академия наук армянской сср АСТРОФИЗИКА

TOM 11

МАЙ, 1975

ВЫПУСК 2

О КАСКАДНОМ ПРОЦЕССЕ В СИЛЬНЫХ МАГНИТНОМ И ЭЛЕКТРИЧЕСКОМ ПОЛЯХ В АСТРОФИЗИЧЕСКИХ УСЛОВИЯХ

Я. И АЛЬБЕР, З. Н. КРОТОВА, В Я. ЭЙДМАН Поступила 9 августа 1974

Рассматривается самоподдерживающийся влектронно-поэнтронный каскадный процесс и применении к пульсарам. Рассматриваются влектрическое и магнитное поля влектронно-поэнтронной плаямы, окружающей нейтронную звезду, а также радиоизлучение такой системы.

В статье [1] рассматринался самоподдержинающийся электроннопозитронный каскадный процесс, когда энергия частиц, теряемая на рождение пар, восполняется за счет ускорения зарядов во внешнем электрическом поле. Однако в астрофизических условиях гораздо чаще имеют дело с движением частиц в магнитном и электрическом полях.

Как известно, и сильном магнитном поле имеется возможность непосредственной трансформации γ -кнанта и электронно-позитронную пару (см., например, [2-4]). Чтобы учесть этот эффект, рассмотрим простейшую модель. Будем считать, что частицы движутся в слегка искривленном магнитном поле H_0 и области -L < x < L, вдоль которого направлено и электрическое поле E_1 (E_1 H_0). Электрическое поле в отсутствии зарядов имеет вид $E_1 = E_0$ (1-(xL)), -L < x < L (x — координата вдоль силовой линии магнитного поля (сл.м.п.)). Если внести обозначения: n_1 концентрация позитронов, а n_2 — коецентрация электронов, то при достаточно большом радиусе кринизны сл.м.п. можно считать, что электрическое поле есть

$$\tilde{E} = e \left(x - L \right) \left(-\frac{E_0}{eL} + n_1 - n_1 \right)$$
(1)

При этом сами концентрации n_1 , n_2 удовлетворяют уравнениям

$$\frac{dn_1}{dt} = G - \frac{n_1 c}{L} \mathbf{1} \left(-\frac{E_0}{eL} + n_1 - n_2 \right) - \frac{v_\ell}{L} n_{1\ell}
\frac{dn_2}{dt} = G - \frac{n_1 c}{L} \mathbf{1} \left(\frac{E_0}{eL} - n_1 + n_2 \right) - \frac{v_\ell}{L} n_2.$$
(2)

Здесь $1\left(y\right)=egin{array}{ll} 1 & \text{при } y>0 \\ 0 & \text{при } y<0 \end{array}; \ v_{r}$ — дрейфоная скорость частиц, G-

описывает производство пар в единицу времени благодаря γ -квантам, излучаемым частицами при движении их вдоль с.л.м.п. (см. ниже). Уравнения (2) учитывают то обстоятельство, что положительно заряженные частицы покидают рассматриваемую область взаимодейстния, двигаясь вдоль с.л.м.п. со скоростью, близкой к скорости света c, при $n_1-n_2=E_0/eL>0$, а электроны соответственно при $n_1-n_2=(E_0/eL)<0$. Кроме того, заряды уходят из рассматриваемой области в результате дрейфа. При предположении, что концентрация энергичных частиц не очень большая, процесс образования пар, а также аннигиляция при соударениях частиц в (2) не учитынаются.

Чтобы написать выражение для G, заметим следующее. Поскольку в рассматриваемых условиях поля H_0 и E— слабо неоднородны и достаточно большие по величине, причем $E = H_0$, то можно воспользонаться результатами статьи [5]. Из этой работы следует, что заряд в указанных условиях движется, в основном, вдоль с.л.м.п. со скоростью, близкой к c, и дрейфует с небольшой скоростью поперек H. При этом он излучает синхротронным образом, определяемым радиусом кривизны ρ с.л.м.п. (так называемое, магнитодрейфовое излучение). Энергия заряда ϵ и частота излучения Φ , определяются формулами

$$\frac{\varepsilon}{mc^2} = \frac{1}{1 - \beta^2} = \left(\frac{3 + \overline{c} + \beta^2}{2e}\right)^{1/4} \tag{3}$$

$$\omega_{\tau} = \Omega_{c} \left(1 - \frac{\tau}{2} \right)^{-2} \tag{4}$$

где $^{9}=v/c$, v — скорость частицы (β — 1), $\Omega_{c}=c/p$, \overrightarrow{E} $|\overrightarrow{H}_{0}$, причем вся энергия частицы, приобретаемая в поле E, тратится на это мэлучение, τ . е.

