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where S(r, w) is any quantity satisfying S(r, w) = o (T (r, w)) for all r outside a set

of �nite logarithmic measure. A meromorphic solution w is called admissible if all

the coe�cients of a di�erence equation are in the �eld S(w). For instance, all the
non-rational meromorphic solutions of a di�erence equation which has only rational

coe�cients, are admissible.

Recently, Halburd and Korhonen [9], developing the Nevanlinna value distribution

theory on di�erence expressions (see [6] � [8]), considered the following di�erence

equation:

(1.1) w + w = R(z, w),

where R is rational in w and is meromorphic in z with slow growth of coe�cients.

They proved that if the equation (1.1) has an admissible meromorphic solution of

�nite order, then either w satis�es a di�erence Riccati equation, or the equation

(1.1) can be transformed to eight simple di�erence equations. These simple di�erence

equations include the Painlev�e I, II di�erence equations and some linear di�erence

equations. We recall the family including Painlev�e III di�erence equations.

Theorem A ([10]). Assume that the equation:

(1.2) ww = R(z, w),

has an admissible meromorphic solution w of hyper-order less than one, where

R(z, w) is rational and irreducible in w and meromorphic in z. Then either w

satis�es the following di�erence Riccati equation:

w =
αw + β

w + γ
,

where α, β, γ ∈ S(w) are algebraic functions, or the equation (1.2) can be transformed

to one of the following equations:

ww =
ηw2 − λw + µ

(w − 1)(w − ν)
,(1.3a)

ww =
ηw2 − λw
(w − 1)

,(1.3b)

ww =
η(w − λ)
(w − 1)

,(1.3c)

ww = hwm.(1.3d)

In (1.3a), the coe�cients satisfy κ2µµ = µ2, λµ = κλµ, κλλ = κλλ, and one of

the following conditions:

(1) η ≡ 1, νν = 1, κ = ν; (2) η = η = ν, κ ≡ 1.
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In (1.3b), ηη = 1 and λλ = λλ.

In (1.3c), the coe�cients satisfy one of the following conditions:

(1) η ≡ 1, and either λ = λλ or λ
[3]
λ[3] = λλ;

(2) λλ = λλ, ηλ = λη, ηη = ηη
[3]
;

(3) ηη = ηη, λ = η;

(4) λ
[3]
λ[3] = λλλ, ηλ = ηη.

In (1.3d), h ∈ S(w) and m ∈ Z, |m| ≤ 2.

The di�erence Painlev�e III equations (1.3a)�(1.3d) have been studied recently

by Zhang and Yang [11], and Zhang and Yi [12, 13], where a number of interesting

results were obtained. In particular, Zhang and Yi [12] studied the following equation:

(1.4) ww(w − 1)2 = w2 − λw + µ,

where λ and µ are constants, and obtained the following two results.

Theorem B ([12]). Let w(z) = P (z)
Q(z) , where P (z) and Q(z) are relatively prime

polynomials of degrees p and q, respectively. If w(z) is a solution of equation (1.4),

then one of the following assertions holds:

(i) p = q, a2(a− 1)2 = a2 − λa+ µ, where a = w(∞);

(ii) p < q, λ = µ = 0, and P (z) is a constant.

Example 1.1. The rational function w(z) = 1
(z+1)2 is a solution of the di�erence

equation ww(w− 1)2 = w2. This shows that the conclusion (ii) of Theorem B may

occur.

Theorem C ([12]). If w is a transcendental meromorphic solution of equation

(1.4) of �nite order ρ(w), then the following assertions hold:

(i) τ(w) = ρ(w);

(ii) If λµ 6= 0, then λ(w) = ρ(w).

Example 1.2. The function w(z) = sec2 πz2 is a solution of the di�erence equation

ww(w − 1)2 = w2, and 0 is a Picard exceptional value of w. This shows that the

condition λµ 6= 0 is necessary in assertion (ii) of Theorem C.

