АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР АСТРОФИЗИКА

TOM 11

НОЯБЕЬ. 1975

ВЫПУСК 4

UBV-ФОТОМЕТРИЯ ВСПЫХИВАЮЩИХ ЗВЕЗД В ПЛЕЯДАХ

О С ЧАВУШЯН. А. Т ГАРИБДЖАНЯН

Поступила 30 июня 1975

Принодены результаты UBV-фотометрии 283 испытивающих заезд и минимуме блеска и области Плена.

Разработан и применен повый метод учета влияния фона при фотографической

UBV-фотометрии е ирясовым микрофотометром.

Получениме данные показивают, что всимхнязющие звезды Плеяд расположены по обе стороны главной последовательности на днаграмме цвет—светимость (V, B—V), а на днаграмме (U—B, B—V) расположены, главным образом, ямше главной последовательности.

Введение. В последние годы вспыхивающие звезды в скоплениях приваекают виниание многих исследователей. Интерес особенно возрос после того, как В. А. Амбарцумян статистически показал, что почти все впезды в скоплении Плеяды слабее ПІ, = 13.3 должны быть вспыхивающими [1]. Вывод об обилии вспыхивающих звезд среди карликовых звезд Плеяд был подтвержден в последующих работах [2—5].

В настоящее время в области Плеяд известио около 450 вспыхнвающих звезд, большинство которых принадлежит скоплению. Для изучения природы этих звезд, а также для проблем эволюции звезд большое значение имеют их диаграмма цвет—спетимость и двухциетная диаграмма (U-B, B-V).

Первые систематические фотографические исследования звезд в Плендах были выполнены Бинисидейком [6] и Герцшпрунгом и др. [7]. Цвето большого количества звезд, в системе (UBV), фотографическим и фотовлектрическим методами определены Джонсоном и Митчеллом [8], Ахмедом, Лоуренсом и Редлишем [9] и Ирнарте [10—12]. Однако в вышеуказанных работах содержатся лишь несколько десятков известных вспыхивающих звезд.

Настоящая работа посвящена UBV-фотографической фотометрии вспыхивающих эвеэд в Плеядах.

Наблюдательный материал. Весь наблюдательный материал нами получен на 40" телескопе системы Шмидта Бюраканской астрофизической обсерватории. Снимки в V-лучах получены на пластинках Kodak 103aD через светофильтр GG11, а в В- и U-лучах на пластинках Kodak 103aO, через светофильтр GG13 и UC2, соответствению. Данные об этих наблюдениях приведены в табл. 1.

Таблица 1 НАБЛЮДЕНИЯ ОБЛАСТИ ПЛЕЯД

пластинаи	Asta (UT)	Эмульени	Фильтр	Эксполици (мим.)
1	6.02.1973	Kedak 103aD	GG 11	15
2	6.02.1973	44	16	15
3	23.12.1973	49	44	15
4	25.01_1974	**	_	5
5	25.01.1974	-		5
6	28.01.1973	Kodak 103aO	GG 13	10
7	4.02.1973		**	10
8	25.01.1974	- 1	*1	5
9	25 01 1974			5
10	2.02.1973		UG 2	30
11	2.02 1973	-		30
12	3.02.1973		14	30
13	25.01_1974			30

Обработка наблюдений. Все фотометрические измерения осуществлены ирисовым чикрофотометром типа «Askania» Бюраканской обсерватирии. В качестве стандартных звезд были использованы звезды из фотовлектрического исследования Джонсона и Митчелла [8]. Помимо втого была произведена фотографическая привязка исследованных звезд к стандартам шарового скопления NGC 2158 [13].

При фотометрии звезд в Плеядах возникает трудность, связанияя с учетом черезпычайно неоднородного фона. Существующие методы учета фона Пурбосновойо и Артю [14, 15] при использовании ирисовых фотометров являются слишком трудоемкими и требуют больших затрат времени, в формула Учвера для учета фона при больших различиях последнего неприменима [16]. В основе разработанного нами и использованного в настоящей работе метода лежит введение при измерениях снимков на ирисовом

фотометре искусственного фона и исследование влияния различий атого фона на результаты измерении.