$$e \mid E \mid c = \frac{2}{3} \frac{e^2}{c} \frac{\Omega_c^2}{(1 - S^2)^2}$$
 (5)

Если внергия излучаемых квантов \hbar_{m_1} достаточно велика, то, распространяясь в поле \hat{H}_0 , ати кванты могут сами родить пару частиц (см.

[2-4]). Таким образом, производство частиц должно описываться выражением ($\varepsilon_{\rm I}=\hbar\omega_{\rm I}$);

$$G \simeq \frac{|ec|E|}{\hbar\omega_1} \left(n_1 + n_1 \right) 1 \left(\varepsilon_1 - 2mc^2 \right) \Big|_{t=t-t_h}. \tag{6}$$

В (6) учитывается то обстоятельство, что в данный момент t рождают пары те γ -кванты, которые были испущены в момент времени $t-t_3$, а величина ct_3 определяет длину свободного пробега γ -квантов в поле $\vec{H}_0(r)$. Следует иметь в виду, что в момент излучения γ -квант распространяется приблизительно вдоль H_0 , а для того, чтобы он конвертировался в пару, необходимо, чтобы с.л.м.п. отвернула от направления k. на значительный угол [2-4] ($k_1=m_1/c$ — импульс γ -кванта). В (6) учитывается, что γ -кванты с энергией меньшей $2mc^2$ рождать пары не могут.

$$1\left(\varepsilon_{7}-2mc^{2}\right)=\left\{\begin{array}{ll}1&\text{при}&\text{1}>2mc^{2}\\0&\text{при}&\text{ε_{7}}<2mc^{3}.\end{array}\right.$$

Ниже для ныяснения качественной картины явления в (3) (6) будем считать, что $|E| \simeq eL |n_1 - n_2|$, $n_1^* = n_1 - n_0$, $n_0 = E_0/eL$. Тогда, вводя новые безразмерные переменные $= (n_1^* + n_2)/n_0$, $\xi = (n_2 - n_1^*)/n_0$, $t_1 = et/L$, $z = ct_3/L$ и используя (2) (6), находим при $\xi(t) = 0$

$$\frac{d\eta_{i}}{dt_{1}} = \alpha |\xi(t_{1} - \tau)|^{1/4} \left[1 + \eta_{i}(t_{1} - \tau)] \cdot 1(|\xi_{i}(t_{1} - \tau)| - \delta] \cdot 1(\tau) \cdot 1(g - \tau) - \beta_{i} - \frac{\eta_{i}}{2} \eta_{i} - \frac{\eta_{i}}{2} - \frac{\eta_{i}}{2} sgn \xi - 1(-\xi) \equiv G - \beta_{i} - \beta_{i} \eta_{i} - \frac{\eta_{i}}{2} - \frac{\eta_{i}}{2}$$

$$\frac{d\xi}{dt_1} = -\frac{\eta}{2} sgn\xi - \frac{\xi}{2} - \beta_g\xi + \beta_{\xi} + 1(-\xi). \quad (8)$$

Область определения $\xi,~\eta~$ такова: при $\xi>1~$ $\eta>\xi-2,~$ а при $\xi<1$ $\eta>-\xi.$

Здесь

$$z = \frac{2e^2L^2n_0^{1/4}}{\hbar c z^{1/2}} \left(\frac{2}{3L}\right)^{3/4}, \qquad z = \frac{\rho}{L}, \qquad \hat{z} = \frac{2}{3Ln_0} \left(\frac{2mc}{\hbar\sqrt{\rho}}\right)^{4/3}, \qquad \beta_d = \frac{\sigma_d}{c},$$

$$sgn\tilde{z} = \begin{bmatrix} 1 & \text{mps} & 1 > 0 \\ -1 & \text{mps} & 1 < 0, \end{bmatrix}$$

В (7) учитывается, что время запаздывания удовлетворяет условиям 0 < t < L/c (размер системы порядка L). Заметим, что величина τ_t определяет полное число частиц, а ; электрическое поле E. Ураннения (7), (8) следует дополнить связью, определяющей время запаздывания между излучением τ_t -кнанта и трансформацией его в пару.

