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Abstract. In this paper, we investigate the following two Painlevé 111 equations:
o (w? — 1) = w? + p and Ww(w? — 1) = w? — dw, where W= wiz + 1), w = w(z — 1)
and p {p# —1) and A € {1} are constants, We discuss the equations of existence of
rational solutions, of Borel exceptional values and the exponents of convergence of zeros,

poles and fixed points of transcendental meromorphic solutions of these equations,
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1. INTRODUCTION

Afier the completion of the differential Nevanlinna theory, the value distribution
of solutions of difference equations has received a considerable attention of a mumber
of researchers. Halburd and Korhonen [1] abstracted the difference Painlewd I
equation by wsing the value distribution theory. Chen and Shon [2] dealt with the
properties of solutions of complex difference Riceati equations. It is an important
discovery that difference Riceati equation plays an important role in the study of
difference Painlovd equations.

We assume that the readers are familiar with the fmdamental results and the
standard notion of Nevanlinna’s value distribution theory of meromorphic functions
{see [3] - [3]).

Let w be a meromorphic function in the complex plane and let 2 be an arbitrary
clement in the complex plane. By p(w), A(w) and A (1/w) we denote the order, the
exponents of convergence of zeros and poles of w, respectively. The exponent of

convergence of fixed points is defined by

log N (’.’", wiz)
r(w) =limsup —————~.
TR R logr

The field of small functions of w is defined by
S(w) = {ameromorphic : T'(r,a) = S{r,w)},

YPhis research was supported by the NNST of China, grants no. 11201014, 11171013, 11126036
and the Fundamental Besearch for the Central University,
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where S(r,w) is any quantity satisfying S(r,w) = o (T(r,w)) for all r outside a set
of finite logarithmic measure. A meromorphic solution w is called admissible if all
the coeflicients of a difference equation are in the field S(w). For instance, all the
non-rational meromorphic solutions of a difference equation which has only rational
coefficients, are admissible.

Recently, Halburd and Korhonen [9], developing the Nevanlinna value distribution
theory on difference expressions (see [6] — [8]), considered the following difference

equation:
(1.1) W+ w = R(z,w),

where R is rational in w and is meromorphic in z with slow growth of coefficients.
They proved that if the equation (1.1) has an admissible meromorphic solution of
finite order, then either w satisfies a difference Riccati equation, or the equation
(1.1) can be transformed to eight simple difference equations. These simple difference
equations include the Painlevé I, II difference equations and some linear difference

equations. We recall the family including Painlevé III difference equations.

Theorem A ([10]). Assume that the equation:
(1.2) Tw = R(z,w),

has an admissible meromorphic solution w of hyper-order less than one, where
R(z,w) is rational and irreducible in w and meromorphic in z. Then either w
satisfies the following difference Riccati equation:

aw+ 8
w7y’

w =

where o, 8, v € S(w) are algebraic functions, or the equation (1.2) can be transformed

to one of the following equations:

o nw? — Aw +
(1.3a) ww = w=D(w—2)’

_ nw? — \w

o nw—2A)
(13C) ww = m,
(1.3d) ww = hw™.

In (1.3a), the coefficients satisfy HQﬁH = 12, A\ = KL, JA = KA\, and one of

the following conditions:

Wn=lmw=1Lr=v; (@Q)n=n=v
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b), 7 =1 and AA = AX.

c), the coefficients satisfy one of the following conditions:

s

(1.
In (1.

=1, and either A = A\ or X[S]A[g] = i)\;
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=M\, A = An, 1 =g 5

n, A =1;
3] = A, A =Ty
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,heSw) and m € Z, |m| < 2.

The difference Painlevé III equations (1.3a)—(1.3d) have been studied recently
by Zhang and Yang [11], and Zhang and Yi [12, 13], where a number of interesting

results were obtained. In particular, Zhang and Yi [12] studied the following equation:
(1.4) ww(w —1)? = w? — \w + p,
where A and p are constants, and obtained the following two results.

Theorem B ([12]). Let w(z) = gg;, where P(z) and Q(z) are relatively prime

polynomials of degrees p and q, respectively. If w(z) is a solution of equation (1.4),

then one of the following assertions holds:

(i) p=gq, a*(a —1)? = a®> — Xa + p, where a = w(c0);
(il) p<q, \=p=0, and P(z) is a constant.

Example 1.1. The rational function w(z) = ﬁ is a solution of the difference
equation ww(w — 1)? = w?. This shows that the conclusion (ii) of Theorem B may

occur.