In this paper, motivated by the above theorems and equation (1.3a), we study

two di�erence Painlev�e III equations that follow. Observe �rst that if in equation

(1.3a) of Theorem A, κ = ν = −1 when both µ and λ are constants, then we have

at least one of µ and λ to be 0 from λµ = κλµ. So, in Section 3, we discuss the
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question of existence of rational solutions of the following di�erence Painlev�e III

equation:

(1.5) ww(w2 − 1) = w2 + µ,

where µ (µ 6= −1) is a constant, and investigate the value distribution. In Section

4, we discuss the same questions, that is, the existence of rational solutions and the

value distribution, of the following di�erence Painlev�e III equation:

(1.6) ww(w2 − 1) = w2 − λw,

where λ(λ 6= ±1) is a constant.

The reminder of the paper is organized as follows. In Section 2, we state a number

of auxiliary lemmas, which will be used to prove our main results. In Section 3, we

study the equation (1.5). Section 4 is devoted to equation (1.6).

2. Auxiliary lemmas

In this section we state a number of auxiliary lemmas, which will be used to

prove our main results. We �rst state the following lemma, which is a di�erence

analogue of the logarithmic derivative lemma, and reads as follows.

Lemma 2.1. Let f be a meromorphic function of �nite order, and let c be a non-

zero complex constant. Then

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= S(r, f).

In view of Lemma 2.1, we can obtain the following di�erence analogues of the

Clunie and Mohon'ko lemmas (see [7, 8]).

Lemma 2.2 ([8]). Let f be a transcendental meromorphic solution of a �nite order

ρ for a di�erence equation of the form:

U(z, f)P (z, f) = Q(z, f),

where U(z, f), P (z, f) and Q(z, f) are di�erence polynomials such that the total

degree degf U(z, f) = n in f(z) and its shifts, and degf Q(z, f) ≤ n. If U(z, f)

contains just one term of maximal total degree in f(z) and its shifts, then, for each

ε > 0, we have

m (r, P (z, f)) = O
(
rρ−1+ε

)
+ S(r, f),

possibly outside an exceptional set of a �nite logarithmic measure.

Lemma 2.3 ([7, 8]). Let w be a transcendental meromorphic solution of a �nite

order of the di�erence equation:

P (z, w) = 0,
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where P (z, w) is a di�erence polynomial in w(z). If P (z, a) 6≡ 0 for a meromorphic

function a ∈ S(w), then

m

(
r,

1

w − a

)
= S(r, w).

Lemma 2.4 (See, e.g., [11, Theorem 3.1]). Let w be a non-constant meromorphic

solution of a �nite order of equations (1.3a)− (1.3d) with constant coe�cients, and

let m 6= 2 in equation (1.3d). Then the following equalities hold:

m(r, w) = S(r, w), λ

(
1

w

)
= ρ(w).

We conclude this section by the following lemma.

Lemma 2.5 (See, e.g., [5, pp. 79�80]). Let fj (j = 1, . . . , n) (n ≥ 2) be meromorphic

functions, and let gj (j = 1, . . . , n) be entire functions. Assume that the following

conditions are ful�lled:

(i)
∑n
j=1 fj(z)e

gj(z) ≡ 0;

(ii) gh(z)− gk(z) is not a constant for 1 ≤ h < k ≤ n;
(iii) T (r, fj) = S(r, egh(z)−gk(z)) for 1 ≤ j ≤ n and 1 ≤ h < k ≤ n.

Then fj(z) ≡ 0, j = 1, . . . , n.

3. Equation (1.5)

Theorem 3.1. There is no any non-constant rational solution of equation (1.5).

Proof. Assume the opposite that w(z) = P (z)
Q(z) is a non-constant rational solution

of equation(1.5), where P (z) and Q(z) are relatively prime polynomials of degrees p

and q, respectively. Also, we assume that the leading coe�cient of P (z) is a (a 6= 0)

and the leading coe�cient of Q(z) is 1. Substituting w(z) = P (z)
Q(z) into (1.5), we get

(3.1)
P (z + 1)

Q(z + 1)

P (z − 1)

Q(z − 1)

((
P (z)

Q(z)

)2

− 1

)
=

(
P (z)

Q(z)

)2

+ µ.

