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Li, Mohapatra and Rodriguez [12] gave a new perspective to inequalities (1.1)

� (1.3), and extended them to rational functions with �xed poles. Essentially, in

these inequalities they replaced the polynomial P (z) by a rational function r(z)

with poles a1, a2, ..., an all lying in |z| > 1, and zn was replaced by a Blaschke

product B(z). Before proceeding towards their results, we �rst introduce the set of

rational functions involved.

For aj ∈ C with j = 1, 2, ..., n, we de�ne

W (z) =

n∏
j=1

(z − aj); B(z) =

n∏
j=1

(1− ajz
z − aj

)
=
W ∗(z)

W (z)
,

where

W ∗(z) = znW (
1

z
)

and

Rn = Rn(a1, a2, ..., an) =

{
P (z)

W (z)
: P ∈ Pn

}
.

Then Rn is de�ned to be the set of rational functions with poles a1, a2, ..., an at most

and with �nite limit at∞. Note that B(z) ∈ Rn and |B(z)| = 1 for |z| = 1. Also, for

r(z) = P (z)
W (z) ∈ Rn, the conjugate transpose r∗ of r is de�ned by r∗(z) = B(z)r( 1

z ).

In the past few years several papers pertaining to Bernstein-type inequalities for

rational functions have appeared in the study of rational approximations (see [2],

[4], [11] � [13]). For r ∈ Rn, Li, Mohapatra and Rodriguez [12] proved the following,

similar to (1.1), inequality for rational functions:

|r′(z)| ≤ |B′(z)|max
|z|=1

|r(z)|.(1.5)

As extensions of (1.2) and (1.3) to rational functions, Li, Mohapatra and Rodriguez

also showed that if r ∈ Rn, and r(z) 6= 0 in |z| < 1, then for |z| = 1,

|r′(z)| ≤ |B
′(z)|
2

max
|z|=1

|r(z)|,(1.6)

whereas, if r ∈ Rn has exactly n zeros in |z| ≤ 1, then for |z| = 1,

|r′(z)| ≥ |B
′(z)|
2
|r(z)|.(1.7)

Very recently, Wali and Shah [13] proved an interesting re�nement of (1.7). Namely,

they proved that if r ∈ Rn, and r has exactly n zeros in |z| ≤ 1, where r(z) = P (z)
W (z) ,

with P (z) =
∑n
j=0 cjz

j , then for |z| = 1,

|r′(z)| ≥ 1

2

{
|B′(z)|+

√
|cn| −

√
|c0|√

|cn|

}
|r(z)|.(1.8)

In this paper, we establish some results for rational functions r(z) = P (z)
W (z) with

restricted zeros, where P (z) =
∑n
j=0 cjz

j , by involving some coe�cients of P (z).
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Our results strengthen some known inequalities for rational functions and, in turn,

produce re�nements of some polynomial inequalities as well.

2. Main results

In what follows we shall always assume that all the poles a1, a2, ..., an of r(z) lie

in |z| > 1. In the case where all poles are in |z| < 1, we can obtain analogous results

with suitable modi�cations.

Theorem 2.1. Suppose that r ∈ Rn, and all the n zeros of r lie in |z| ≤ 1. If

r(z) = P (z)
W (z) , where P (z) =

∑n
j=0 cjz

j, then for every β with |β| ≤ 1 and |z| = 1,

we have ∣∣∣∣zr′(z) +
nβ

2
r(z)

∣∣∣∣ ≥ 1

2

{
|B′(z)|+ nRe(β) +

|cn| − |c0|
|cn|+ |c0|

}
|r(z)|.(2.1)

The result is best possible in the case β = 0, and in (2.1) equality holds for r(z) =

B(z) + λ with |λ| = 1.

We �rst discuss some consequences of Theorem 2.1. If we take αj = α, |α| ≥ 1,

for j = 1, 2, ..., n, then W (z) = (z − α)n and r(z) = P (z)
(z−α)n , and hence we have

r′(z) =
(z − α)nP ′(z)− n(z − α)n−1P (z)

(z − α)2n

= −
{
nP (z)− (z − α)P ′(z)

(z − α)n+1

}
=
−DαP (z)

(z − α)n+1
,

where DαP (z) = nP (z) + (α− z)P ′(z) is the polar derivative of P (z) with respect

to point α. It generalizes the ordinary derivative P ′(z) of P (z) in the sense that

lim
α→∞

DαP (z)

α
= P ′(z).