Theorem C ([12]). If w is a transcendental meromorphic solution of equation

(1.4) of finite order p(w), then the following assertions hold:

(i) 7(w) = p(w);
(i) If Ap # 0, then A(w) = p(w).

Example 1.2. The function w(z) = sec? Z% is a solution of the difference equation

2

ww(w — 1)? = w?, and 0 is a Picard exceptional value of w. This shows that the

condition Ay # 0 is necessary in assertion (ii) of Theorem C.

In this paper, motivated by the above theorems and equation (1.3a), we study
two difference Painlevé III equations that follow. Observe first that if in equation
(1.3a) of Theorem A, x = v = —1 when both p and A are constants, then we have

at least one of y and X to be 0 from Ay = kM. So, in Section 3, we discuss the
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question of existence of rational solutions of the following difference Painlevé III

equation:
(1.5) ww(w? — 1) = w® + u,

where p (1 # —1) is a constant, and investigate the value distribution. In Section
4, we discuss the same questions, that is, the existence of rational solutions and the

value distribution, of the following difference Painlevé III equation:
(1.6) ww(w? — 1) = w? — I,

where A(\ # £1) is a constant.
The reminder of the paper is organized as follows. In Section 2, we state a number
of auxiliary lemmas, which will be used to prove our main results. In Section 3, we

study the equation (1.5). Section 4 is devoted to equation (1.6).

2. AUXILIARY LEMMAS

In this section we state a number of auxiliary lemmas, which will be used to
prove our main results. We first state the following lemma, which is a difference
analogue of the logarithmic derivative lemma, and reads as follows.

Lemma 2.1. Let f be a meromorphic function of finite order, and let ¢ be a non-

zero complex constant. Then

In view of Lemma 2.1, we can obtain the following difference analogues of the

Clunie and Mohon’ko lemmas (see |7, 8]).

Lemma 2.2 ([8]). Let f be a transcendental meromorphic solution of a finite order

p for a difference equation of the form:

Uz, [)P(z, [) = Q(z, f),
where U(z, f), P(z, f) and Q(z, f) are difference polynomials such that the total
degree deg; U(z, f) = n in f(z) and its shifts, and deg; Q(z, f) < n. If U(2, f)
contains just one term of mazximal total degree in f(z) and its shifts, then, for each

€ > 0, we have
m (r, P(z, f)) = O (r=%) + S(r, f),

possibly outside an exceptional set of a finite logarithmic measure.

Lemma 2.3 ([7, 8]). Let w be a transcendental meromorphic solution of a finite
order of the difference equation:
P(z,w) =0,
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where P(z,w) is a difference polynomial in w(z). If P(z,a) Z 0 for a meromorphic

m (r, - ! ) = S(r,w).

Lemma 2.4 (See, e.g., [11, Theorem 3.1]). Let w be a non-constant meromorphic

function a € S(w), then

solution of a finite order of equations (1.3a) — (1.3d) with constant coefficients, and
let m # 2 in equation (1.3d). Then the following equalities hold:

mtrow) = St () = ol

w

We conclude this section by the following lemma.

Lemma 2.5 (See, e.g., [5, pp. 79-80]). Let f; ( =1,...,n) (n > 2) be meromorphic
functions, and let g; (j = 1,...,n) be entire functions. Assume that the following

conditions are fulfilled:
(1) X7y fi(2)e ) = 0;

(ii) gn(z) — gr(z) is not a constant for 1 <h <k < n;
(iii) T'(r, f;) = S(r, egh(z)_gk(z)) for1<j<nandl <h<k<n.

Then fj(2)=0,j=1,...,n.
3. EQUATION (1.5)
Theorem 3.1. There is no any non-constant rational solution of equation (1.5).

Proof. Assume the opposite that w(z) = ggg is a non-constant rational solution

of equation(1.5), where P(z) and Q(z) are relatively prime polynomials of degrees p

and g, respectively. Also, we assume that the leading coefficient of P(z) is a (a # 0)

and the leading coefficient of Q(z) is 1. Substituting w(z) = ggzg into (1.5), we get
2 2
(3.1) P(z+1)P(z—1) (P(z)) ) = (P(z)) .
Qlz+1) Q(z—1) \\Q(2) Q(2)
We set s = p — ¢, and discuss the following three possible cases.

