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1. INTRODUOTION

Let P, denote the class of all complex polynomials of degree at most . EP € B,

=1, we have

then concerning the estimate of |P/(z)| on
(L1) |P/(2)] < nmax | P(2).
The inequality {1.1) is a famous result due to Bemstein [3. It is worth mentioning
that i (1.1} equality holds if and only if P(z) has all 1ts zeros at the origin. So, 1t is
natural to seek improvements under appropriate assumption on the zeros of P(z).
H we restrict ourselves 0 the class of polynomials P(z) having no zeros in |2] < 1,
then (1.1) can be replaced by
(1.2) max |P'(2)] < 2 max |P(2)],

|z|=1 2 |z)=1

whereas, if P(z) has no zeros in [z > 1, then by

.i\ 4 >
{13) lrﬁgﬁilp(z)\ 31

ma | Pzl
The mequality (1.2) was conjectured by Erdds and later it was vertfied by Lax [7].
whereas the mequality (1.3} is due to Turdn [10).

Jain [6] had used a parameter 8 and proved an interesting generalization of (1.3).
More precisely, Jain proved that if P € P, and P(z) has all s zeros m |2) < 1,

then for every f with |8] < 1. we have
(1.4) s |oP' (<) + "5 P()| > 5 {1+ Re(§)} max [P
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Li, Mohapatra and Rodriguez [12] gave a new perspective to inequalities (1.1)
- (1.3), and extended them to rational functions with fixed poles. Essentially, in
these inequalities they replaced the polynomial P(z) by a rational function r(z)
with poles a1, as,...,a, all lying in |z| > 1, and 2™ was replaced by a Blaschke
product B(z). Before proceeding towards their results, we first introduce the set of
rational functions involved.

For a; € C with j = 1,2,...,n, we define

W =116 e 56 =11 G2 = 5
where
1
W*(z) = z”W(%)
and

R, = Ry (a1, az, ..., an) = {Il;((i)) . Pe Pn}.

Then R, is defined to be the set of rational functions with poles a1, as, ..., a,, at most

and with finite limit at co. Note that B(z) € R,, and |B(z)| = 1 for |z| = 1. Also, for

r(z) = Vlf,((z)) € R, the conjugate transpose r* of r is defined by r*(z) = B(z)r(2).

In the past few years several papers pertaining to Bernstein-type inequalities for
rational functions have appeared in the study of rational approximations (see [2],
[4], [11] - [13]). For r € R,,, Li, Mohapatra and Rodriguez [12] proved the following,

similar to (1.1), inequality for rational functions:
(1.5) r'(2)] < |B'(2)] max r(2)].

As extensions of (1.2) and (1.3) to rational functions, Li, Mohapatra and Rodriguez

also showed that if r € R,,, and r(z) # 0 in |z| < 1, then for |z| = 1,

B/
(1.6 @) < B o),
whereas, if 7 € R,, has exactly n zeros in |z| < 1, then for |z] = 1,
|B'(2)l
(17) )= E ),

Very recently, Wali and Shah [13] proved an interesting refinement of (1.7). Namely,

they proved that if » € R,,, and r has exactly n zeros in |z| < 1, where r(z) = VI[D,((?),
with P(z) = >0, ¢jz7, then for |z| = 1,
|cn| |col
(1) ez p{1me)+ Y ol
|enl
In this paper, we establish some results for rational functions r(z) = V}:,((Zz)) with

restricted zeros, where P(2) = > 7 ¢;z?, by involving some coefficients of P(z).
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Our results strengthen some known inequalities for rational functions and, in turn,

produce refinements of some polynomial inequalities as well.

2. MAIN RESULTS

In what follows we shall always assume that all the poles a1, ag, ..., a,, of r(z) lie
in |z| > 1. In the case where all poles are in |z| < 1, we can obtain analogous results

with suitable modifications.

Theorem 2.1. Suppose that v € R,,, and all the n zeros of v lie in |z| < 1. If
r(z) = VI;((ZZ))’ where P(z) = >0, c;jz3, then for every B with |8] <1 and |z| = 1,

we have

2r'(2) + %r(z)
The result is best possible in the case B = 0, and in (2.1) equality holds for r(z) =

B(z) + A with |\ = 1.