We set s = p− q, and discuss the following three possible cases.

Case 1. Let s > 0. Then P (z)
Q(z) = azs(1 + o(1)) as z tends to in�nite and from

(3.1), we get

a2(z + 1)s(z − 1)s(1 + o(1))
(
a2z2s(1 + o(1))− 1

)
= a2z2s(1 + o(1)) + µ,

which is a contradiction as z tends to in�nite.

Case 2. Let s < 0. Now we have P (z)
Q(z) = o(1) and P (z+1)

Q(z+1) = o(1) as z tends to

in�nite. By (3.1), we obtain µ = 0. From (1.5), when µ = 0, we have

ww =
w2

w2 − 1
.
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Let w(z) = 1
f(z) . Substituting w = 1

f into the above equation, we obtain

ff = 1− f2.

Observing that the coe�cients on the left- and right-hand sides of the above

equation are 1
a2 and − 1

a2 , respectively, we get
2
a2 = 0, which is impossible.

Case 3. Let s = 0. Then w(z) = P (z)
Q(z) = a+ o(1) as z tends to in�nity and from

(3.1), we get

(3.2) a2(a2 − 1) = a2 + µ,

where a /∈ {0,±1}. We rewrite (3.1) as follows:

P (z + 1)

Q(z + 1)

P (z − 1)

Q(z − 1)
=
P 2(z) + µQ2(z)

P 2(z)−Q2(z)
.

We assume that there is a point z0 such that P 2(z0) + µQ2(z0) = 0 and P 2(z0)−
Q2(z0) = 0. Since µ 6= −1, we obtain P (z0) = 0 and Q(z0) = 0, which is a

contradiction. Thus, the degrees of P 2(z)+µQ2(z) and P 2(z)−Q2(z) both are 2p,

and we have

(a2 + µ)PP = a2(P 2 + µQ2),(3.3)

(a2 − 1)QQ = P 2 −Q2.(3.4)

Next, we assume P = ar, p = n. Then from (3.3) we have that

(3.5) µQ2 = rr
(
a2 + µ

)
− r2a2,

where

r = zn +An−1z
n−1 +An−2z

n−2 +An−3z
n−3 + · · ·+A1z +A0,(3.6)

Q = zn +Bn−1z
n−1 +Bn−2z

n−2 +Bn−3z
n−3 + · · ·+B1z +B0.(3.7)

We rewrite (3.4) as follows:

(3.8) (a2 − 1)QQ+Q2 = P 2.

Substituting (3.6) and (3.7) into (3.5) and comparing the coe�cients of terms z2n,

z2n−1, z2n−2, we obtain the following two equations:

µ(Bn−1 −An−1) = 0,

µ(B2
n−1 + 2Bn−2) = µ(A2

n−1 + 2An−2 − n)− a2n.

If µ = 0, then from the last equation we get a2n = 0, which is a contradiction. If

µ 6= 0, then the last two equations become

Bn−1 = An−1, Bn−2 = An−2 −
n
(
a2 + µ

)
2µ

.
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By the same way, we substitute (3.6) and (3.7) into (3.8), and compare the coe�cients

of terms z2n, z2n−1, z2n−2, to obtain

Bn−1 = An−1, Bn−2 = An−2 −
n
(
1− a2

)
2a2

.

So, we get a4 = µ(1−2a2). On the other hand, from (3.2) we have µ = a2
(
a2 − 2

)
.

It is obvious that a2 = 1, which is a contradiction. �

Theorem 3.2. If w is a transcendental meromorphic solution of equation (1.5) of

a �nite order ρ(w) > 0, then the following assertions hold:

(i) λ

(
1

w

)
= τ(w) = ρ(w);

(ii) when µ 6= 0, we have λ(w) = ρ(w);

(iii) w has at most one non-zero Borel exceptional value.