Case 1. Let s > 0. Then ggz; = az®(1 + o(1)) as z tends to infinite and from

(3.1), we get

a?(z+1)%(z — 1)*(1 + o(1)) (a®2**(1 + 0(1)) — 1) = a®2**(1 + o(1)) + 4,

which is a contradiction as z tends to infinite.

Case 2. Let s < 0. Now we have ggg = 0(1) and ggzﬁ; = o(1) as z tends to

infinite. By (3.1), we obtain p = 0. From (1.5), when p = 0, we have
2

w
w2 —1"
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Let w(z) = f(lz). Substituting w = % into the above equation, we obtain
ff=1-r%

Observing that the coefficients on the left- and right-hand sides of the above

equation are = and —-%, respectively, we get % = 0, which is impossible.

Case 3. Let s = 0. Then w(z) = SEZ = a+o(1) as z tends to infinity and from
(3.1), we get

(3.2) a*(a® — 1) = a® + p,

where a ¢ {0,£1}. We rewrite (3.1) as follows:

PEADPE—1) P2+ Q%)

Qlz+1)Q(z—1)  P(2)— Q)
We assume that there is a point 2o such that P?(2g) + uQ?(29) = 0 and P?(zg) —
Q*(z0) = 0. Since u # —1, we obtain P(z9) = 0 and Q(z) = 0, which is a
contradiction. Thus, the degrees of P2(2) + uQ?(z) and P?(z) — Q?(z) both are 2p,

and we have

(3.3) (a® + p)PP = a*(P? + uQ?),

(3.4) (> —=1)QQ = P*> — Q*.

Next, we assume P = ar, p = n. Then from (3.3) we have that

(3.5) pQ* =7r (a® + p) — r’a’,

where

(3.6) Pr=2"4+ Ay 12" Ay 02" 4 Ay 52" b Arz + Ao,
(3.7) Q=2"4+Bp_ 12" '+ B, 92" 24+ B,,_32"" 3 +...+ Bz + By.

We rewrite (3.4) as follows:
(3.8) (@® - 1)QQ + Q> = P

Substituting (3.6) and (3.7) into (3.5) and comparing the coefficients of terms 22",

2n—1 2n—2
)

z z , we obtain the following two equations:

,U(Bn—l - An—l) = 07
p(Bi_y + 2By o) = p(AZ_y + 24,2 —n) —a’n.

If 1 = 0, then from the last equation we get a?n = 0, which is a contradiction. If

u # 0, then the last two equations become

2
By-1= An—la B2 = An—2 - n(a27—~_u)
i
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By the same way, we substitute (3.6) and (3.7) into (3.8), and compare the coefficients

of terms 22", 22"~1, 227=2 o obtain

1— 2
By, 1= An—ly Bn2= An—2 - M
2a?
So, we get a® = (1 —2a?). On the other hand, from (3.2) we have p = a® (a* — 2).
It is obvious that a® = 1, which is a contradiction. O

Theorem 3.2. If w is a transcendental meromorphic solution of equation (1.5) of

a finite order p(w) > 0, then the following assertions hold:

0 A (5 ) =t = )
(ii) when p # 0, we have A(w) = p(w);

(iii) w has at most one non-zero Borel exceptional value.

Proof. Denote ¢(z) = w(z)—z, and observe that ¢(z) is a transcendental meromorphic
function and T'(r,¢) = T(r,w) + S(r,w). Substituting w(z) = ¢(z) + 2z into (1.5),

we obtain
(p+241)(¢+2-1)((¢+2)°—1)=(d+2)* +p.
Denote
P(z,¢) = ($—|—Z—|—1) (Q—Fz—l) ((¢>—|—z)2—1) — (0 +2)* — p,

and observe that P(z,0) = (22 — 1)2 — 22 — i #0. From Lemma 2.3, we get

m(nots ) = m(n1/6) = 5(0)

1

implying that N (n ) =T (r,w) 4+ S(r,w), and hence 7(w) = p(w).

w—z
1
In view of Lemma 2.4 we have m(r,w) = S(r,w). Then, the equality A () =
w
p(w) holds.

To prove the assertion (ii), for u # 0, we denote
Py(z,w) = ww(w? — 1) —w? — p,

and observe that P;(z,0) = —p # 0. Then, from Lemma 2.3, we obtain m(r, 1/w) =
S(r,w), implying that A\(w) = p(w).