(2.1)

> {4 nre() + [ o),

[en| + |col

We first discuss some consequences of Theorem 2.1. If we take o; = «, |a| > 1,

for j =1,2,...,n, then W(z) = (z —a)™ and r(z) = P)_ and hence we have

 (z—a)™?
’ . (z—a)"P'(z) —n(z — a)"*lP(z)
r'(z) = o
_ _{nP(z) —(z— a)P'(z)} _ —DuP(2)
(z —a)nt! (z — a)ntl’

where D, P(z) = nP(z) + (o — z) P'(z) is the polar derivative of P(z) with respect
to point a. It generalizes the ordinary derivative P’(z) of P(z) in the sense that
D,P

timg DeL(2)

a— 0o «a

= P'(2).

Z—x

Also, W*(z) = (1 — @z)™, which gives B(z) = (1‘“) , implying that

n(l —a@z)" " 1(|a)? - 1).

B'(z) =
(2) (z — a)ntl
With this choice, from (2.1) for |z| =1, we get
zDaP(z)—l—%(a —2)P(z2)

1 n(|a|2—1) |cn| — |co| }
>« ————>+nRe(B)lz—a|+ ————|z—a| p|P(z

n(oP 1) oo e =l
> 3 { et nmes)al - )+ 2 o] - 1 (o)

|a—1{ |Cn|—00|}

= ——n(l+ Re + —— ¢ |P(2)].

30 Re®) + P HIPG)

Thus, from Theorem 2.1 we immediately get the following result.
81



A. MIR

Corollary 2.1. If P(z) = Z?:o ¢;z’ is a polynomial of degree n having all its
zeros in |z| < 1, then for every o, B € C with |a| > 1 and || < 1, we have

\I?Ii)i zDaP(z)—l—%(a —2)P(z2)
(2.2) > lof = 1{n(1+Re(ﬁ))+|cn|_col}max|P(Z)|.

- 2 |Cn| + ‘Co| |z|=1
Remark 2.1. Since |c,| > |co| and hence for § = 0, the above corollary provides

an improvement of a result due to Shah [9)].

Remark 2.2. Dividing both sides of (2.2) by |a| and letting |a| — oo, we obtain
the following result, which as a special case, gives a strengthening of the classical

Turdn inequality [10].

Corollary 2.2. If P(z) = Z?:o cjzj is a polynomial of degree n having all its
zeros in |z| < 1. Then for every § € C with || < 1, we have

, np 1 |en] — [col
(2.3) |I£|i)§ zP'(z) + 2P(z)‘ > 2{n(1 + Re(p)) + |Cn|+|00|} lrillzfi |P(2)].

Remark 2.3. The above inequality for B = 0 was also independently proved by

Dubinin [5]. Also, it is easy to see that the inequality (2.3) improves the inequality
(1.4) as well.

Taking 8 = 0 in Theorem 2.1, we get the following result.

Corollary 2.3. Suppose r € R, and all the n zeros of r lie in |z| < 1. If r(z) =
%, where P(z) = Y_7_oc;27, then for |z| = 1 we have
1 [en] = |0l
(2 2{B’z—|—n r(z)].
1= 5{ 181 2 o)
The result is sharp and equality holds for r(z) = B(z) + X with |A\| = 1.

Remark 2.4. Again, since |c,| > |col, it is easy to verify that

eal — leol o /Teal = V/Te0]
eal Fleol =7 el

showing that Corollary 2.3 strengthens the inequality (1.8).

Instead of proving Theorem 2.1, we will prove the following more general result.

Theorem 2.2. Suppose r(z) = Vli,((i)), where P(z) = 2* (Z?:_g cj+szj), and all the

zeros of v lie in |z| < 1 with a zero of multiplicity s at the origin. Then for every
with |B] <1 and |z| =1 we have

! @rz 1 "(2)| + nRe s lon] = les| r(z
')+ )| 2 {1+ nme(s) s e o),

(2.4) 5
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The result is best possible in the case 8 = s = 0, and equality in (2.4) holds for
r(z) = B(z) + X with |A\| = 1.

Remark 2.5. For s = 0, the inequality (2.4) reduces to (2.1).
The next result generalizes the inequality (1.7).

Theorem 2.3. Let r € R, and assume that r has all its zeros in |z| < 1. Then

for every S with |B| <1 and |z| = 1 we have

r'(z) | Br(z)
Bz 2B()

Equality in (2.5) holds when 8 =0 for r(z) = aB(z) + b with |a| = |b].