Длина свободного пробега 7-кванта d_0 в однородном поле $\overrightarrow{H} \perp \overrightarrow{k}_1$ приводится в [3-4], откуда

$$d_0 = \frac{2\hbar_*}{a_* mc} \frac{H_{k_*}}{H} [T(\lambda)]^{-1}, \qquad (9)$$

где $z_1=e^z/\hbar c$, $H_{k\mu}=m^zc'$ $e\hbar$, $\mathcal{X}=(1/2)$ $(!:w_1/mc^z)$ $(H_-/H_{k\mu})$, функция $T(\mathcal{X})$ может приближенно быть записана в виде $T(\mathcal{X})\simeq 0.16\,\mathcal{X}_{-1}^{-1}K_{1,1}^{z_1}(2/3\mathcal{X})$, $K_{1,3}(2/3\mathcal{X})$ — функция Макдональда [4]. Отсюда, в частности, следует, что реакция $\hbar w_e+H=e^++e^-+H$ может идти лишь при достаточно больших значениях энергии "-кванта и неличины магнитного поля H.

В рассматриваемом случае γ -квант распространяется в неоднородном магнитном поле, причем в момент его излучения $H_- \simeq 0$. Повтому для того, чтобы γ -квант поглотился с рождением пары, ему необходимо пройти некоторый конечный путь, по порядку величины определяемый условием

$$\int_{0}^{r} \frac{dr}{d(r)} = 1,$$
(10)

причем d(r) получается из (9), если вместо H_{\perp} подставить некоторую функцию $H_{\perp}(r)$, определяющую величину H_{\perp} на всем пути γ -кванта (при r=c $(t-t_3)$ $H_{\parallel}\simeq 0$).

Для проводимого ниже качественного рассмотрения будем считать $H_{-}(r)\simeq Hr$ $\gamma,\ r=L,\$ и, как правило, $\rho\simeq L.$ Тогда в безразмерных переменных связь (10) может быть записана вывиде

$$1 = \frac{b}{|\xi(t_1 - z)|^{3/4}} \int_{t_1 - z}^{t_1} K_{1/3}^2 \left(\frac{d_1}{|\xi| t_1 - z|^{3/4} r_1} \right) dr_1, \tag{11}$$

где

$$r_1 = r L$$
, $d_1 = \frac{41 \cdot mcH_{kp}}{3h \left(3n_0 L/2\right)^{3/4} LH}$, $b = \frac{0.16e^2 m^2 c L^{1/4}}{h^3 V \left(3n_0 L/2\right)^{3/4}}$

Легко видеть, что при : 0 уравнения (7), (8) становятся несправедлиными. Интегральные кривые уравнений (7), (8) вблизи оси : = 0 вс-

дут себя следующим образом: при $\eta < 2\beta$ интегральные криные пересекают ось t=0 слева направо, при $\eta > 2\beta$ интегральные криные подходят с обеих сторон к оси t=0. Учитывая это обстоятельство, естественно доопределить систему, считая, что при t=0, t=0,

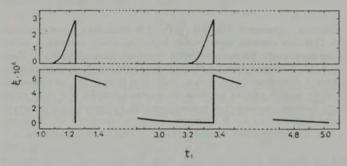
$$\frac{d\eta_i}{dt_i} = G - \beta_g - \beta_g \eta_i - \eta_i - 1. \tag{12}$$