Now we proceed to prove the assertion (iii) of the theorem. To this end, we
assume that a and b are two non-zero finite Borel exceptional values of w, and set
w(z) —a
w(z) —b’

71
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Then, we have p(f) = p(w), A(f) = Mw—a) < p(f) and A(1/f) = A(w —b) < p(f).
Since f is of finite order, we suppose that

(3.10) f(2) = g(2)e*",

where d (d # 0) is a constant, n (n > 1) is an integer, and ¢(z) is a meromorphic

function satisfying the condition:

(3.11) p(g) < p(f) =n.
Then, we have
(3.12) fe+1)=g(z+Dgi(2)e™",  f(z—1) = g(z = 1)ga(2)e™",
where g(z) = end=" ' HFd and gy(z) = e 4" D" From (3.9) we get
w= b},’c:f Next, in view of (1.5), (3.9) to (3.12), we can write
(3.13) A(2)e*®" + B(2)e®#" 4+ C(2)e®*" + D(2)e®" + E =0,
where
Alz) = [b*—20* — 1] 9°G91992,
B(z) = [-2b%(ab— 1)+ 2ab+ 2u] gg91992
+ [—ab(b® — 1) + 0% + p] ¢*(Gg1 + 992),
C(z) = [b*(a®—1)—a®—p]gggig2 + [a®b® —a® —b* — u] ¢°
—[—2ab(ab — 1) + 2ab + 21] 9(gg1 + gg2),
D(z) = [—a3b +ab+a® + M] (991 + 992) + 2(—a’b + a® + ab+ p)g,
E = a*—2d%—p.

Applying Lemma 2.5 to (3.13) and taking into account (3.11), we see that all the
coefficients vanish. Since a and b are non-zero constants, we deduce from A(z) =0
and E = 0 that

(3.14) a* —2a% = p, b* —20% = .

2

Then, we have (a — b?)(a® + b* — 2) = 0. Now we discuss the following two cases.

Case 1. Let a® = b%. Due to a # b, we get a = —b. Denote G = g, G; = gg; and
G2 = ggo. From B(z) =0, D(z) = 0, we have
2(b" + p)G1Go = (=b* — p)G(G1 + Go),
2a* + )G = (~a* — ) (G1 + Ga).
Noting that pu # —1, we get b* + 1 # 0 and a* + p # 0 by (3.14). Thus, we have

2G1G9 = *G(Gl + GQ), 2G = *(G1 + GQ)
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From the last two equations, we obtain
G? = G1Ga, 4G1Gy = (G + Go)2.

So, we have —G = G = G5 and f = f = —f. From (3.9), the equality a = —b and

the above equation, we get
2

a
W=w=—.
w
Hence, from (1.5) we get a*(w? — 1) = w* + pw?. Therefore, w is a constant, which

is a contradiction.
Case 2. Let a? + b? = 2. When B(z) = 0 and D(z) = 0, then using arguments

similar to those applied in Case 1, we get
2G1G9 = —G(G1 + G2)7 2G = —(Gl + Gg)

Noting that u # —1, the above equations also lead to a contradiction by the similar

reasoning as in Case 1. This completes the proof of the theorem. |

4. EQUATION (1.6)

Theorem 4.1. Let w(z) = Q( %, where P(z) and Q(z) are relatively prime polynomials
of degrees p and q, respectively. If w(z) is a mon-constant rational solution of

equation (1.6), then
6 4
p=gq,ala®—1)=a— ), wherea::tg, A= ?a'
Proof. For p # ¢, the proof of the theorem is similar to that of Cases 1 and 2 in
Theorem 3.1, so we only prove the theorem for p = q. We assume that the leading

coefficient of P(z) is a (a # 0), and the leading coefficient of Q(z) is 1. Substituting

w(z) = Qgg into (1.6), we get

P(z+1) P(z—1) ((P(x)\* .\ _ (P Pk
U GEEnaE- ((Q(Z)) 1)‘(@<z>> o)

When p = ¢, we have Q( ; =a+o(1) and SEZB =a+ o(1) as z tends to infinite.

Then, from (4.1) we get the following equation

(4.2) ala®> —1)=a—

where a ¢ {0,+1}.
We rewrite (4.1) as follows:
P(z+1) P(z—1) _ P%*(z) — AP(2)Q(2)
Qlz+1)Q(z-1)  P(2) - Q%(2)
Arguments, similar to those applied in the proof of Theorem 3.1 (Case 3), can
be used to conclude that the degrees of P?(z) — AP(2)Q(z) and P?(z) —Q?(z) both
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are 2p for A\ # +1. Hence, we have

(4.3) (a® = Xa)PP = a*(P? — APQ),

(4.4) (a? —1)QQ = P? — Q.

