академия наук армянской сср АСТРОФИЗИКА

TOM 11

НОЯБРЬ, 1975

ВЫПУСК 4

О ФИЗИЧЕСКИХ УСЛОВИЯХ В ТУМАННОСТИ NGC 2359

11 Ф. МАЛОВ, В. С. АРТЮХ, В. М. МАЛОФЕЕВ Поступила 2 июня 1975

В работе сообщается о наймодениях радновсточника, совпадающего по координат с туманностью NGC 2359 в имеющего на частоте 107 Маш поток 3-10⁻²⁶ аг/ж² ту. Показано, что результаты оптических и радноваблюдений хорошо согласуются с моделью полов намучающе оболочки. Вычислены параметры оболочки: N_{μ} 156сж⁻³, М 340М -, доя (6.10⁴ - 10), ист. V (20 + 40) жм/сек Получена оценка концентрации среды. окружащен десіду на начальной стадии катечения $N_{14} = 50$ см⁻³.

Научение плаимодействия вытекающего из звезды потока с окружающей средой является одним из возможных методов исследования как звездного ветра, гак и самой среды. Теоретические аспекты проблемы рас сматривались, например, в [1—2]. Известно, что к наиболее интенсивным источникам звездного ветра принадлежат звезды Вольфа-Райе (WR). В оптическом диапазоне вокруг некоторых звезд WR наблюдаются кольцеобразные туманности [3], которые, по-видимому, являются следствием нагребания межавездного вещества вытекающим из звезды газом. В [4, 5] сообщается о результатах радионаблюдений ряда таких туманностей в дециметровом диапазоне. Изучение объектов этого типа может дать информацию о среде, окружающей звезды WR, а также об интенсивности и характере истечения из атих звезд.

1 В настоящей работе исследуются физические условия в туманности NGC 2359, связанной со звездой HD 56925 (WN 5), по данным оптических и радионаблюдении. Наиболее существенные для нас сведения об атой туманности приведены в табл. 1.

Мы рассмотрели молель однородной излучающей сферы (рис. 1), внутри которой вещество отсутствует (аргументы в пользу такого предположения приводятся в конце статьи). Использование формул теплового

- Karl There	Таблица 1			
Координаты NGC 2359 (1950)	$a = 7^{h} 15^{m} 2$ $b^{*} = -13^{*} 07^{*}$			
Расстояние до числам HD 56925 [7]	R 6.92 nnc			
Внешний угловой диаметр оптического польца"	$2\vartheta_{g} \approx 4^{*}$			
Внутренний угловой днаметр оптического кольца	$2\vartheta_1 \approx 3^{15}$			
Температура туманности [8]	7 12 000 K			
Потови на радночаетотах [4] (я ед. потова)	S.	5.4 (3.7)	,5.9 (2.2)	6.7 (4.5)
	· (10° / g)	4	1.4	0.75

Ри 1. Модель издучающей области (а) и соответствующее втой модели распределение радноярности по туманности на частотах, при которых 1. 1. (b)

На фотографии туманности [4] видно, что кольцо является аллинтическим Мы, однако, в дяльненщих расчетах для простоты принимаем, что туманность имеет форму сферы с указаниюми выше размерами

раднонзлучения [6] с учетом геометрин нашей модели при малой оптической толще приводит к следующему выражению для потока:

$$S = 9.6 \cdot 10^{-\pi} \frac{\Lambda^2 \mathcal{R}}{1 \overline{T}} \left(17.7 + \ln^{-T} - \right) \left(\theta_2^3 - \theta_1^3 \right)$$
(1)

В (1) R яыражено в парсеках, ϑ_1 и ϑ_2 — в минутах дуги: при этом S. получается в единицах потока (1 сл. $n = 10^{-36} \sigma \tau/m^2 \iota_B$). С помощью этого ныражения по потокам, приведенным в табл. 1, получаем среднее значение электронной плотности в излучающей сфере $N_* = 187$ сл