Система уравнений (7), (8), (11), (12) описывает колебательный режим. Поясним сначала качественно характер этого явления, а затем приведем результаты численного счета, который выполнили Я. И. Альбер, и З. Н. Кротова. Предположим, что в начальный момент система находится в состоянии : = 0, $\tau_i = \tau_{i0} = 23$, G = 0. В этом состоянии заряды обоих знаков уходят из области взаимодействия. На этом этапе процесса система описывается уравнением (12), которому соответствует движение вниз по оси ; = 0 из точки $\eta = \eta_0$ в точку $\eta = 23$. В точке $z = 0, \tau = 2\beta$ интегральная кривая сходит с оси z = 0 в область z > 0, $-1 < 1 < -1 < (1-2\beta) + 2\beta$, пока G=0. Здесь уже быстрее электроны уходят из области взаимодействия, поле Е возрастает и появляются энергичные т-кванты (второй этап процесса). Когда первые энергичные 7-кванты пройдут путь порядка длины их свободного пробега, начнут рождаться пары (появляются соответствующие корни : уравнения (11) и G становится отличной от нуля). При это начинает быстро расти 7, а і падать (величина Е уменьшается). Интегральная кривая быстро возвращается на ось $i=0,\ \gamma>2\beta$ и начинает двигаться вверх по оси i=0 (см. (12)) до тех пор, пока G=0. Как только G обратится в нуль, процесс рождения пар остановится и интегральная кривая начнет спускаться по оси i=0 вниз до точки $\eta=2i$ (см. (12)) и далее процесс пойдет описанным выше образом. Таким образом, система будет совершать периодическое движение. На рис. 1 приведены результаты численного решения уравнений (7), (8), (11), (12) для следующих значений параметров: $L \simeq \gamma = 10^6 \ cm$, $H_0 = 10^{12} \ taycc$, $\Omega = 10 \ ce \kappa^{-1}$, $E_1 = (1/3) \cdot 10^7 \text{ CGSE}$, τ . e. $n_0 = 10^{10} \text{ cm}^{-\beta}$, $z = 10^5$, $b = 5 \cdot 10^8$, $d_1 = 10^{-3}$. Заметим, что в этом случае время пребывания системы в состоянии E = 0 (т. е. E = 0) в десять раз больше, чем в состояния с : 0.

Попытаемся теперь применить рассмотренный механизм для пульсаров*. Прежде всего заметим, что, как хорошо изнестно, при пращении магнитного ротатора (нейтронной звезды (н. з.)) и накууме компонента электрического поля E_1 , направленная вдоль магнитного B, мо-

^{*} Механизм рождения пар для пульсаров впервые применялся Стярроком [6].

жет иметь вид, соответствующий рассмотренному ныше (см. (1)), т. е. изменять знак ндоль с.л.м.п. Так, если угол и между B_0 и Ω мал (Ω углоная частота вращения, B_0 магнитная индукция н. з.), то $E_1 \simeq -(B_0\Omega a c)\cos^3\theta$ (r>a, a радиус н. з., θ угол между B и Ω , r-расстояние от центра н. з.).



PHC. 1.

Далее, учитыная, что и. з. окружена электронно-позитронной плазмой, необходимо выяснить структуру электромагнитных полей, окружающих нейтронную знезду (н. з.). Будем исходить из [7], где рассмотрено поле магнитного ротатора в пронодящей среде. Чтобы воспользонаться результатами [7], необходимо знать пронодимость окружающей и. з. плазмы. В рассматриваемом случае электронно-позитронной плазмы, когда потери энергии частиц обусловлены магнитодрейфоным излучением (см. (3)—(5)), для оценки электропронодности плазмы з можно пользонаться формулой

$$z_{j} = \frac{e^{3}n\sqrt{1-\beta^{2}}}{m^{2}_{s+0}} = \frac{3e^{2}n(1-\beta^{2})^{2}}{2\Omega_{s}^{2}},$$
 (14)

где v_{npp} — отношение излучаемой в единицу времени энергии (5) к энергии частицы, т. е. $= (2.3) \left(e^2 \Omega_c^2 \, mc^4 \left(1-\beta^2\right)^{3/2}\right)$, $= c/\rho$, n — концентрация частиц. В соотнетствии с (5) формулу (14) можно записать в виде $(E_{np} = 0)$

$$z_2 = \frac{enc}{E_{\rm up}}, \quad \vec{E}_{\rm up}(|\vec{B}|.$$
 (15)