Для построения характеристических кривых опориме звезды были зыбраны в участках с одинаховым фоном, вне туманности и вдали от ярких звезд. На каждой пластинке они измерялись по нескольку раз, сперва без, а потом с нейтральными светофильтрами, которые ставились после пластинки сразу перед модулятором ирисового михрофотометра

Исследование характеристических кривых, полученных различными нейтральными светофильтрами, показало, что наложение добавочного фона вызывает непараллельный сдвиг характеристической кривой, при втом воздействие наложенного фона более ощутимо у слабых звезд.

Многократные измерення для разных пластинок в (UBV) показали, что имеет место следующее соотношение.

$$\frac{D_{1k} - D_{0k}}{\bar{d}_1 - d_0} = \frac{D_{2k} - D_{0k}}{d_0 - d_0} = \frac{D_{nk} - D_{0k}}{d_0 - d_0} - K(D_{0k}), \tag{1}$$

где d_a — средний отсчет фона присовой диафрагмы вожруг опорных звезд, D_{ai} — отсчет k-той звезды без светофильтра, d_n и D_{nk} — соответствующие отсчеты при измерении n-ым светофильтром, а $K(D_m)$ — величина, зависящая от D_{ak} .

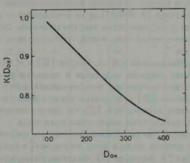


Рис. 1. Функция $K(D_{\bullet k})$.

На рис. 1 показана зависимость $K(D_{ak})$ от D_{ak} . Как видно, с уменьшением D_{ak} функция $K(D_{ak})$ стремится к единице в случае слабых явезд, а в случае ярких звезд меньше единицы, так как $m \sim 1/D$.

Предполагая одинаковое воздействие искусственно наложенного и природного фонов на негатив и принимая во внимание соотношение (1), полу-

чаем ряд фирмул для приведения отсчетой ирисового микрофотометра к среднему стандартному фону:

$$D_{21} = D_{k} + (\overline{d}_{*} - \overline{d}_{*})$$

$$D_{k2} = D_{k} + K(D_{k1})[\overline{d}_{*} - \overline{d}_{a}]$$

$$\vdots$$

$$D_{kn} = D_{k} + K(D_{k-n-1})[\overline{d}_{*} - \overline{d}_{a}],$$
(2)

где d —по-прежиему, отсчет для среднего стандартного фона, $D_{\rm e}$ и $d_{\rm x}$ соответствении отсчеты для k-той звезды и среднего фона вокруг звезды, а $D_{\rm s}$ —отсчет звезды, приведенный к среднему стандартному фону n-ым приближением.

Результаты измерения показывают, что можно ограничиваться третьим приближением, так как величины D_{κ} довольно быстро сходятся.

Обработка измерений была выполнена с помощью ЭВМ «Наири-2» Бюраканской астрофизической обсерватории.

Многократные контрольные измерения звезд, находящихся в областях более плотного фона, чем фон вокруг опорных авезд, показали, что точность измерений для звезд с известными цветами из [8, 10—12] является удовлетворительной.

Рис 2, где на оси абсинс: отложены фотоэлектрические звездные величины контрольных звезд [8, 10—12], а на оси ординат — разности втих и определенных нами фотографических звездных величии, спидетельствует об отсутствии систематических отклонении, что позволили нам обойтиль без уветовых поправох.

В работах Р. Г. Мнацаканян и К. А. Свакян [17] и И. Янковича [18], показано, что цветовме поправки находятся в пределах фотометрических ошноск (телеской и фотоматериалы, использованные в атих работах, те же, что и у нас). В работе [18] исследованы также ошноски поля телеской в области вокруг центра лиаметром в 3.3°, где оно достаточно однородно Здесь и расположено большинство измеренных нами звезд

Предлагаемый метод, таким образом, состоит из следующих этапон сначала измеряются отсчеты звезд и фона вокруг них, а затем с помощью функции $K(D_n)$ рис. 1 и формулы (2) последовательным приближением отыскивается нужный отсчет, соответствующий стандартному фону. Получениые результаты показывают, что он является приемлемым при фотометрии звезд, расположенных в областях с неоднородным фоном, как, например, в случае Плеяд.