Also, W ∗(z) = (1− αz)n, which gives B(z) =

(
1−αz
z−α

)n
, implying that

B′(z) =
n(1− αz)n−1(|α|2 − 1)

(z − α)n+1
.

With this choice, from (2.1) for |z| = 1, we get∣∣∣∣zDαP (z)+
nβ

2
(α− z)P (z)

∣∣∣∣
≥ 1

2

{
n(|α|2 − 1)

|z − α|
+ nRe(β)|z − α|+ |cn| − |c0|

|cn|+ |c0|
|z − α|

}
|P (z)|

≥ 1

2

{
n(|α|2 − 1)

|α|+ 1
+ nRe(β)(|α| − 1) +

|cn| − |c0|
|cn|+ |c0|

(|α| − 1)

}
|P (z)|

=
|α| − 1

2

{
n(1 +Re(β)) +

|cn| − |c0|
|cn|+ |c0|

}
|P (z)|.

Thus, from Theorem 2.1 we immediately get the following result.
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Corollary 2.1. If P (z) =
∑n
j=0 cjz

j is a polynomial of degree n having all its

zeros in |z| ≤ 1, then for every α, β ∈ C with |α| ≥ 1 and |β| ≤ 1, we have

max
|z|=1

∣∣∣∣zDαP (z)+
nβ

2
(α− z)P (z)

∣∣∣∣
≥ |α| − 1

2

{
n(1 +Re(β)) +

|cn| − |c0|
|cn|+ |c0|

}
max
|z|=1

|P (z)|.(2.2)

Remark 2.1. Since |cn| ≥ |c0| and hence for β = 0, the above corollary provides

an improvement of a result due to Shah [9].

Remark 2.2. Dividing both sides of (2.2) by |α| and letting |α| → ∞, we obtain

the following result, which as a special case, gives a strengthening of the classical

Tur�an inequality [10].

Corollary 2.2. If P (z) =
∑n
j=0 cjz

j is a polynomial of degree n having all its

zeros in |z| ≤ 1. Then for every β ∈ C with |β| ≤ 1, we have

max
|z|=1

∣∣∣∣zP ′(z) +
nβ

2
P (z)

∣∣∣∣ ≥ 1

2

{
n(1 +Re(β)) +

|cn| − |c0|
|cn|+ |c0|

}
max
|z|=1

|P (z)|.(2.3)

Remark 2.3. The above inequality for β = 0 was also independently proved by

Dubinin [5]. Also, it is easy to see that the inequality (2.3) improves the inequality

(1.4) as well.

Taking β = 0 in Theorem 2.1, we get the following result.

Corollary 2.3. Suppose r ∈ Rn, and all the n zeros of r lie in |z| ≤ 1. If r(z) =
P (z)
W (z) , where P (z) =

∑n
j=0 cjz

j, then for |z| = 1 we have

|r′(z)| ≥ 1

2

{
|B′(z)|+ |cn| − |c0|

|cn|+ |c0|

}
|r(z)|.

The result is sharp and equality holds for r(z) = B(z) + λ with |λ| = 1.

Remark 2.4. Again, since |cn| ≥ |c0|, it is easy to verify that

|cn| − |c0|
|cn|+ |c0|

≥
√
|cn| −

√
|c0|√

|cn|
,

showing that Corollary 2.3 strengthens the inequality (1.8).

Instead of proving Theorem 2.1, we will prove the following more general result.

Theorem 2.2. Suppose r(z) = P (z)
W (z) , where P (z) = zs

(∑n−s
j=0 cj+sz

j
)
, and all the

zeros of r lie in |z| ≤ 1 with a zero of multiplicity s at the origin. Then for every β

with |β| ≤ 1 and |z| = 1 we have∣∣∣∣zr′(z) +
nβ

2
r(z)

∣∣∣∣ ≥ 1

2

{
|B′(z)|+ nRe(β) + s+

|cn| − |cs|
|cn|+ |cs|

}
|r(z)|.(2.4)
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The result is best possible in the case β = s = 0, and equality in (2.4) holds for

r(z) = B(z) + λ with |λ| = 1.