Next, we assume P = ar, p = n, and use (4.3) to obtain

(4.5) MQ =7r (A —a) + ar?,

where

(46) r=2z" + An,lzn_l + A,,L,QZH_2 + An,32’n_3 + -4 Alz + AO,
(4.7) Q=2"4+B,_ 12" '+ By 22" 24+ B,,_32"" 2 +..-+ Bz + By.

We rewrite (4.4) as follows:
(4.8) (a*> -1)QQ + Q* = P°.

Substituting (4.6) and (4.7) into (4.5) and comparing the coefficients of terms 22",

22—l 227=2 we obtain the following two equations:

)\(anl - Anfl) =0,
)\(an2 + A, 1Bn_1+ An,Q) = (Angl + 24,5 — ?’L) + an.

For A = 0, from the last equation we get an = 0, which is a contradiction. For

A # 0, the last two equations become

n(a—M\)
—

By the same way, we substitute (4.6) and (4.7) into (4.8), and compare the coefficients

B, 1= An—h B, 2= An—2 +

of terms 227, 22771, 227=2 t0 obtain
n (a2 — 1)
2a2
So, we get 2a® = A(3a® — 1). And from (4.2), we have A = 2a — a®. By the above
equations, we have (3a? —2) (a? —1) = 0. Since a® # 1, we get a = i? and

A = +4Y6 Therefore é = é O
9 a 3

B, 1= An—ly Bp2= An—2 +

Theorem 4.2. If w is a transcendental meromorphic solution of equation (1.6) of

a finite order p(w) > 0, then the following assertions hold:
. 1
A () =t = tw);
(if) when A # 0, we have A(w) = p(w);

(iii) w has at most one non-zero Borel exceptional value.
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Proof. Denote ¢(z) = w(z)—z, and observe that ¢(z) is a transcendental meromorphic

function and T'(r, ¢) = T(r,w) + S(r,w). Substituting w(z) = ¢(z) + z into (1.6),

we obtain (¢ +z+1) (¢+2—1) ((¢+2)*—1) = (¢ + 2)? = A (¢ + 2). Denote
P(z,¢)=(¢+2+1) (¢+2—1) ((¢+2)°—1) = (¢ +2)* + A(p+ 2),

and observe that P(z,0) = (2% — 1)2 — 22 + Xz # 0. Then, from Lemma 2.3, we

obtain

m(nots ) = m(n1/6) = 5(0)

implying that N (r, ) =T (r,w) 4+ S(r,w), and hence 7(w) = p(w).

w—z
1
We deduce from Lemma 2.4 that m(r, w) = S(r, w). Then, the equality A <> =
w
p(w) holds.

To prove the assertion (ii), for A # 0, we rewrite (1.6) as follows:

w? — dw
w2 —1"

IS

Let w(z) = f(lz). Substituting w = % into the last equality, we get

?if)\:fi—1+f2.

From Lemma 2.2, we obtain m(r,1/w) = S(r,w). Therefore, \(w) = p(w).

|

Now we proceed to prove the assertion (iii) of the theorem. To this end, we

assume that a and b are two non-zero finite Borel exceptional values of w, and set
w(z) —a

4.9 = —.

(49) 1) = 055

Then, we have p(f) = p(w), A(f) = AMw—a) < p(f) and A(1/f) = A(w—b) < p(f).
Since f is of finite order, we suppose that

(4.10) f(2) = g(z)e™",

where d (d # 0) is a constant, n (n > 1) is an integer, and ¢(z) is a meromorphic

function satisfying the condition:

(4.11) p(g) < p(f) =n.

Then, we have

(4.12) fle+1) =g+ Da(x)e™", f(z=1) = g(z = 1)ga(2)e’",

where g1(z) = en®" FHd and gy(z) = e =" (D" From (4.9), we get
w= b}f_—la. In view of (1.6), (4.9) to (4.12), we can write

(4.13) A(2)e* " 4 B(2)e®" + C(2)e2*" + D(2)e?" + E =0,
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where
A(z) = [b" =20 +bA] 6°Gg1g9,
B(z) = [-2b%(ab—1)+ 2ab— Aa+b)] ggg1992
+ [=ab(d?* = 1) + b(b — N)] ¢*(Go1 + ggo),
C(z) = [b?(a®—1)—a®+aX|gggig2 + [a®b* —a® — b* + bA] ¢
+[2ab(ab — 1) — 2ab + A(a + b)] (991 + gg2),
D(2) = [-2a%b+2ab+2a* — Aa+b)] g+ (—a®b+a® + ab— aX)(gg1 + ggo),
E = a*—2d®+al.