Результаты UBV-фотомстрии вспыхивающих звезд. В табл. 2 привелены полученные результаты: в первом столбце номер звезды по единти

Таблица 2

									пблица 2
M	HII	V	B V	U−B	No	HII	٧	B-V	U-B
1		12.50	1 62	1.06	42	230	14.25	1.34	1_18
2		17.05	1.79		43		18.29	0.95	
3		15.89	1.72	0.94	44	500	16.75	0.51	0.26
4		18.33	0.46		45	500	14.27	1.45	1.01
6		18.58	0.64		46	793	14.27	1.64	1.27
7	191	14.49	1.56	1.13	47	vM6	16_27	1.37	0.97
8	357	13 37	1.45	1 26	48	1061	14.22	1 33	1.00
0		16.30	1.57		40		18.02	1.08	
10		15 48	1.41	1.11	50		18.46	0.75	
-11		17.98	1 20		51	1827	14.93	1.57	1 36
12		16.02	1.61	0.43	53		17.58	0.56	0 15
13	686	13.50	1 34	1.36	131		18,18	1.06	
14	406	15.26	1.73	1.26	55	2411	14.09	1.80	0,99
15	vM16	16.60	1.58	0.61	56	2601	15_06	1 61	0.95
16	1286	15 09	1.03	0.62	57	2879	15.30	0.37	0.57
17	1306	13.38	1.53	1.18	60		16 05	1 64	1.30
18		14.69	1 58	1.07	61		14.31	1.42	1 ()9
19	1531	13 44	1.31	0.96	62		15.27	1.30	1.38
21	1653	13 55	1.20	1.11	63		16 45	1.24	0.60
22		16.25	1 05	1.05	64		16,07	1.56	1 03
23		17.31	1.46		66		17,99	1.26	
24		17.74	1.77		67		17.99	U 99	
25		13.88	1.50	0.60	68	134	14.27	1.68	1.03
26		17.84	1.34		69		16.45	1.52	0.63
27		17.37	1.26		70	212	14.38	1.56	1_29
28		16 85	1.07	0.66	71		15.57	1.67	1.13
29		17.08	1.31		72		17.40	1.64	
30	3030	13.96	1.50	1.15	73	335	13.70	1 35	1.00
32		18.57	0.83	1	74		15.60	1 68	1,04
34		16.65	1.46		75		13 72	1.32	1.34
35		14 16	1.42	1.11	77		18.17	1 06	
36		16 01	1.12	1_32	78		17.29	0 32	0.39
37		19 (13			79		15.19	1.57	1_07
38		16.32	0.41	0.12	80	1069	13.49	1,77	1.45
39		15.66	1.68	0.96	81	1173	15.28	1 56	1_43
40		16_80	1.29	0.78	82		15,99	1.67	0.67
-41		15.53	1.51	1.10	83		15.33	1,64	0.82
				1.10	83		15.33	1,64	0.82

Таблица 2 (продолжение)

-			1	-		-	I HOAMB	-	OAMEREC)
No	HII	V	B-V	U-B	No	HII	V	B- \	U-B
84	1785	14.32	1.31	1,40	127		14.88	1.41	1.04
86		15.64	1.68	0.74	131	924	16.09	1.27	0.89
87		14.41	1.67	0.96	132		17.68	1.40	19
88	2193	14.31	1.36	1.27	134		16.57	0.73	0.34
89		16.05	1.65	0.66	135		16_36	1.47	0.82
90		16 80	1.45		138		16.87	1.47	0.71
91		14.16	1.50	0.98	139		16.89	1.56	0.40
92		16.63	1.13		140	1547	15.97	0.75	0.47
93	2692	15.57	1.84	1 29	142		17.03	1.29	0.52
95		14.78	1.54	1.14	143		16.44	1.50	0.92
96		17.59	1.34		144		15.17	1.21	0.87
97		17.80	1.09		145		18.85	0.75	
98		18.35	1.00		149	146	14.51	1.54	1.26
QΨ		14.96	1.40	1.12	151	1103	14.83	1.66	1.29
100		14.91	1.44	1.26	156		16.20	1.59	0.57
101		16.70	1.66	0.45	157		15.28	1,68	0 97
102		17.63	1.19	0.37	158		17.04	1.58	
103		14.98	1 61	1.07	160	347	13,93	1.48	1.17
105		13.07	0.97	0.58	162	676	13.66	1 34	1.29
106		16.84	1.55	0.75	165	2588	13.12	1.23	0.84
107	2208	16.50	0,90	0.73	166	2908	13.48	1.05	0.85
108		13.19	1,41	0.96	167		17.71	1.25	
109	2927	13.73	1.73	0.99	168		17.79	1.10	
110	3019	13.50	1,24	1.00	170		16.43	0.81	0.34
111	3104	13.45	1.33	1.08	171	3133	15.62	1.01	0.75
112		16.24	1.51	1.13	172		17.22	1.40	
113	624	15.52	1.34	1.14	173		15.25	1.47	1.15
114		17.37	1 25		174		17.97	1.11	
115		15.50	1 63	0.75	175		16.80	0.16	-0.01
116		17.45	1.24		176		17.30	1.40	
118		16.07	1.83	0.64	178		16.03	1.42	1.25
119		18.38	0.94		179		17.00	1.27	
120		17.62	1.30		180		16.64	1.55	
121		17.91	1.34	- 0.22	181		16.47	1.66	
122		17.69	1.23		182		18.11	1.05	
123		16.03	1.07	0 68	183		18.17	0,25	0.44
125		18.63	0.56		184		17.62	0.72	0.60
							1		