Proof.Denote φ(z) = w(z)−z, and observe that φ(z) is a transcendental meromorphic

function and T (r, φ) = T (r, w) + S(r, w). Substituting w(z) = φ(z) + z into (1.5),

we obtain (
φ+ z + 1

) (
φ+ z − 1

) (
(φ+ z)2 − 1

)
= (φ+ z)2 + µ.

Denote

P (z, φ) =
(
φ+ z + 1

) (
φ+ z − 1

) (
(φ+ z)2 − 1

)
− (φ+ z)2 − µ,

and observe that P (z, 0) =
(
z2 − 1

)2 − z2 − µ 6≡ 0. From Lemma 2.3, we get

m

(
r,

1

w − z

)
= m (r, 1/φ) = S(r, φ),

implying that N

(
r,

1

w − z

)
= T (r, w) + S(r, w), and hence τ(w) = ρ(w).

In view of Lemma 2.4 we have m(r, w) = S(r, w). Then, the equality λ

(
1

w

)
=

ρ(w) holds.

To prove the assertion (ii), for µ 6= 0, we denote

P1(z, w) = ww(w2 − 1)− w2 − µ,

and observe that P1(z, 0) = −µ 6≡ 0. Then, from Lemma 2.3, we obtainm(r, 1/w) =

S(r, w), implying that λ(w) = ρ(w).

Now we proceed to prove the assertion (iii) of the theorem. To this end, we

assume that a and b are two non-zero �nite Borel exceptional values of w, and set

(3.9) f(z) =
w(z)− a
w(z)− b

.
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Then, we have ρ(f) = ρ(w), λ(f) = λ(w−a) < ρ(f) and λ(1/f) = λ(w−b) < ρ(f).

Since f is of �nite order, we suppose that

(3.10) f(z) = g(z)edz
n

,

where d (d 6= 0) is a constant, n (n ≥ 1) is an integer, and g(z) is a meromorphic

function satisfying the condition:

(3.11) ρ(g) < ρ(f) = n.

Then, we have

(3.12) f(z + 1) = g(z + 1)g1(z)e
dzn , f(z − 1) = g(z − 1)g2(z)e

dzn ,

where g1(z) = endz
n−1+···+d and g2(z) = e−ndz

n−1+···+(−1)nd. From (3.9) we get

w =
bf − a
f − 1

. Next, in view of (1.5), (3.9) to (3.12), we can write

(3.13) A(z)e4dz
n

+B(z)e3dz
n

+ C(z)e2dz
n

+D(z)edz
n

+ E = 0,

where

A(z) =
[
b4 − 2b2 − µ

]
g2gg1gg2,

B(z) =
[
−2b2(ab− 1) + 2ab+ 2µ

]
ggg1gg2

+
[
−ab(b2 − 1) + b2 + µ

]
g2(gg1 + gg2),

C(z) =
[
b2(a2 − 1)− a2 − µ

]
ggg1g2 +

[
a2b2 − a2 − b2 − µ

]
g2

− [−2ab(ab− 1) + 2ab+ 2µ] g(gg1 + gg2),

D(z) =
[
−a3b+ ab+ a2 + µ

]
(gg1 + gg2) + 2(−a3b+ a2 + ab+ µ)g,

E = a4 − 2a2 − µ.

Applying Lemma 2.5 to (3.13) and taking into account (3.11), we see that all the

coe�cients vanish. Since a and b are non-zero constants, we deduce from A(z) = 0

and E = 0 that

(3.14) a4 − 2a2 = µ, b4 − 2b2 = µ.

Then, we have (a2 − b2)(a2 + b2 − 2) = 0. Now we discuss the following two cases.

Case 1. Let a2 = b2. Due to a 6= b, we get a = −b. Denote G = g, G1 = gg1 and

G2 = gg2. From B(z) = 0, D(z) = 0, we have

2(b4 + µ)G1G2 = (−b4 − µ)G(G1 +G2),

2(a4 + µ)G = (−a4 − µ)(G1 +G2).