Рассмотрим раньше поля, не занисящие от времени, обязанные постоянной составляющей магнитной индукции н. з. В отличие от си-

стемы, рассмотренной в [7], здесь, как следует из изложенного выше, система, благодаря возможности самопроизвольного рождения плазмы в сильных полях B, $E_{\rm m}(E_{\rm m},B)$, находится, в основном, в состоянии с $E_{\rm np}=0$. Возникающее периодически $E_{\rm h}$ много меньше соответствующего поля в обычной плазме или вакууме [7] (из численного счета $E_{\rm np}<5$ 10 $E_{\rm h}$, $E_{\rm 1}$ —поле в вакууме). Кроме того, как будет ясно из последующего, $E_{\rm np}=0$ лишь в малой области окружающей н. з. плазмы. Поэтому, чтобы в рассматриваемых условиях найти приближенную структуру магнитного поля вокруг н. з., можно считать, что $E_{\rm np}\simeq0$.

Будем исходить из уравнений Максвелла в проводящей среде с проводимостью $\tau_{\pm}(r>a)$

$$\operatorname{rot} \vec{E} = \frac{4\pi z_1}{c} \vec{E}, \quad \operatorname{rot} \vec{E} = 0, \quad E = -7\%. \tag{16}$$

Из симметрин задачи следует, что в сферической системе координат r, θ , ϕ с осью, совпадающей с осью вращения н. з.. B, E не зависят от угла ϕ . Тогда из требования $E_{np}=0$ или B rot B=0 получаем $(B=\{B_r,\ B_0,\ B_0\},\ E=\{E_r,\ E_0,\ E_0\},\ E_0=0)$

$$\frac{B_{e}}{\sin^{10}}\frac{\partial}{\partial r}\left(B_{e}\sin^{10}\right) - B_{0}\frac{\partial}{\partial r}\left(rB_{v}\right) = 0. \tag{17}$$

Поскольку одновременно B_r , B_0 не могут быть равны нулю (на границе при r=a должно быть непрерывно B_r), то $B_r=0$. Учитывая также условия $\partial B/\partial \phi=0$ и $E_s=0$, находим, что гот B=0 или при $s_s \neq 0$ E=0.

Тогда аналогично [7] можно найти при $\sigma_{\pm} \ll \sigma_{\pm}$ (σ_{\pm} — проводимость н. з.)

$$\vec{E} \simeq B_1 \left\{ \cos \theta_1 - \sin \theta, 0 \right\}, \tag{18}$$

$$\vec{E} \simeq -\frac{1}{c} \left[\vec{V} \vec{B}_1 \right] = -\frac{B_1 2r}{c} \left[\sin^2 \theta, \frac{1}{2} \sin 2\theta, 0 \right] \text{ при } r < a,$$

$$\vec{B}_1 \simeq \frac{B_1 a^3}{c^3} \left\{ \cos \theta, \frac{1}{2} \sin \theta, 0 \right\}, \quad \vec{E} \simeq 0 \text{ при } r > a, \tag{19}$$

где $V=[\Omega r]$, α — радиус н. з., $B_1=B_0\cos\delta_0$ — угол между Ω и однородной магнитной индукцией н. з. B. 7–226

В связи с формулами (16), (17) укажем на следующее.

Поскольку на границе E, терпит скачок, то из условия гот E=0 следует, что вблизи границы сосредоточено сильное радиальное электрическое поле вида E, = $(B_1 \Omega a^2/6c) \delta (r-a) (3\cos^2 B-1)$ (на границе сосредоточен двойной электрический слой). При этом первое уравнение следует писать в виде гот $B=(4-/c)(z_2E+J_a)$, $J_{cr}=\{j_r,0,0^3\}$, $j_r=z_2E$. Поскольку же внутри плазмы должно быть $E_{np}=0$ (см. выше), то необходимо придвинуть границу между вращающейся и неподвижной средой к самой поверхности нейтронной звезды. Таким образом, отмеченное обстоятельство в рамках проводимого рассмотрения может служить аргументом в пользу того, что при вращении н. з. плазма не увлекается. Разумеется, при этом не имеется в виду некоторый тонкий слой плазмы, взаимодейстние которого с поверхностью н. з. определяется че учтенными здесь факторами (например, не электромагнитными силами, если d_1 — нысота неровностей на поверхности н. з., то переходный слой не может быть тоньше d_1).