Тиблица 2 (продолжени

No.									
	ни	V	B · V	U_B	Nh	нп	V	BV	U-B
185		18,74	1.05		234		17.21	0.72	0.12
186		17 98	1,64		236		18.77	0.31	
187		15.50	1.58	1.20	237		16,71	0_26	0,09
188		17.32	1.28		238		16,48	1.72	0.82
142		19 02			239		15.46	1.78	1.00
103		16.23	0.62	0.48	240		16,40	1_63	073
194		17.74	1 26		242		17.59	1.29	
195	10'4	14.48	1.59	1.41	243	566	14,44	1.41	1,28
196		16.58	1.37		244	1128	16.21	0.38	0.22
197		15.37	1.51	1 32	245		17.65	1.15	
200	1172	15.36	1.59	1.44	246		18,11	1.15	
201		17.90	0.55	0.06	248		16 44	1.57	0.84
202		18.03	1.09		249		17.56	1.18	
203		17.20	1.33		250		15.80	1_35	1.19
205		17.89	1.15		251		17,44	0.69	0.67
206	1038	15.47	1.16	0.66	252		18 03	0.39	0,13
207		16.96	1.39	0.37	253		17 18	0.25	0.01
208		18.06	0.99		254		17 26	0.92	0.77
210		17 42	1.45	1	255		18.27	0.92	
211		17.28	1.17		256		14 58	1.35	1.11
212	1029	14 28	1 32	1.10	257		18.17	0.95	
213		1e 78	1.65	0_60	258		17.20	0.75	0.39
214		17.95	1.24		259		17.16	0.17	0.26
215		15.93	0,63	0.88	260		15.57	1 78	1 33
216		17.27	1.22		261		17.59	0.86	
219		16.28	1.31	0 69	262		17 19	0.78	1.04
220	289	16.09	0.91	0.33	263		17.77	0 28	0.52
222		14.87	1.15	0 59	264		17.47	0 41	0.01
223		16.81	0.47		265		18.15	0,91	
224		13.61	0.55	0.41	266		15.96	0.61	0 27
225		18.28	0.75		267		16 42	0.75	0.47
227		17.92	0.23	-0.02	268		15.74	0.92	0 52
228		16.07	0.81	0.81	26°		15.91	0.75	0 28
224		18,00	0.20	0.08	270	1532	13 85	1.29	1_05
230		14.78	0.23	0.00	271	1485	11.26	1,41	1_22
231		17.80	0.55	0.78	272	2662	14 72	0 46	-n_14
232		17.26	0.53	0_06	273		17 15	0.51	0.52

Tobanna 2 (nno soamenne)