Noting that µ 6= −1, we get b4 + µ 6= 0 and a4 + µ 6= 0 by (3.14). Thus, we have

2G1G2 = −G(G1 +G2), 2G = −(G1 +G2).
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From the last two equations, we obtain

G2 = G1G2, 4G1G2 = (G1 +G2)
2.

So, we have −G = G1 = G2 and f = f = −f . From (3.9), the equality a = −b and
the above equation, we get

w = w =
a2

w
.

Hence, from (1.5) we get a4(w2− 1) = w4 +µw2. Therefore, w is a constant, which

is a contradiction.

Case 2. Let a2 + b2 = 2. When B(z) = 0 and D(z) = 0, then using arguments

similar to those applied in Case 1, we get

2G1G2 = −G(G1 +G2), 2G = −(G1 +G2).

Noting that µ 6= −1, the above equations also lead to a contradiction by the similar

reasoning as in Case 1. This completes the proof of the theorem. �

4. Equation (1.6)

Theorem 4.1. Let w(z) = P (z)
Q(z) , where P (z) and Q(z) are relatively prime polynomials

of degrees p and q, respectively. If w(z) is a non-constant rational solution of

equation (1.6), then

p = q, a(a2 − 1) = a− λ, where a = ±
√
6

3
, λ =

4a

3
.

Proof. For p 6= q, the proof of the theorem is similar to that of Cases 1 and 2 in

Theorem 3.1, so we only prove the theorem for p = q. We assume that the leading

coe�cient of P (z) is a (a 6= 0), and the leading coe�cient of Q(z) is 1. Substituting

w(z) = P (z)
Q(z) into (1.6), we get

(4.1)
P (z + 1)

Q(z + 1)

P (z − 1)

Q(z − 1)

((
P (z)

Q(z)

)2

− 1

)
=

(
P (z)

Q(z)

)2

− λP (z)
Q(z)

.

When p = q, we have P (z)
Q(z) = a+ o(1) and P (z+1)

Q(z+1) = a+ o(1) as z tends to in�nite.

Then, from (4.1) we get the following equation

(4.2) a(a2 − 1) = a− λ,

where a /∈ {0,±1}.
We rewrite (4.1) as follows:

P (z + 1)

Q(z + 1)

P (z − 1)

Q(z − 1)
=
P 2(z)− λP (z)Q(z)

P 2(z)−Q2(z)
.

Arguments, similar to those applied in the proof of Theorem 3.1 (Case 3), can

be used to conclude that the degrees of P 2(z)−λP (z)Q(z) and P 2(z)−Q2(z) both
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are 2p for λ 6= ±1. Hence, we have

(a2 − λa)PP = a2(P 2 − λPQ),(4.3)

(a2 − 1)QQ = P 2 −Q2.(4.4)

Next, we assume P = ar, p = n, and use (4.3) to obtain

(4.5) λrQ = rr (λ− a) + ar2,

where

r = zn +An−1z
n−1 +An−2z

n−2 +An−3z
n−3 + · · ·+A1z +A0,(4.6)

Q = zn +Bn−1z
n−1 +Bn−2z

n−2 +Bn−3z
n−3 + · · ·+B1z +B0.(4.7)

We rewrite (4.4) as follows:

(4.8) (a2 − 1)QQ+Q2 = P 2.

Substituting (4.6) and (4.7) into (4.5) and comparing the coe�cients of terms z2n,

z2n−1, z2n−2, we obtain the following two equations:

λ(Bn−1 −An−1) = 0,

λ(Bn−2 +An−1Bn−1 +An−2) = λ(A2
n−1 + 2An−2 − n) + an.

For λ = 0, from the last equation we get an = 0, which is a contradiction. For

λ 6= 0, the last two equations become

Bn−1 = An−1, Bn−2 = An−2 +
n (a− λ)

λ
.