Remark 2.5. For s = 0, the inequality (2.4) reduces to (2.1).

The next result generalizes the inequality (1.7).

Theorem 2.3. Let r ∈ Rn, and assume that r has all its zeros in |z| ≤ 1. Then

for every β with |β| ≤ 1 and |z| = 1 we have∣∣∣∣ r′(z)B′(z)
+
β

2

r(z)

B(z)

∣∣∣∣ ≥ 1

2
(1− |β|)|r(z)|.(2.5)

Equality in (2.5) holds when β = 0 for r(z) = aB(z) + b with |a| = |b|.

The above inequality (2.5) will be a consequence of a more fundamental inequality

presented by the following theorem.

Theorem 2.4. Let r ∈ Rn, and assume that r has all its zeros in |z| ≤ 1. Then

for every β with |β| ≤ 1 and |z| = 1, we have∣∣∣∣ r′(z)B′(z)
+
β

2

r(z)

B(z)

∣∣∣∣ ≥ 1

2

{
(1− |β|)|r(z)|+

(∣∣∣∣1 +
β

2

∣∣∣∣− ∣∣∣∣β2
∣∣∣∣)min
|z|=1
|r(z)|

}
.(2.6)

Equality in (2.6) holds when β = 0 for r(z) = aB(z) + b with |a| = |b|.

Remark 2.6. Theorem 2.4 is a re�nement of Theorem 2.3, this can easily be seen

by observing that |1 + β
2 | ≥ |

β
2 | for |β| ≤ 1.

Theorem 2.5. Suppose r ∈ Rn, and all the n zeros of r lie in |z| ≥ 1. If r(z) =
P (z)
W (z) , where P (z) =

∑n
j=0 cjz

j, then for |z| = 1, we have

|r′(z)| ≤ 1

2

{
|B′(z)| −

(
|c0| − |cn|
|c0|+ |cn|

)
|r(z)|2

‖ r(z) ‖2

}
‖ r(z) ‖,(2.7)

where ‖ r(z) ‖= max|z|=1 |r(z)|. The result is best possible and equality in (2.7)

holds for r(z) = B(z) + λ, |λ| = 1.

Remark 2.7. Since all zeros of r(z) = P (z)
W (z) , and hence of P (z) =

∑n
j=0 cjz

j, lie

in |z| ≥ 1, we have |c0| ≥ |cn|, showing that Theorem 2.5 is an improvement of

(1.6).

3. Lemmas

In this section we state a number of lemmas, which will be used in the proofs of

main results stated in Section 2.
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Lemma 3.1. (see [5]) If P (z) =
∑n
j=0 cjz

j is a polynomial of degree n having all

its zeros in |z| ≤ 1, then at each point z of the circle |z| = 1 at which P (z) 6= 0, we

have

Re

(
zP ′(z)

P (z)

)
≥ n− 1

2
+

|cn|
|cn|+ |c0|

.

Lemma 3.2. (see [2]) If |z| = 1, then

Re

(
zW ′(z)

W (z)

)
=
n− |B′(z)|

2
.

Lemma 3.3. (see [12]) If r ∈ Rn, then for |z| = 1, we have

|r′(z)|+ |(r∗(z))′| ≤ |B′(z)|max
|z|=1

|r(z)|.

Lemma 3.4. Suppose r ∈ Rn is such that r(z) = P (z)
W (z) , where P (z) =

∑n
j=0 cjz

j,

and all the zeros of r lie in |z| > 1. Then for |z| = 1, we have

Re

(
zr′(z)

r(z)

)
≤ 1

2

{
|B′(z)| − |c0| − |cn|

|c0|+ |cn|

}
.