(2.5)

1
> (1= B)Ir(2)]

The above inequality (2.5) will be a consequence of a more fundamental inequality

presented by the following theorem.

Theorem 2.4. Let r € R, and assume that r has all its zeros in |z| < 1. Then
for every § with |B| <1 and |z| = 1, we have

26 |ps 5|z s{a-rers ([ 5] - |5 e

|z|=1

Equality in (2.6) holds when =0 for r(z) = aB(z) + b with |a| = |b|.

Remark 2.6. Theorem 2.4 is a refinement of Theorem 2.3, this can easily be seen

by observing that |1 + §| > |g\ for |8] < 1.

Theorem 2.5. Suppose r € R,,, and all the n zeros of r lie in |z| > 1. If r(z) =

L) yhere P(z) = Z?:o c;jz%, then for |z| = 1, we have

W(z)’
1 lco| — lenl ) _Ir(2)I?
en el {iEe-( 1) I
2 |col + leal /1 7(2) 12
where || r(z) ||= max; =y |r(2)|. The result is best possible and equality in (2.7)

holds for r(z) = B(z) + A, |\ =1.

Remark 2.7. Since all zeros of r(z) = %, and hence of P(2) = Y 7_y¢;27, lie
in |z] > 1, we have |co| > |cy|, showing that Theorem 2.5 is an improvement of

(1.6).

3. LEMMAS

In this section we state a number of lemmas, which will be used in the proofs of

main results stated in Section 2.
83



A. MIR

Lemma 3.1. (see [5]) If P(z) = Z?:o ¢;z’ is a polynomial of degree n having all
its zeros in |z| < 1, then at each point z of the circle |z| = 1 at which P(z) # 0, we

zP’(z)) n—1 el
Re > + .
( P(z) 2 [en| + |col

have

Lemma 3.2. (see [2]) If |z| = 1, then

he(W2) _no 1),

Lemma 3.3. (see [12]) If r € R,,, then for |z| = 1, we have

()] + 10" (2))'] < |B(2)| max|r(2)].

Lemma 3.4. Suppose r € R,, is such that r(z) = %, where P(z) =37 ¢;2/,

and all the zeros of r lie in |z| > 1. Then for |z| = 1, we have
re(Z2) < oy - Lol
’I"(Z) -2 ‘CO‘ + |Cn|
Proof. We have r(z) = £\ where

n n

P(z) = chzj =cp H(z - z;),

3=0 j=1
with ¢, # 0 and |z;| > 1,7 =1,2,...,n.
By direct calculation, we get
2r'(z) zP'(2) 2W'(2)
1 = — .
&y re(55) = (75) - (s
Let Q(z) = 2z"P(1), therefore, P(z) = 2z"Q(2). Since P(z) has all its zeros in
|z| > 1, it follows that Q(z) has all its zeros in |z| < 1, and hence
@ 11 (1%
(3.2) Gloy = Q) 2QE) &, (ZJZ>
2=1Q(L) P(z) ¢y z = zj
is analytic in |z| < 1 with G(0) = 0 and |G(z)| = 1 for |z| = 1. Hence by a result of

Osserman for the boundary Schwartz lemma [8], we have

j=1

2
(3.3) G'(2)] = 110 for |z] =1
It easily follows from (3.2) that for |z| =1,
2G'(z) zP'(2)
(3.4) G0 —(n+1)—2Re< P0) >

Further, using (3.2), it can easy be verified that

2G'(z) |z -1
o _1+27.
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Since |z;| > 1 for 1 < j < n, it follows from above that zgég) is real and positive.

Also, taking into account that |G(z)| =1 for |z| = 1, we have

n

=|G'(z)] and [G"(0) =[]

Jj=1

2G'(2)

G(2)

2G'(z)
G(2)

1

Zj

Cn

€o

Using these observations, from (3.3) and (3.4), we get for P(z) # 0 and |z| =1,

(n+1)— 2Re (ZP/(Z)) = +2

P(z)

Cn
Co

implying that

2P'(2)\ _n+l o
(3.5) Re( PC2) ) = |co| + |en]”

Finally, using (3.5), Lemma 3.2 and (3.1), we get

w() =3P e

which completes the proof of of the lemma. O

Lemma 3.5. Let r,s € R, and let all the n zeros of s lie in |z| < 1 and for |z| =1,
Ir(2)] < [s(2)].