U-B	BV	V	HII	No	U~B	BV	V	HII	Nt
0.96	1.28	13.43	1305	358		1 34	17.51		274
0.72	1.09	17.31	-	359	-0.27	0.48	14,75		277
	1.79	16,52		360		1.58	17.07		278
	1 24	17.85		361		1.03	17.99		279
	0.74	18.37	į	362	1.17	1.51	15.14		280
0.99	1.90	16.11		363	0.09	0.66	15.77		282
	1.46	18.12		364		0.93	18,48		284
	1.44	18.09		365	0.53	0.42	16.65		288
	1.62	16.50		367	1.27	1.35	14.46		289
0.61	1.37	17.11		369	-0.06	0.69	16.21	2892	290
0.58	1.02	17,48		370	0.90	1.65	16,37		292
1.25	1.15	16,10		371	1.00	1.17	13,30	2591	294
	1.43	17.74	7	373	1.23	1 37	12.98	3065	295
0,94	1.58	15.51		375	0.46	0.16	17,97		296
1 16	1 49	14.47		384)		1.49	16,69		297
1.30	1.29	14.30	133	397	0.87	1.12	12.98	324	302
0.74	1.15	12.20	1100	401	0.74	1.47	16.72		310
1.24	1.28	14.08	1114	402	0.97	0.44	16.45	979	311
1.01	1.94	14 30	1335	403	0.71	1 03	12.51	2034	316
0.60	1.00	12.77	2244	409		0.83	17.35		326
1.00	1.00	13.58	3063	413	0.47	0.62	14.29	628	329
0.07	0.57	16.54		414	0.15	1.03	15.99	1009	331
	1_42	16 66	1 7	415	0.98	1.69	14.59	1280	334
	0.77	17.61		417	1.19	1.57	15.37	1324	335
	0.54	18.84		418			19.02		343
1.18	1_39	14.10	1268	419		0.90	18.38		344
	1.58	17.55		422	0.20	0.50	16.46	1491	347
	1.57	17.22		424		1.11	17.88		351
0.71	1,00	12.99		427		1,20	17.81		352
	1.25	16,99		429		1.15	17.62		354
						0.93	18.48		357

нумерации вспыхивающих звезд, начатой Аро [19], во втором — номер по Герцшпрунгу, а в последующих — звездная величина V и показатели цозта (B—V) и (U—B). Среднеквадратичные ошибки определения звездных неличин ранны: $z_V = \pm 0.07$, $z_B = \pm 0.10$, $z_{11} = \pm 0.11$, соотнетственно.

В таба. З приведены среднеквадратичные оплибки в зависимости от зневдных величин.

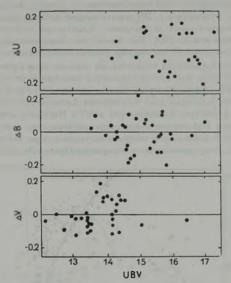
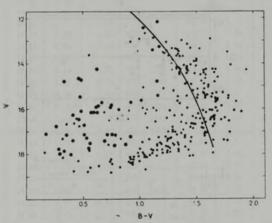



Рис. 2. Зависимов ти AU, AB, AB от фотовлектрических звездных величии U, B, V.

Тиблица 3

Интервал				Число эвезд				
VBU	2.0	*B	ੇ ਹ	٧	В	U		
12 13	0.08			7				
13-14	0.09	0.69		24	5			
14-15	0,10	0_11	0.11	40	17	- 8		
1516	0.12	0.13	0.12	40	35	16		
16-17	0.13	0.15	0.16	64	48	35		
17-18	0.15	0.19	0.21	73	55	53		
18 19	0.17	0.23	0.23	32	75	64		
19-20	0.22	0 2	0.31	3	45	13		

 H_{P} имсчанис. 11ри фотометрии пами были отмечени всимшки двух известных всимхивающих звезд № 244 и № 267 в В-лучах с амилитудами 1.6 $^{\rm m}$ и 1.0 $^{\rm m}$ соответственно Диаграмма цвет светимость вспыхинающих звезд. Днаграмма цветсветимость, относящаяся к 280 вспыхинающим звездам, представлена на
рис. 3. Сплошная диния на днаграмме представляет начальную главную
последовательность по [20]. Как видно на днаграммы вспыхивающие
знезды расположены по обе стороны главной последовательности. Звезды
с V≥16™ распределяются определенным образом ниже главной последовательности, но не все, причем отклонения увеличиваются в сторону слабых звезд. На этот факт впервые обратил внимание Хербиг в 1962 г. [21]
Впоследствии указанный факт был отмечен Джопсом [22] Наши резульгательности Встометрии испыхинающих знезд в Плеядах подтверждают существование и этой системе звезд, расположенных ниже главной последовательности. Вспыхивающие знезды, находящиеся ниже главной последовательности обпаружены также в ассоциации Ориона Эндрюсом [23, 24].