Proof. We have r(z) = P (z)
W (z) , where

P (z) =

n∑
j=0

cjz
j = cn

n∏
j=1

(z − zj),

with cn 6= 0 and |zj | > 1, j = 1, 2, ..., n.

By direct calculation, we get

Re

(
zr′(z)

r(z)

)
= Re

(
zP ′(z)

P (z)

)
−Re

(
zW ′(z)

W (z)

)
.(3.1)

Let Q(z) = znP ( 1
z ), therefore, P (z) = znQ( 1

z ). Since P (z) has all its zeros in

|z| > 1, it follows that Q(z) has all its zeros in |z| < 1, and hence

G(z) =
Q(z)

zn−1Q( 1
z )

=
zQ(z)

P (z)
=
cn
cn
z

n∏
j=1

(
1− z̄jz
z − zj

)
(3.2)

is analytic in |z| ≤ 1 with G(0) = 0 and |G(z)| = 1 for |z| = 1. Hence by a result of

Osserman for the boundary Schwartz lemma [8], we have

|G′(z)| ≥ 2

1 + |G′(0)|
, for |z| = 1.(3.3)

It easily follows from (3.2) that for |z| = 1,

zG′(z)

G(z)
= (n+ 1)− 2Re

(
zP ′(z)

P (z)

)
.(3.4)

Further, using (3.2), it can easy be veri�ed that

zG′(z)

G(z)
= 1 +

n∑
j=1

|zj |2 − 1

|z − zj |2
.
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Since |zj | > 1 for 1 ≤ j ≤ n, it follows from above that zG′(z)
G(z) is real and positive.

Also, taking into account that |G(z)| = 1 for |z| = 1, we have

zG′(z)

G(z)
=

∣∣∣∣zG′(z)G(z)

∣∣∣∣ = |G′(z)| and |G′(0)| =
n∏
j=1

∣∣∣∣ 1

zj

∣∣∣∣ =

∣∣∣∣cnc0
∣∣∣∣ .

Using these observations, from (3.3) and (3.4), we get for P (z) 6= 0 and |z| = 1,

(n+ 1)− 2Re

(
zP ′(z)

P (z)

)
≥ 2

1 +
∣∣∣ cnc0 ∣∣∣ ,

implying that

Re

(
zP ′(z)

P (z)

)
≤ n+ 1

2
− |c0|
|c0|+ |cn|

.(3.5)

Finally, using (3.5), Lemma 3.2 and (3.1), we get

Re

(
zr′(z)

r(z)

)
≤ 1

2

{
|B′(z)| − |c0| − |cn|

|c0|+ |cn|

}
,

which completes the proof of of the lemma. �

Lemma 3.5. Let r, s ∈ Rn, and let all the n zeros of s lie in |z| ≤ 1 and for |z| = 1,

|r(z)| ≤ |s(z)|.

Then for every |β| ≤ 1 and |z| = 1, we have

|B(z)r′(z) +
β

2
B′(z)r(z)| ≤ |B(z)s′(z) +

β

2
B′(z)s(z)|.(3.6)

Equality in (3.6) holds for r(z) = µs(z), |µ| = 1.

Proof. The proof follows on the same lines as those given in the proof of Theorem

3.2 of Li [11]. Hence, we omit the details.

Lemma 3.6. Let r ∈ Rn, and let all the n zeros of r lie in |z| ≤ 1. Then for every

|β| ≤ 1 and |z| = 1, we have

|B(z)(r∗(z))′ +
β

2
B′(z)r∗(z)| ≤ |B(z)r′(z) +

β

2
B′(z)r(z)|.(3.7)

Proof. Since r∗(z) = B(z)r(1/z̄), we have

|r∗(z)| = |r(z)| for |z| = 1.

Also, since r(z) has all its zeros in |z| ≤ 1, we can apply Lemma 3.5 with r(z) and

s(z) being replaced by r∗(z) and r(z), respectively, to obtain the result.
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4. Proofs of theorems

Proof of Theorem 2.2. Since r(z) = P (z)
W (z) ∈ Rn, where P (z) has all its zeros in

|z| ≤ 1 with a zero of multiplicity s at the origin, we can write

P (z) = zsh(z),(4.1)

where h(z) =
∑n−s
j=0 cj+sz

j is a polynomial of degree n − s having all its zeros in

|z| ≤ 1.