Then for every |B| <1 and |z| = 1, we have

p
2
Equality in (3.6) holds for r(z) = us(z), |u| = 1.

B'(2)r()] < |B(2)5'(2) + S B/(2)s(2).

(3.6) |B(2)r'(2) + 5

Proof. The proof follows on the same lines as those given in the proof of Theorem

3.2 of Li [11]. Hence, we omit the details.

Lemma 3.6. Let r € R,,, and let all the n zeros of r lie in |z| < 1. Then for every
I8l <1 and |z| = 1, we have

B
2

B (3)] < B () + 2B (r(z)].

(3.7) |B(2)(r*(2))" + 2

Proof. Since r*(z) = B(z)r(1/Z), we have
[r(2)] = [r(z)] for [2] = 1.

Also, since 7(z) has all its zeros in |z| < 1, we can apply Lemma 3.5 with r(z) and

s(z) being replaced by 7*(z) and r(z), respectively, to obtain the result.
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4. PROOFS OF THEOREMS

Proof of Theorem 2.2. Since r(z) = P((Z)) € R,,, where P(z) has all its zeros in

|z| <1 with a zero of multiplicity s at the origin, we can write
(4.1) P(z) = 2°h(2),

where h(z) = Z;ZOS ¢j1+s27 is a polynomial of degree n — s having all its zeros in

2] < 1.
e () = (55)

By a direct calculation, we obtain for every § with |5] < 1,
zr'(z)  nB _ zP'(z) 2W'(z)  np

r(z) 2 P(2) W) o2
Therefore for 0 < 6 < 27 by Lemmas 3.1 and 3.2 we obtain

Re(ﬁg) + nf) . = Re(ij;g)) o ~ fe (ZVMV/;S)> ’z ' gRe(ﬁ)
= e 52) | sasicolip

< n—s—1 len] ) (n—|B' ') >
> s+ + -
2 |enl + |cs

- H'B’(e”ﬂ bl el +nRe(ﬁ)},

|en] + fes]

From (4.1), we have

+ 5 Re(8)

for the points €0 < 6 < 27, other then the zero of r(z). Hence, we have
0 oo L i eal — e }

4.2 ezerl 619 +E r 610 ’> { B’ 629 + s+ n s + nRe r 620 ,

(4.2) (€®) + 5 8r(e™)| 2 5 1B'(e7)] onl - Ico] (B) ¢lr(e”)]

for the points €, 0 < § < 27, other then the zeros of r(z).
Since (4.2) is true for the points ¥, 0 < § < 27, which are the zeros of r(z) as

well, it follows that
Y+ 50| 2 3{IB )+ s+ T ke |l
for |z] = 1 and for every 8 with || < 1. This completes the proof of the theorem.
Proof of Theorem 2.3. By a direct calculation (see, e.g., [12], p. 529), one can
obtain
|(r*(2))| = 1B (2)r(2) — 1'(2) B(2)] for |2] =1,
and hence, using the fact that |B(z)| = 1 for |z| = 1, we get

(" ()] = |B'(2)lIr(2)] = I (2)].
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This gives for |z| =1,
(4.3) () + (" (2))'] = |B'(2)]Ir (2)]-

Next, for any |3] < 1, we have

B + 5

+ B ) + 5B o

> B+ B Y - |11 - 5] 1B .

and hence, by using (4.3) and the fact that |r(z)| = |r*(2)| for |z| = 1, we obtain

BOFE) + 5B+ [BOE ) + §F )

(44) =@+ (=) = BB (2)lIr(2)] = |B'(2)lIr(2)| = [BIIB'(2)[|r(2)]-

Now, by Lemma 3.6, we have for |z| =1,

45 [+ §E o) 2 e e+ e
The inequalities (4.4) and (4.5) together yield to
(45) Ber e + )| = EE - e

for |z =1 and |5] < 1.
Finally, taking into account that |B’(z)| # 0 and |B(z)| = 1 for |z| = 1, from
(4.6), we get

>

(1= [BDIr(2)l;

DO =

for [z| =1 and |5] < 1. O
Proof of Theorem 2.4. Observe first that if (z) has some zeros on |z| = 1,

then |Jrrllin|r(z)| =0, and in this case, the result follows from Theorem 2.3.
z|=1