Риі З. Диаграмма цвет—светимость (V. В—V.) для веныхивающих звезд и Плеядах Сплошная линия— главная последовательность, большие кружки— еспыхивающие авелды с амплитудами перядка 1th и меньше

Как видно из диаграммы (рис 3) для измеренных вспыхивающих звезд с $V < 12^m0$, показатель цвета (B-V) < 1.9, а для слабых звезд (B-V) значительно меньше, чем нормальные цвета звезд тех же классов

Следует эбратить внимание на группу знезд в области ($V \le 18^{\circ}$ 0, В $-V \le 0.8$) диаграммы цвет—спетимость. Все они наблюдались во вспыш-

ках с амплитудами Δm_0 и m_{\odot} порядка 1°0. На этой группе эвезд более подробно мь остановимся в следующем разделе.

Авухцветния лицграмма (U-B, B-V). На основе показателей цвета (V-B) и (B-V) 189 вспыхивающих звезд в Плеядах нами построена из двухцветная днаграмма (рис. 4). Сплошная кривая на днаграмме соответствует цветам здезд главной последовательности по Джонсону и Моргану [25], а прерывистая кривая — планковскому излучению. Обратим сначала инимание на ту область днаграммы, где (B-V) \leqslant 0.8. В этой области изходятся испыхивающие звезды, наблюденные во вспышках с амплитулами Δ mu и лиц порядка 1.0 и меньше, вспыхнувшие в основном по одному разу. Эта группа соппадает с упомянутой выше группой ($V \leqslant$ 18. В $V \leqslant$ 0.8) на диаграмме цвет—светимость. Большинство звезд атой груп

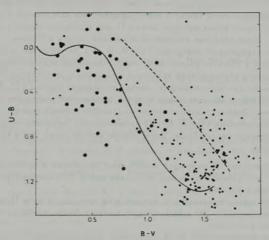


Рис 4. Двухувствая дваграмма (U—B, B—V) для вспыхнвающих авега в Плеядах. Сплошная линия— главная последовательность, прерывистая— планковское излучение. большие колжки——визды с амплитудами порядка 1^m и меньше.

пы, по-видимому, япляется сомнительными с точки эрения вспышечной активности. Остальные эвезды, у которых (B-V) > 0.8, представляют собой сравнительно замкнутую группу несомненно вспыхивающих звезд.

На двухцветной диаграмме большинство вспыхивающих звезд Плеяд находится выше главной последовательности и лишь небольшая часть звезд находится инже нее. Это не противоречит результату Ириарте [12], согласно которому яркие вспыхивающие звезды в Плеядах расположены на этой диаграмме выше главной последовательности.

Обсуждение. Анализ полученных диаграмм позволяет сделать некоторые выводы. На диаграмме цвет—светимость для одного и того же цвета (B-V) дисперсия величины V довольно велика, что трудно объяснить голько существиванием вспыхивающих звезд поля. Вспыхивающие звезды распределены по обе стороны главной последовательности, а максимальные отклонения доходят до нескольких звездных величии. Диаграмма цвет—светимость становится совсем необычной для вспыхивающих звезд $V < 16^m$ 0. Основное различие между диаграммами цвет—снетимость пспыхивающих звезд Плеяд и ассоциации Ориона заключается в том, что наиболее яркие вспыхивающие звезды Плеяд абсолютии слабее и принаглежат к более позднему спектральному подклассу, чем в Орионе.

На двухцяетной днаграмме (U—B, B—V) большинство вспыхивающих звезд в Плеядах расположено выше главной последовательности, что по характеру распределения находится в согласии с результатом Эндрюса, полученным для вспыхивающих звезд ассоциации Ориона [23, 24]. Это спидетельствует об одинаковой природе вспышений активности в обоих агрегатах. Однако следует отметить следующую разницу между двухцветными диаграммами (U—B, B—V) вспыхивающих звезд для атих систем: вспыхивающие звезды Плеяд расположены заметно ниже, чем в Орионе.

Заключения В настоящей работе нами разработан и применен новый метод учета влияния фона при фотографической UBV-фотометрии с ири-совым микрофотометром.

Этот метод применен к вспыхивающим звездам области Плеяд. Всего фотометрировано 283 вспыхивающие звезды в V-лучах, 280 и В-лучах и 189 звезд в U-лучах.