По имеющимся данным можно рассчитать спектр радиоизлучения туманности во всем диапазоне радиочастот. При произвольной оптической голще имеем

$$S_{i} = \frac{4\pi k T v^{2}}{c^{2}} \int (1 - e^{-\Delta t}) \vartheta d\vartheta; \quad \Delta t = \begin{vmatrix} 2\mathcal{R} (1 - \theta^{2} - \theta^{2} - 1 - \theta^{2}) \\ n p \mu - \vartheta - \vartheta_{1}; \\ 2\mathcal{R} \sqrt{-\theta^{2} - \theta^{2}} \\ n p \mu - \vartheta - \vartheta_{1} \end{vmatrix}$$
(2)

Результаты вычисления приведены на рис. 2 (сплошиая линия).

По наблюдениям на частоте 750 M_{12} [4] размеры радноизлучающей пбласти в NGC 2359 получились равными 10'×17'. Если считать областиипетственную за радиоизлучение, сферической (с радиусом 13.'5) и принять для нее значения температуры и расстояния из табл. 1. то по радионотокам получаем N_{\star} 17 см⁻³. При этом значении N_{\star} и угловых размечах из [4] спектр должен иметь вид, представленный на рис. 2 пунктиром Из рисунка индно, что в области метровых воли две рассмотренные модели дают различное поведение спектральной кривой.

2. Чтобы сделать окончательный выбор модели, мы провели наблюдения на волие 107 Мац с помощью плеча Восток—Запад крестообразного ралиотелескопа ДКР-1000 Радноастрономической станции ФИАН. Размеры лиаграммы по половинной мощности составляли 9'.6×3°.4. Серия наблюдений позполила выделить радиоисточник, координаты которого по а совпалают с координатами NGC 2359° (рис. 3). В качестве калибровочных использовались радноисточники 3С 178 и 3С 180, потоки которых на

611

^{*} Нами была предпринята попытка пронаблюдать туманность NGC 6885 (з 20 10¹⁰25⁶, в — 38 14 4), однака близость мищного рядноисточника Суд А (з 19⁶57¹⁶45¹⁶3; с — 40¹⁶36 0) (координаты приведены на 1950 г.) не познолила сдерать сколь-пибудь надежной оценки потока.

Рис. 2. Радноспектр NGC 2359. При вычитлении спектра – размер туманности принимался анаметр оптического кольда (сплошная кримая). Пунктир соответствует дзиным работы [4].

Рис. 3. Пример записи исследуемого источника на высоте 20°. Пулктиром нанесена лияграмма антенны на этой же высоте.

107 Мгц были вычислены по потокам на 86 Мгц и спектральным индексам этих источников [9]:

Sier (3C 179) = 22.6 e.a. n. S. (3C 180) = 24.1 e.a. n.

Сканирование по б показало, что наша запись шире днаграммы и представляет собой сумму откликов, по крайней мере, двух источников. Попытка представить наблюдаемую запись как результат прохождения одного источника привела к размерам последнего по $b \sim 3^\circ$ (рис. 4). Суще-

Рис. 4. Сравнение наблюдаемого отклика (крестаки) с вычисленным (кривые 1-5). Точками показана диаграмма антенны.

стволание такого источника мы считаем невероятным, так как его размер по с меньше 10° (отклик на каждой из высот получается не шире, чем диаграмма по с). Численное моделирование приводит к наплучшему согласню с наблюдениями, если координаты одного из источников равны з — 7 15^m1 5^m и $\delta = -11^{\circ}11^{\circ}$, а другого совпадают с координатами NGC 2359. При этом значения потоков получаются равными $S_{s} = 11.8$ ед. п., *S*диос7359 = 3 ед. п. По нашим наблюдениям на 86 *Мии* поток первого источника составляет 14.0 сд. п. Спектральный индекс его в исследованном интервале равен—0.82. Следовательно, этот объект является не вошедшим в известные нам каталоги нетепловым источником. 749—4