By the same way, we substitute (4.6) and (4.7) into (4.8), and compare the coe�cients

of terms z2n, z2n−1, z2n−2, to obtain

Bn−1 = An−1, Bn−2 = An−2 +
n
(
a2 − 1

)
2a2

.

So, we get 2a3 = λ(3a2 − 1). And from (4.2), we have λ = 2a − a3. By the above

equations, we have
(
3a2 − 2

) (
a2 − 1

)
= 0. Since a2 6= 1, we get a = ±

√
6
3 and

λ = ± 4
√
6

9 . Therefore
λ

a
=

4

3
. �

Theorem 4.2. If w is a transcendental meromorphic solution of equation (1.6) of

a �nite order ρ(w) > 0, then the following assertions hold:

(i) λ

(
1

w

)
= τ(w) = ρ(w);

(ii) when λ 6= 0, we have λ(w) = ρ(w);

(iii) w has at most one non-zero Borel exceptional value.
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Proof.Denote φ(z) = w(z)−z, and observe that φ(z) is a transcendental meromorphic

function and T (r, φ) = T (r, w) + S(r, w). Substituting w(z) = φ(z) + z into (1.6),

we obtain
(
φ+ z + 1

) (
φ+ z − 1

) (
(φ+ z)2 − 1

)
= (φ+ z)2 − λ (φ+ z). Denote

P (z, φ) =
(
φ+ z + 1

) (
φ+ z − 1

) (
(φ+ z)2 − 1

)
− (φ+ z)2 + λ (φ+ z) ,

and observe that P (z, 0) =
(
z2 − 1

)2 − z2 + λz 6≡ 0. Then, from Lemma 2.3, we

obtain

m

(
r,

1

w − z

)
= m (r, 1/φ) = S(r, φ),

implying that N

(
r,

1

w − z

)
= T (r, w) + S(r, w), and hence τ(w) = ρ(w).

We deduce from Lemma 2.4 thatm(r, w) = S(r, w). Then, the equality λ

(
1

w

)
=

ρ(w) holds.

To prove the assertion (ii), for λ 6= 0, we rewrite (1.6) as follows:

ww =
w2 − λw
w2 − 1

.

Let w(z) = 1
f(z) . Substituting w = 1

f into the last equality, we get

fffλ = ff − 1 + f2.

From Lemma 2.2, we obtain m(r, 1/w) = S(r, w). Therefore, λ(w) = ρ(w).

Now we proceed to prove the assertion (iii) of the theorem. To this end, we

assume that a and b are two non-zero �nite Borel exceptional values of w, and set

(4.9) f(z) =
w(z)− a
w(z)− b

.

Then, we have ρ(f) = ρ(w), λ(f) = λ(w−a) < ρ(f) and λ(1/f) = λ(w−b) < ρ(f).

Since f is of �nite order, we suppose that

(4.10) f(z) = g(z)edz
n

,

where d (d 6= 0) is a constant, n (n ≥ 1) is an integer, and g(z) is a meromorphic

function satisfying the condition:

(4.11) ρ(g) < ρ(f) = n.

Then, we have

(4.12) f(z + 1) = g(z + 1)g1(z)e
dzn , f(z − 1) = g(z − 1)g2(z)e

dzn ,

where g1(z) = endz
n−1+···+d and g2(z) = e−ndz

n−1+···+(−1)nd. From (4.9), we get

w =
bf − a
f − 1

. In view of (1.6), (4.9) to (4.12), we can write

(4.13) A(z)e4dz
n

+B(z)e3dz
n

+ C(z)e2dz
n

+D(z)edz
n

+ E = 0,
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where

A(z) =
[
b4 − 2b2 + bλ

]
g2gg1gg2,

B(z) =
[
−2b2(ab− 1) + 2ab− λ(a+ b)

]
ggg1gg2

+
[
−ab(b2 − 1) + b(b− λ)

]
g2(gg1 + gg2),

C(z) =
[
b2(a2 − 1)− a2 + aλ

]
ggg1g2 +

[
a2b2 − a2 − b2 + bλ

]
g2

+ [2ab(ab− 1)− 2ab+ λ(a+ b)] g(gg1 + gg2),

D(z) =
[
−2a3b+ 2ab+ 2a2 − λ(a+ b)

]
g + (−a3b+ a2 + ab− aλ)(gg1 + gg2),

E = a4 − 2a2 + aλ.