From (4.1), we have

Re

(
zP ′(z)

P (z)

)
= s+Re

(
zh′(z)

h(z)

)
.

By a direct calculation, we obtain for every β with |β| ≤ 1,

zr′(z)

r(z)
+
nβ

2
=
zP ′(z)

P (z)
− zW ′(z)

W (z)
+
nβ

2
.

Therefore for 0 ≤ θ < 2π by Lemmas 3.1 and 3.2 we obtain

Re

(
zr′(z)

r(z)
+
nβ

2

)∣∣∣∣∣
z=eiθ

= Re

(
zP ′(z)

P (z)

)∣∣∣∣∣
z=eiθ

−Re
(
zW ′(z)

W (z)

)∣∣∣∣∣
z=eiθ

+
n

2
Re(β)

= s+Re

(
zh′(z)

h(z)

)∣∣∣∣∣
z=eiθ

−Re
(
zW ′(z)

W (z)

)∣∣∣∣∣
z=eiθ

+
n

2
Re(β)

≥
(
s+

n− s− 1

2
+

|cn|
|cn|+ |cs|

)
−
(
n− |B′(eiθ)|

2

)
+
n

2
Re(β)

=
1

2

{
|B′(eiθ)|+ s+

|cn| − |cs|
|cn|+ |cs|

+ nRe(β)

}
,

for the points eiθ, 0 ≤ θ < 2π, other then the zero of r(z). Hence, we have∣∣∣eiθr′(eiθ) +
n

2
βr(eiθ)

∣∣∣ ≥ 1

2

{
|B′(eiθ)|+ s+

|cn| − |cs|
|cn|+ |cs|

+ nRe(β)

}
|r(eiθ)|,(4.2)

for the points eiθ, 0 ≤ θ < 2π, other then the zeros of r(z).

Since (4.2) is true for the points eiθ, 0 ≤ θ < 2π, which are the zeros of r(z) as

well, it follows that∣∣∣zr′(z) +
n

2
βr(z)

∣∣∣ ≥ 1

2

{
|B′(z)|+ s+

|cn| − |cs|
|cn|+ |cs|

+ nRe(β)
}
|r(z)|,

for |z| = 1 and for every β with |β| ≤ 1. This completes the proof of the theorem.

Proof of Theorem 2.3. By a direct calculation (see, e.g., [12], p. 529), one can

obtain

|(r∗(z))′| = |B′(z)r(z)− r′(z)B(z)| for |z| = 1,

and hence, using the fact that |B(z)| = 1 for |z| = 1, we get

|(r∗(z))′| ≥ |B′(z)||r(z)| − |r′(z)|.
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This gives for |z| = 1,

|r′(z)|+ |(r∗(z))′| ≥ |B′(z)||r(z)|.(4.3)

Next, for any |β| ≤ 1, we have∣∣∣∣B(z)r′(z) +
β

2
B′(z)r(z)

∣∣∣∣+

∣∣∣∣B(z)(r∗(z))′ +
β

2
B′(z)r∗(z)

∣∣∣∣
≥ |B(z)| |r′(z)|+ |B(z)||(r∗(z))′| −

∣∣∣∣β2
∣∣∣∣ |B′(z)||r(z)| − ∣∣∣∣β2

∣∣∣∣ |B′(z)||r∗(z)|,
and hence, by using (4.3) and the fact that |r(z)| = |r∗(z)| for |z| = 1, we obtain∣∣∣∣B(z)r′(z) +

β

2
B′(z)r(z)

∣∣∣∣+

∣∣∣∣B(z)(r∗(z))′ +
β

2
B′(z)r∗(z)

∣∣∣∣
≥ |r′(z)|+ |(r∗(z))′| − |β||B′(z)||r(z)| ≥ |B′(z)||r(z)| − |β||B′(z)||r(z)|.(4.4)

Now, by Lemma 3.6, we have for |z| = 1,∣∣∣∣B(z)r′(z) +
β

2
B′(z)r(z)

∣∣∣∣ ≥ ∣∣∣∣B(z)(r∗(z))′ +
β

2
B′(z)r∗(z)

∣∣∣∣ .(4.5)

The inequalities (4.4) and (4.5) together yield to∣∣∣∣B(z)r′(z) +
β

2
B′(z)r(z)

∣∣∣∣ ≥ |B′(z)|2
(1− |β|)|r(z)|,(4.6)

for |z| = 1 and |β| ≤ 1.