Поскольку проводимость z_2 считаем достаточно высокой, то формулы для переменной части полей, обязанных $B_\perp = B_0 \sin z_0$, имеют вид (см. [7])

при $r < \alpha$:

$$\vec{B}_{\perp} \simeq B \left[\sin \theta \cos \mu, \cos \theta \cos \mu, -\sin \mu_{\ell}^{\dagger}, \right]$$

$$\vec{E}_{\perp} = -\frac{1}{c} \left[\vec{V} \vec{B}_{\perp} \right] = B_{\perp} \frac{\Omega_{r}}{c} \left[\frac{1}{2} \sin 2\theta, -\sin^{2}\theta, 0 \right] \cos \mu,$$
(20)

при r > a:

$$\vec{B} = B_{\perp} e^{-(r-a)/l} \left| \sin \theta \cos \mu_{1}, 0, -\frac{a}{d} \sin^{2}\theta \left(\cos \mu_{1} - \sin \mu_{1} \right) \right|,$$

$$\vec{E}_{\perp} = -\frac{1}{c} \left[\vec{V} \vec{B}_{\perp} \right] \sim -\frac{B_{\perp} \Omega a}{c} \left[0, \sin^{2}\theta \cos \mu_{1}, 0, (\vec{E}_{\perp} \vec{B}_{\perp}) = 0, \right]$$
(21)

где $z_1 = a_1, \ d = c/1$ $2\pi\Omega z_n =$ толіцина скин-слоя, $d \ll a$, $\mu = \varphi - \Omega t$, $\mu_1 = \mu + (r-a)/d$.

Заметим, что приведенные формулы (20), (21) содержат лишь наибольшие компоненты полей. Казалось бы, что из (21) следует, что электромагнитное поле E_{\perp} , B_{\perp} могло бы завращать плазму как твердое тело. Кинетическая энергия единицы объема плазмы при таком движении по порядку неличины ранка $W \simeq m \, (2a)^2 \, n/1 \, 1-\beta^2$ (n концентрация частиц). Однако это вращение должно происходить в по-

стоянном магнитном поле $B_{-}(E_{+}=0)$, плотность энергии которого B 8= много больше W . Поэтому магнитное поле B не дает осуществиться указанному процессу. Таким образом, сделанное предположение о неподвижности плазмы как целого при r>a в этом смысле внутрение не противоречиво. Еще раз подчеркием, что указанное обстоятельство есть следствие саморождения плазмы, т. е. условия $E_{\parallel}=0$. В противном случае поле, обязанное $B_{0,1}$, само увлекало бы плазму. Заметим также, что из (19), (21) вытекает существование некоторого поля $E_a \simeq (B_-B_-)$, но это поле при $a \gg d$ мало и локализовано в малой области вблизи границы.

Выражения для полей в области г > а обладают одной замечательной особенностью, позволяющей, возможно, объяснить импульсный характер излучения пульсаров (см. ниже). Из (21) следует, что при три = 1 магнитное поле в скин-слое мало (не превышает величины

B при $\delta_0 \sim 1$). Если же $\lg \mu_1 \neq 1$ (d/a 1), то компонента магнитного поля B_{\perp} велика, что будет затруднять выход частиц из области, окружающей н. з. В области же tgp, > 1 частицы всего быстрее покидают систему, что будет соответствовать возникновению здесь рассмотренного выше колебательного режима, который в свою очередь обеспечит плазмой все пространство вокруг н. з.