So, henceforth, we assume that all the zeros of r(z) lie in |z| < 1. Let m :=
|rznl_nl|r(z)| Clearly m > 0, and we have |[Am| < |r(z)] on |z| = 1 for any A with
|A| < 1. By Rouche’s theorem, the rational function G(z) = r(z) + Am has all
its zeros in |z| < 1. Let H(z) = B(2)G(1/2) = r*(z) + AmB(2), then |H(z)| =

|G(z)| for |z| =1. Applying Lemma 3.6, for any 8 with |3] <1 and |z| = 1, we

get
‘B(z) ((r*(z))’ v ;\B’(z)m) v gB’(z) <r*(z) + XB(z)m) ‘
(4.7) < ‘B(z)r’(z) + gB’(z) (r(z) + )\m) ,
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implying that
B B

‘B(z)(r*(z))’ + 5B () () + 5\(1 + 5)B(z)B'(z)m

(48) < B + 5B )| + |5 s

2
for |z] = 1,]8] <1 and |\ < 1.
Choosing the arguments of A on the left hand side of (4.8) to satisfy

B (2) + gB’(z)r*(z) +A(1+ g)B(z)B’(z)m’
49 = [BEE @)+ B ErE)] WL+ 5| B ),
in view of (4.8), (4.9) and the fact that [B(z)| = 1 for |2| = 1, we get
B () + gB'(z)r(z)‘ > |B)0(2) + gB’(z)r*(z)‘

(4.10) n |A|B’(z)|{‘1+§‘ = ‘g‘}m

Finally, letting |\| — 1 in (4.10) and adding |B(z)r'(z) + gB’(z)r(z)| to both sides,
and using (4.4), we get the required assertion. Theorem 2.4 is proved.
Proof of Theorem 2.5. Since r(z) = P where P(z) = Z?:o cjz? and r(z)

W(z)’
has all its zeros in |z| > 1, and also r*(z) = B(z)r(1/Z), we have
() = 2B r(3) - P,
and therefore, for |z| =1 (so that z = 1), we get
1) 16 = [5G - B G| = 186 G - )
Taking into account that (see [12], formula (15))
B
from (4.11) for |z| = 1 with r(z) # 0, we get
“(2)) |2 2 (2) |2
| |- 3
O P e
— 1B+ |2 -2,

which, in view of Lemma 3.4, for |z| = 1 with r(z) # 0, gives

2OV L e O a1 - ol = leal
| = mer [ - menimer -
_ @, (leol=lenl Y e,
3+ (e e
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This implies for |z| = 1 that

/ 2 |CO|*|CVL| / 2 * 112
() + (Wm)w )P < ()2

Combining this with Lemma 3.3, for |z| = 1 we get
lcol — lenl :
r(z —|—{7“’z 2+(CO _cn>B’z r(z 2}
7' (2)[+4 | (2)] o F o] |B'(2)||r(2)]
<@+ )< B N r(2) |,

or equivalently,

' (z 2+(|CO|CTL|> B ()lr(2)]2
P+ ([ ) G
SIB' P () 1P =21B' ()l (2)] | 7(2) | +1r' ()2,
which, in view of the fact that |B’(z)| # 0, after simplification, for |z| = 1 gives
lco| — len] ) _Ir(2)I?
@< g{mel- ( )1
’ T el el ) TG T2

This completes the proof of the theorem.

Remark 4.1. From inequality (4.10), for |z| = 1 and for every |B| < 1, we have

B B
2 2

(112) z|B'<>{\ +|- ’ﬁ‘}mmlr ).

Since |B'(z)| # 0 for |z| =1, from (4.12) we get the following inequality

b (o

‘B(Z)v“’(Z) + 5B (2)r(2) B'(z)r"(z)

- [y +

(4.13)

e

Taking 8 = 0 in (4.13), we get

r'(z) [ Br(z)
2

_ @) Brr(e)
B’(z) B(z) 2

B'(2) B(2)

|| R) ,
I;H_nl{ 5| | BG) }2?1_“1""( )
yielding
| (2)
(4.14) e >|rr|unllr( 2)|-

Clearly, the inequality (4.14) gives a generalization of the corresponding result for

polynomials (see [1], Theorem 1).
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