Finally, taking into account that |B′(z)| 6= 0 and |B(z)| = 1 for |z| = 1, from

(4.6), we get ∣∣∣∣ r′(z)B′(z)
+
β

2

r(z)

B(z)

∣∣∣∣ ≥ 1

2
(1− |β|)|r(z)|,

for |z| = 1 and |β| ≤ 1. �

Proof of Theorem 2.4. Observe �rst that if r(z) has some zeros on |z| = 1,

then min
|z|=1
|r(z)| = 0, and in this case, the result follows from Theorem 2.3.

So, henceforth, we assume that all the zeros of r(z) lie in |z| < 1. Let m :=

min
|z|=1
|r(z)|. Clearly m > 0, and we have |λm| < |r(z)| on |z| = 1 for any λ with

|λ| < 1. By Rouche's theorem, the rational function G(z) = r(z) + λm has all

its zeros in |z| < 1. Let H(z) = B(z)G(1/z̄) = r∗(z) + λ̄mB(z), then |H(z)| =

|G(z)| for |z| = 1. Applying Lemma 3.6, for any β with |β| ≤ 1 and |z| = 1, we

get ∣∣∣B(z)
(

(r∗(z))′ + λ̄B′(z)m
)

+
β

2
B′(z)

(
r∗(z) + λ̄B(z)m

)∣∣∣
≤
∣∣∣B(z)r′(z) +

β

2
B′(z)

(
r(z) + λm

)∣∣∣,(4.7)

87



A. MIR

implying that ∣∣∣B(z)(r∗(z))′ +
β

2
B′(z)r∗(z) + λ̄

(
1 +

β

2

)
B(z)B′(z)m

∣∣∣
≤
∣∣∣∣B(z)r′(z) +

β

2
B′(z)r(z)

∣∣∣∣+

∣∣∣∣β2
∣∣∣∣ |λ|m|B′(z)|(4.8)

for |z| = 1, |β| ≤ 1 and |λ| < 1.

Choosing the arguments of λ on the left hand side of (4.8) to satisfy∣∣∣B(z)(r∗(z))′ +
β

2
B′(z)r∗(z) + λ̄

(
1 +

β

2

)
B(z)B′(z)m

∣∣∣
=
∣∣∣B(z)(r∗(z))′ +

β

2
B′(z)r∗(z)

∣∣∣+ |λ|m
∣∣∣∣1 +

β

2

∣∣∣∣ |B(z)B′(z)|,(4.9)

in view of (4.8), (4.9) and the fact that |B(z)| = 1 for |z| = 1, we get∣∣∣B(z)r′(z) +
β

2
B′(z)r(z)

∣∣∣ ≥ ∣∣∣B(z)(r∗(z))′ +
β

2
B′(z)r∗(z)

∣∣∣
+ |λ||B′(z)|

{∣∣∣1 +
β

2

∣∣∣− ∣∣∣β
2

∣∣∣}m.(4.10)

Finally, letting |λ| → 1 in (4.10) and adding |B(z)r′(z)+ β
2B
′(z)r(z)| to both sides,

and using (4.4), we get the required assertion. Theorem 2.4 is proved.