Для вспыхивающих звезд построены диаграмма цвет — спетимость $(V,B{-}V)$ и двухцветная диаграмма $(U{-}B,B{-}V)$.

Распределения вспыхивающих звезд Плеяд на этих диаграммах сравнены с соответствующими распределениями для вспыхивающих звезд Ориона.

Критически рассмотрен вопрос о вспышечной активности звезд, наблюденных во вспышках, с амплитудами порядка 1^m и меньше. Авторы яыражают благодарность профессору Л. В. Мирзояну за обсуждение работы и ценные замечания.

Бюраканская астрофизическая обсерватория

UBV-PHOTOMETRY OF FLARE STARS IN PLEIADES

H. S. CHAVUSHIAN, A. T. GHARIBIANIAN

The results of UBV-photemetry of 283 flare stars in the minimum in Pleiades region are presented.

A new method is applied in order to take into account the back ground influence on the UBV-photometric data obtained by an iris microphotometer. The results show that on the diagram (V, B-V) the flare stars are situated on both sides of the main sequence, while on the (U-B, B-V) diagram they lie mainly above the main sequence.

ЛИТЕРАТУРА

- В. А. Амбармамии. Знезды, туманности, галактики, Изд. АН Арм.ССР, Ереван. 1969, стр. 283.
- В. А. Амбируциян, А. В. Миргови, Э. С. Парсамян, О. С. Чавушян, А. К. Ерастова. Астрофизика, 6, 7, 1970.
- В. А. Амбирцумин, Л. В. Мирзони, Э. С. Парсамен, О. С. Чавушин, Л. К. Еристова Астрофизика, 7, 319, 1974.
- 4 В.А. Амбариунян, Л. В. Мирзонн, Э. С. Парсамян, О. С. Чавушин, Л. К. Ерастоок, Э. С. Казарян, Г. Б. Озанин, Астрофизика, 8, 485, 1972.
- В. А. Амбаруумин, Л. В. Мирволи, Э. С. Парсамин, О. С. Чавушин, Л. К. Ерастоп.,
 Э. С. Казарин, Г. Б. Отанин, И. И. Янкович, Астрофизика, 9, 461, 1973.
- 6. L. Binnendtik, Ann. Leiden Obs., 19, 1946.
- E. Herzsprung, C. Sanders, C. J. Kooreman et al., Ann. Leiden Obs., 19, No. 1A, 1947.
- 8, H. L. Johnson, R. I. Mitchell, Ap. 1 128, 31, 1958
- 9. F. Ahmed. L. C. Lowrence, V. G. Reddich, Publ. Edinburgh Obs., 3, 1965.
- 10. B. Irlarte, Bol. Obs. Tonantzintla, 4, 28, 1967.
- 11. B. Iriarte, IBVS, 875, 1974.
- 12. B. Irigete, Bol. Instituto of Tonantzintla, 1, No. 2, 73, 1974.
- 13. H C. Arp. Ap. J., 136, 51, 1962.
- 14. K. Purbostswojo, Contr. Bosscha Obs., 18, 1963.
- A. N. Argue, Vistas in Astronomy, ed. A. Beer, Pergamon Press, Vol. 3, 1960, p. 184.
- 16. H. Weaver, Hand, der Phys., Vol. 54, 1962, p. 130.
- 17. Р. Г. Мнауаканин, К. А. Саакин, Сообш, Бюраканской обс., 44, 43, 1972.
- 18. II H Ankogun Ancceptages, Epl'y, Epenan, 1975

- 19. G. Haro, Stars and Stellar Systems, Vol. 7, ed. B. M. Middlehurst and L. H. Aller, University of Chicago Press, Chicago, 1968, p. 141.
- 20. A. Bluauw, Basic Astronomical Data, Stars and Stellar Systems, ed. K. A. Strand, Vol. 3, 1963, p. 407.
- 21. G. H. Herbig, Ap. J. 135. 736, 1962.
- 22. B. F. Jones, Astron. Astrophys., Suppl. Ser., 9. 3, 1973.
- 23. A. D. Andrews, Bol. Obs. Tonantzintla, 5, No. 34, 195, 1970.
- 24. A. D. Andrews, Bol. Obs. Tonantzintla, 6, No. 38, 161, 1972.
- 25. H. L. Johnson, W. W. Morgan, Ap. J., 117, 313, 1953.