Applying Lemma 2.5 to (4.13) and taking into account (4.11), we see that all the

coe�cients vanish. Since a and b are non-zero constants, we deduce from A(z) = 0

and E = 0 that

(4.14) a3 − 2a = −λ, b3 − 2b = −λ.

Then, we have (a−b)(a2+ab+b2−2) = 0. Since a 6= b, it follows that a2+b2+ab = 2.

By (4.14), a and b are distinct zeros of the equation z3 − 2z + λ = 0.

According to the algebraic basic theorem, the above equation has three solutions.

Denoting by x the third solution, and using the relationship between roots and

coe�cients, we obtain abx = −λ, ab+ ax+ bx = −2, a+ b+ x = 0, implying that

x = − λ

ab
, a+ b = −x =

λ

ab
, ab+ (a+ b)x = ab− λ2

a2b2
= −2.

So, we have

ab(a+ b) = λ, 2ab+ a2b2 = (a+ b)λ, a2 + b2 + ab = 2.

Denote G = g, G1 = gg1 and G2 = gg2. From B(z) = 0, D(z) = 0 and the above

equations, we have

(2b2 − 2ab3 − a2b2)G1G2 = (2ab3 + a2b2 − ab− b2)G(G1 +G2),

(2a2 − 2a3b− a2b2)G = (2a3b+ a2b2 − ab− a2)(G1 +G2).

Because

G1G2

G(G1 +G2)
=

2ab3 + a2b2 − ab− b2

2b2 − 2ab3 − a2b2
=

b2 − ab
2b2 − 2ab3 − a2b2

− 1.

By a2 + b2 + ab = 2, we gain 2b2 − 2ab3 − a2b2 = b3(b− a), and hence, we have

G1G2

G(G1 +G2)
=

1

b2
− 1.

Thus, we get

G1G2 =

(
1

b2
− 1

)
G(G1 +G2), G =

(
1

a2
− 1

)
(G1 +G2).
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Noting that λ 6= ±1, by (4.14), we get a2 6= 1 and b2 6= 1. Moreover, since the last

two equations are homogeneous, there exist two non-zero constants α and β, such

that G1 = αG and G2 = βG. Then, we have

(4.15) αβ =
a2 − a2b2

b2 − a2b2
.

On the other hand, combining (4.10) and (4.12), we get f = αf , f = βf , which

yields αβ = 1. Thus, by (4.15), we have a2 = b2. When a = b, then we get a

contradiction. So, we have only to consider the case a = −b. From B(z) = 0,

D(z) = 0 and a = −b, we have

2b4G1G2 = (−b4 + bλ)G(G1 +G2),

2a4G = (−a4 + aλ)(G1 +G2),(4.16)

implying that

(4.17) (−b4 − bλ)G1G2 = (−b4 + bλ)G2.

Since the last equation is homogeneous, there exist two non-zero constants α and

β, such that G1 = αG and G2 = βG. Then, we have

(4.18) αβ(b3 + λ) = b3 − λ.

On the other hand, combining (4.11) and (4.13), we get f = αf, f = βf , which

yields αβ = 1. Thus by (4.18), we have λ = 0, and, in view of (4.16) and (4.17),

we infer that 2G = −(G1 +G2) and G1G2 = G2. Then, G1 = G2 = −G. Thus, we
have α = β = −1 and f = f = −f , and by the similar reasoning as in Case 1 of

the proof of Theorem 3.1, we get a contradiction. �
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