Proof of Theorem 2.5. Since r(z) = P (z)
W (z) , where P (z) =

∑n
j=0 cjz

j and r(z)

has all its zeros in |z| ≥ 1, and also r∗(z) = B(z)r(1/z̄), we have

z(r∗(z))′ = zB′(z)r(
1

z
)− B(z)

z
r′(

1

z
),

and therefore, for |z| = 1 (so that z = 1
z ), we get

|(r∗(z))′| =
∣∣∣zB′(z)r(z)−B(z)zr′(z)

∣∣∣ = |B(z)|
∣∣∣zB′(z)
B(z)

r(z)− zr′(z)
∣∣∣.(4.11)

Taking into account that (see [12], formula (15))

zB′(z)

B(z)
= |B′(z)| > 0,

from (4.11) for |z| = 1 with r(z) 6= 0, we get∣∣∣∣z(r∗(z))′r(z)

∣∣∣∣2 =

∣∣∣∣|B′(z)| − zr′(z)

r(z)

∣∣∣∣2
= |B′(z)|2 +

∣∣∣∣zr′(z)r(z)

∣∣∣∣2 − 2|B′(z)|Re
(
zr′(z)

r(z)

)
,

which, in view of Lemma 3.4, for |z| = 1 with r(z) 6= 0, gives∣∣∣∣z(r∗(z))′r(z)

∣∣∣∣2 ≥ |B′(z)|2 +

∣∣∣∣zr′(z)r(z)

∣∣∣∣2 − |B′(z)|{|B′(z)| − |c0| − |cn||c0|+ |cn|

}
=

∣∣∣∣zr′(z)r(z)

∣∣∣∣2 +

(
|c0| − |cn|
|c0|+ |cn|

)
|B′(z)|.
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This implies for |z| = 1 that

|r′(z)|2 +

(
|c0| − |cn|
|c0|+ |cn|

)
|B′(z)||r(z)|2 ≤ |(r∗(z))′|2.

Combining this with Lemma 3.3, for |z| = 1 we get

|r′(z)|+
{
|r′(z)|2 +

(
|c0| − |cn|
|c0|+ |cn|

)
|B′(z)||r(z)|2

} 1
2

≤ |r′(z)|+ |(r∗(z))′| ≤ |B′(z)| ‖ r(z) ‖,

or equivalently,

|r′(z)|2 +

(
|c0| − |cn|
|c0|+ |cn|

)
|B′(z)||r(z)|2

≤ |B′(z)|2 ‖ r(z) ‖2 −2|B′(z)||r′(z)| ‖ r(z) ‖ +|r′(z)|2,

which, in view of the fact that |B′(z)| 6= 0, after simpli�cation, for |z| = 1 gives

|r′(z)| ≤ 1

2

{
|B′(z)| −

(
|c0| − |cn|
|c0|+ |cn|

)
|r(z)|2

‖ r(z) ‖2

}
‖ r(z) ‖ .

This completes the proof of the theorem.

Remark 4.1. From inequality (4.10), for |z| = 1 and for every |β| ≤ 1, we have∣∣∣∣B(z)r′(z) +
β

2
B′(z)r(z)

∣∣∣∣− ∣∣∣∣B(z)(r∗(z))′ +
β

2
B′(z)r∗(z)

∣∣∣∣
≥ |B′(z)|

{∣∣∣∣1 +
β

2

∣∣∣∣− ∣∣∣∣β2
∣∣∣∣
}

min
|z|=1
|r(z)|.(4.12)

Since |B′(z)| 6= 0 for |z| = 1 , from (4.12) we get the following inequality

min
|z|=1

{∣∣∣∣ r′(z)B′(z)
+
β

2

r(z)

B(z)

∣∣∣∣− ∣∣∣∣ (r∗(z))′B′(z)
+
β

2

r∗(z)

B(z)

∣∣∣∣
}
≥

(∣∣∣∣1 +
β

2

∣∣∣∣− ∣∣∣∣β2
∣∣∣∣
)

min
|z|=1
|r(z)|.

(4.13)

Taking β = 0 in (4.13), we get

min
|z|=1

{∣∣∣∣ r′(z)B′(z)

∣∣∣∣− ∣∣∣∣ (r∗(z))′B′(z)

∣∣∣∣
}
≥ min
|z|=1
|r(z)|,

yielding

min
|z|=1

∣∣∣∣ r′(z)B′(z)

∣∣∣∣ ≥ min
|z|=1
|r(z)|.(4.14)

Clearly, the inequality (4.14) gives a generalization of the corresponding result for

polynomials (see [1], Theorem 1).
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