На рис. 4 кривые 1-5 представляют обликленные отклики при S, = 11.2 сл п. н. S. 1; 2; 3; 5 н. 8.4 сл п. (точками нанесена диаграммы антенны). Кривая 5, соответствующая спектру 2 (рис. 2), противоречит нашим наблюдениям. Следовательно, указанные в [4] угловые размеры являются запышенными. К этому же выводу приводят и прямые измерения ширины отклика на высоте 20 (рис. 3), где вклад более сильного источника ничтожен. Эти измерения дают максимальный размер радионсточника в NGC 2359 по и на частоте 107 Мин. равныя — 4'. Поэтому в дальнейших оценках мы поннимаем модель полой излучающей сферы с висшиним диаметром 4. В соответствии с этим необходимо пересмотреть пеличины интегральных потоков, полученные в [4] (соответствующие значения приведены в табл. 1 в скобках). Надежными будут точки на 750 и 3000 Мин. так как для них поправка за размер источника примерно одна и та же (близкие размеры днаграммы), и наклон спектра не меняется. Мы в своих расчетах принимали значения потока 4.5 сл. п. на 750 Мен. и 3.7 сл. п. на 3000 Мли С учетом ошибок вписывания (обуслопленных погрешностями наблюдения), получим на частоте 107 Миц поток, равный 3±1 сд. л. Оценка потока МСС 2359 по методу наименьших квадратов приводит в лначению 3.3 сл. п.

3. С учетом исправленных значений потока, получим для средней электронной плотности в оболочке N_e = 156 см . Считая далее, что она состоит из ионизованного водорода, вычислим ее массу M = 340M .

Для образопания такой оболочки окружающая звезду среда до сжатия должна иметь плотность $N_{\rm H} = 50~cm^{-1}$. Таким образом, перед тем, как началось истечение, звезда была погружена в довольно элотную тумаяность. С использонанием закона сохранения знергии можно рассчитать эволюцию оболочки. Если изменение энергии оболочки вызывается только истекающим из звезды веществом, а се масса полностью определяется «нагребенной средой, уравнение сохранения энергии имеет вид:

$$\frac{d}{dt}\left|r^{3}\left(\frac{dr}{dt}\right)^{2}\right| = \frac{-3\dot{M}(V^{2})}{4\pi\phi_{c}}$$
(3)

Здесь М — скырость потери массы звездой, V. —скорость вещества на уровне, где оно уже практически не связано со звездой. 2, — плотность

614

⁶ Следует заметить, что на этой частоте аначительную ошибку может давать эффеспутаницы (conflusion), который по оценкам работы [10] составляет 2 са. п. Однаго сответствиощие расчеты кыпалиены для внегалактических источникы. Для плоскоти Галавтики (в которой лежит NGC 2359) этот вффект не исследован. Кроме того, может жазатыся, что полученими отклик сявдан с наличием более двух источников. В этом случат приведения нами оценка является верхним пределом радиопотока от NGC 2359 на частоте 107 Мац.

околозвездной среды. Учитывая, что раднус звезды значительно меньше вдиуса оболочкь ($r_{e} \ll r$), положим r = 0 при t = 0. Тогда на (3) получим

$$r = \left(\frac{25}{12\pi} \frac{|\dot{M}| V_{+}^{2}}{v_{c}} t^{2}\right)^{1/4}$$
(4)

И

$$V = \left(\frac{81}{500 \pi} \left(\frac{M_{\odot} V_{\odot}^{2}}{s_{c} t^{2}}\right)^{1.6}\right) \qquad (5)$$

Для ввеза WR можно принять V 1000 км/сек и $|M| = 10^{-10}$ M юд [11]. Принимая для околозвездной среды полученное значение N_H 50 см приходим к эволюционным кривым, показанным на рис. 5. По наблюдаемым размерам определяем нозраст оболочки и современную скорость ее расширения. При $|M| = 10^{-10}$ М юд имеем 6 10⁴ лет и V = 42 км/сек; если же $|M| = 10^{-10}$ М юд, то $I_{\rm us} = 10^{5}$ лет, а V = 21 км/сек.