Чтобы применить полученные ранее результаты (см. (7), (8), (11)) к пульсарам, необходимо положить $E_0 \simeq 2aB_0/c$ (E_c — компонента электрического поля, параллельная магнитному полю в случае, когда н. з. вращается в вакууме), размер системы $L \simeq a \ (a - paguyc + n. s.)$, $n_0 = E_0/eL$. Частицы в колебательной системе движутся, в основном, в меридиональных плоскостях вдоль с.л.м.п. $B_1 + B_2$ в области

 $tg\mu_i = 1.$ Как следует из численного решения уравнений (7), (8), (11), электрическое поле $E \simeq E_{\rm np}$, возникающее на втором этапе колебательного процесса, очень быстро исчезает. Для указанных выше значений па-

раметров выключение E_{np} совершается за время Δt порядка 5 $10^{-5} L/c$. т. е. $\Delta t \simeq 10^{-9}$ сек (при $L \simeq 10^4$ см). Это выключение поля $E_{\rm пр}$ происходит за счет резкого изменения во времени тока, обусловленного

движением по B зарядов вдоль с.л.м.п. (см. (1), (2)). Характерное время этого процесса порядка 11. Этот ток резко ограничен в пространстве поверхностью н. з. Если эта поверхность достаточно гладкая, то указанный процесс выключения поля E_{np} может стать достаточно эффективным источником радиоизлучения. При этом, как нетрудно показать, величина когерентно излучающего объема V есть $V\simeq \pi a r^4$ ($r=2\pi c_c$) — длина излучаемой волны, ω — частота излучения, $2\pi/\omega = \Delta t$, $2\pi/\omega = c/d_1$, d_1 — толщина переходной области, определяемая, в частности, высотой неровностей на поверхности н. з. (см. вы-

ше)), т. е. в данном направлении R эффективно излучает диск (радиуса $\sqrt{a^c}$ и толщины ℓ), расположенный на границе с н. з., причем ось

диска совпадает с R. Механизм излучения аналогичен излучению при 3-распаде. Полная интенсивность излучения есть

$$I \simeq \frac{e^2 n^2 V^2_{\text{orb}}}{c} \simeq 2\pi^3 e^2 n^9 a r^2 c.$$
 (22)

где $V=\pi a^{j^2}$, у — число актов выключения поля E_{np} в одну секунду (у = c/a), n — концентрация частиц. Полагая $n \simeq n_0 \simeq E_0$ еа $\simeq 10^{10}$ см $^{-3}$, $h \simeq 10^{1}$ см, $a \simeq 10^n$ см (см. выше), находим $l \simeq 10^{10}$ эрг сек, что согласуется с экспериментальными данными. Поскольку в рассматринаемом случае $(m_n/m) = (eBl/1-3^c)/mc^m > 1$, $m_0^2/m^2 = (4\pi e^2n_1/1-3^2)/mr^2 = 1$. То радиоизлучение должно беспрепятственно выходить из области генерации. Излучение будет иметь импульсный характер. В данном

направлении R излучается тогда, когда направление R попадает в меридиональную область, определяемую $\operatorname{tg} \mu_1 = 1$. Ширина импульса характеризуется отношением d α (период следования импульсов равен π/Ω).

НИРФИ г. Горький

ON THE CASCADE PROCESS IN THE STRONG MAGNETIC AND ELECTRIC FIELDS IN ASTROPHYSICAL CONDITIONS

Ya. I. ALBER, Z. N. KROTOVA, V. Ya. EIDMAN

The selfsupporting process of electron-positron cascade is considered in connection with pulsar phenomen. The electric and magnetic fields in electron-positron plasma around a neutron star have been considered. The radio emission from this region has been calculated.

ЛИТЕРАТУРА

- 1. В. Я. Эйдман, ЖЭТФ, 61, 1737, 1971.
- 2. И. Я. Померанчун. ЖЭТФ, 9, 915, 1939. J. Phys. UdSSR, 2, 65, 1941.
- 3. Н. П. Клепиков, ЖЭТФ, 26, 19, 1954.
- 4. F. Erber, Rev. mod. Phys., 38, 626, 1960.
- Yu. Y. Chugunov. V. Ja. Eidman, E. V. Suvorov. Astrophys. Space Sci. 32, L. 7-L. 10, 1975.
- 6. P. A. Sturrock, Nature, 227, 465, 1970.
- 7. С. А. Каплан В. И. Цытович, В. Я. Эйдман, Астрон ж., 51, 363, 1974