λ3 + tλ+ α2

appears in the result of isomonodromic deformations of the linear equation (3.1)

with

p1(z, t) = −2z2 − t− 1

z − λ
,(3.17)

p2(z, t) = −(2α2 + 1)z − 2HII +
µ

z − λ
,(3.18)

where

(3.19) HII =
1

2
µ2 −

(
λ2 +

1

t

)
µ−

(
α2 +

1

2

)
λ.

4. Main results

In this section we compare equations for the derivatives of the Heun functions

with the linear di�erential equations whose isomonodromy deformations are governed

by the Painlev�e equations PII − PV I .
Let us consider the equation for the derivative of the general Heun function (1.3).

By choosing parameters

αβ = κ0 + κ1 + θ + κ, β =
1

2
(±κ∞ − 1− κ0 − κ1 − θ),

γ = −κ0, δ = −κ1, ε = −θ, q = αβλ,

we can calculate that the resulting equation is the same as equation (3.1) with (3.3),

(3.4) and the expression for HV I provided that

µ =
κ0
λ

+
κ1
λ− 1

+
θ

λ− t
.

If now λ and µ are viewed as functions of t, substituting this condition into the

Hamiltonian system leading to the sixth Painlev�e equation, we �nd that λ satis�es
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the Riccati equation

dλ

dt
=
κ0t− (1 + κ0 + (κ0 + κ1)t+ θ)λ+ (1 + κ0 + κ1 + θ)λ2

t(t− 1)

and κ0+κ1+θ+κ = 0. This gives classical solutions of the sixth Painlev�e equation

provided that κ0 = ±κ∞ − θ − κ1 − 1. However, with this additional condition on

the parameters we have αβ = 0 and q = 0.

In the equation for the derivative of the con�uent Heun function (2.2) we �rst

make the change of variables v(z) → (1 − z/(z − 1))σv(z/(z − 1)), renaming the

new independent variable as z again, then put

γ = −κ0, δ = κ0 + θ + 2σ, ε = −tη,

σ = −1

2
(κ0 ± κ∞ + θ), q =

αλ

λ− 1
, α =

1

2
tη(2 + κ0 ± κ∞ + θ).

The resulting equation is the same as equation (3.1) with (3.6), (3.7) and the

expression for HV provided that

µ =
κ0
λ
− tη

(λ− 1)2
+
θ − κ0 ± κ∞
2(λ− 1)

.

Substituting this condition into the Hamiltonian system leading to the �fth Painlev�e

equation, we see that λ satis�es the Riccati equation

t
dλ

dt
± κ∞λ2 − (±κ∞ − κ0 − tη)− κ0 = 0

and η(2+κ0±κ∞+θ) = 0. Again, with this additional condition on the parameters

we have α = 0 and q = 0.

In the equation for the derivative of the bi-con�uent Heun function (2.6) we take

γ = −κ0, δ = −t, q = αλ, α =
θ∞ + 1

2
, ε = −1

2
.

The resulting equation is the same as equation (3.1) with (3.9), (3.10) and the

expression for HIV provided that

µ = t+
κ0
λ

+
λ

2
.

Substituting this condition into the Hamiltonian system leading to the fourth

Painlev�e equation, we �nd that λ satis�es the Riccati equation

dλ

dt
= λ2 + 2tλ+ 2κ0

and θ∞ + 1 = 0. Again, with this additional condition on the parameters we have

α = 0 and q = 0.

In the equation for the derivative of the double-con�uent Heun function (2.6) we

take

γ = tη0, δ = −1− θ0, q = αλ, α =
1

2
η∞(θ0 + θ∞ + 2), ε = −η∞.
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The resulting equation is the same as equation (3.1) with (3.14), (3.15) and the

expression for H ′
III provided that

µ = η∞ −
tη0
λ2

+
θ0 + 1

λ
.

Substituting this condition into the Hamiltonian system leading to the modi�ed

third Painlev�e equation P ′
III , we �nd that λ satis�es the Riccati equation

t
dλ

dt
= η∞λ

2 + (θ0 + 2)λ− tη0

and η∞(θ0 + θ∞ + 2) = 0. Again, with this additional condition on the parameters

we have α = 0 and q = 0.

In the equation for the derivative of the tri-con�uent Heun function (2.8) we take

γ = −t, δ = 0, q = αλ, α = 1− 2α2, ε = −2.

The resulting equation is the same as equation (3.1) with (3.17), (3.18) and the

expression for HII provided that

µ = 2λ2 + t.

Substituting this condition into the Hamiltonian system leading to the second

Painlev�e equation, we see that λ satis�es the Riccati equation

2
dλ

dt
= 2λ2 + t

and 2α2 = 1. Again, with this additional condition on the parameters we have

α = 0 and q = 0.

Hence, we see that in all cases we can reduce equations for the derivatives of the

Heun functions to certain linear equations, isomonodromy deformations of which

lead to the Painlev�e equations with an additional constraint on λ and µ. However,

in order to get classical solutions of the Painlev�e equations we need an additional

constraint on the parameters. Therefore, those linear equations isomonodromy

deformations of which are described by classical solutions of the Painlve�e equations

cannot be obtained from the equations for the derivatives of the Heun functions.
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