Рис. 5. Зависимость раднуса и скорости расширения туменнисти от времени дая. | M | 10⁻⁵ M. Люд (сплошные лимия) и для IM | 10⁻⁶ M. Люд (пунятир).

Нам не известны измерения скорости расширения эгой туманности. Однако для NGC 6888 получено V ~ 80 км/сек [12]. Мы пидим, что эта вемичина по порядку совпадает с полученной нами.

В итоге, к данным табл. 1 можно добавить следующие зарактеристики сболочки: $N_c = 156 \ c_{M}^{-3}$, $M = 340 \ M_{\odot}$, $t_{ob} = (6 \ 10^{1} + 10^{3}) \ \text{sem}$, $V = (20 \pm 40) \ \kappa_{M} \ c_{eK}$

Оценим плотность вещества в пространстве между звездой и оболочкой. За время 6·10⁴ лет при $|M| = 10^{-5} M./207$ на звезды будет выбршено 0.6 M. Эта масса распределятся во внутреннем объеме оболочки з даст среднюю концентрацию $N_a \approx 0.35 \text{ см}^{-1}$. При $|M| = 10^{-6} M./207$ и позрасте 10 лет получаем $N_a \approx 0.06 \text{ см}^{-1}$. Вклад этого вещества в меру змиссии тумащости будет ничтожным, и, следовательно, испольвованное выше предположение об отсутствии газа внутри оболочки вполне допустимо.

В заключение авторы выражают благодарность А Д. Кузьмину за полезные дискуссии и В.В. Ивановой за помощь в проведении наблюдений

Физический институт им П Н Лебедева

ON THE PHYSICAI. CONDITIONS IN NGC 2359

I. F. MALOV, V. S. ARTJUKH, V. M. MALOFEEV

The radio observations of NGC 2359 are described. Flux density of this source at 107 *MHz* is 3 10⁻¹ *Wm*⁻¹*Hz*⁻¹.

It is shown that optical and radio observations agree with the model of the radiating envelope. The estimated parameters of the envelope are: $N_{\rm c}=156~cm^{-3},~M=340~M_{\odot},~t=-(6\cdot10^{1}-10^{3})~gears,~V=-(20-40)~km$ sec.

The estimated concentration of the medium which surrounded the star at initial stages of outflow is $N_{H} = 50 \text{ cm}^{-3}$.

ЛИТЕРАТУРА

- 1. С. Б. Пикс имер, П. В. Шеглов, Астрон. ж. 45, 953, 1968
- 2. B. C. Anegucona, Acrpon. ac., 48, 894, 1971.
- 3. A. B. Underhill, Ann. Rev. Astron. Astrophys., No. 6, 1968
- 4. H. M. Johnson, D. E. Hogg. Ap. J. 142, 1033, 1965.
- 5. L. F. Smith. R. A. Batchelor, Austral. J. Phys., 23, 203, 1970
- 6. С. А. Коплан, С. Б. Пикельнер, Межансадная среда, Фианатсия, М., 1963
- 7. L. F. Smith, M. N. 141, 317, 1968.
- 8. T. A. ADRUMCHAR, B. O. ECUNDA. ACTOON. M., 48, 449, 1971.
- 9. В. С. Артюх, В. В. Виткевич. Р. Д. Дагнесаманский, В. Н. Кожухов, Астрон. м., 45, 712, 1968.
- 10. В. С. Аргюх, В. В. Вичкевин, П. М. Даткесаманская, Астрон. ж., 50, 924, 1973
- 11 A. B. Underhill, Astrophys. Space Sci., 3, 109, 1969.
- 12 Т. А. Лозинская. Астрон. ж., 47, 122, 1970

616