Applying Lemma 2.5 to (4.13) and taking into account (4.11), we see that all the
coefficients vanish. Since a and b are non-zero constants, we deduce from A(z) =0
and E = 0 that

(4.14) a®—2a=—-\ b>—2b= -\

Then, we have (a—b)(a?+ab+b*—2) = 0. Since a # b, it follows that a?+b*+ab = 2.
By (4.14), a and b are distinct zeros of the equation z* — 2z + X\ = 0.

According to the algebraic basic theorem, the above equation has three solutions.
Denoting by « the third solution, and using the relationship between roots and

coefficients, we obtain abz = —\, ab + ax + bx = —2, a + b+ x = 0, implying that
2

ab+ (a+b)x =ab— = = —2.

A
at+b=—x=— 2

ab’

r=—

%a
So, we have

ab(a +b) = A, 2ab+ a?b? = (a +b)\,a® + b* +ab = 2.
Denote G = g, G1 = gg1 and Gy = ggs. From B(z) = 0, D(z) = 0 and the above

equations, we have

(20% — 2ab® — a®b*)G1Gy = (2ab® + a*b* — ab — b*)G(G, + Ga),
(2a® — 2ab — a®*V*)G = (2a°b+ a®b? — ab — a®)(G1 + Go).
Because
G1Go B 2ab® + a2b? — ab — b? b2 —ab

= = — 1.
G(Gy + G9) 262 — 2ab3 — a2b? 262 — 2ab3 — a2b?

By a? + b + ab = 2, we gain 2b> — 2ab® — a?b? = b3(b — a), and hence, we have
_ GG 1
G(G1 + Gz) b2 ’

Thus, we get

1
GGy = <

i 1) G(G1 +Gs), G = <a12 - 1> (G1+ Ga).
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Noting that X\ # +1, by (4.14), we get a? # 1 and b? # 1. Moreover, since the last
two equations are homogeneous, there exist two non-zero constants « and (3, such
that G; = aG and G5 = BG. Then, we have

a? — a?b?

(4.15) af = a2
On the other hand, combining (4.10) and (4.12), we get f = af, f = Bf, which
yields a8 = 1. Thus, by (4.15), we have a®> = b*>. When a = b, then we get a
contradiction. So, we have only to consider the case a = —b. From B(z) = 0,

D(z) =0 and a = —b, we have

20'G1Gy = (=b* +bN)G(Gy + Gy),
(4.16) 2¢'G = (—a*+a))(G1 + G2),
implying that
(4.17) (=b* — bN)G1Go = (—b* + bN)G.

Since the last equation is homogeneous, there exist two non-zero constants « and
(3, such that G; = aG and Gy = BG. Then, we have

(4.18) aB® + X)) =b* -\

On the other hand, combining (4.11) and (4.13), we get f = af, f = Bf, which
yields a8 = 1. Thus by (4.18), we have A = 0, and, in view of (4.16) and (4.17),
we infer that 2G = —(G1 + G32) and G1G2 = G?. Then, G; = Gy = —G. Thus, we
have « = f = —1 and f = f = —f, and by the similar reasoning as in Case 1 of
the proof of Theorem 3.1, we get a contradiction. (]

Acknowledgements. The authors would like to thank the Associate Editor and
the referee for their valuable suggestions that led to considerable improvement of

the paper.

CHUCOK JIMTEPATYPBI

[1] R. G. Halburd and R. J. Korhonen, “Existence of finite-order meromorphic solutions as a
detector of integrability in difference equations”, Physica D., 218, 191 — 203 (2006).

[2] Z.X. Chen and K. H. Shon, “Some results on difference Riccati equations”, Acta Mathematica
Sinica., 27, 1091 — 1100 (2011).

[3] W. K. Hayman, Meromorphic Functions (Clarendon Press, Oxford (1964).

[4] 1. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin-
New York (1993).

[5] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic
Publishers, Dordrecht (2003).

[6] Y. M. Chiang and S. J. Feng, “On the Nevanlinna characteristic of f(z + n) and difference
equations in the complex plane”, Ramanujan J., 16, 105 — 129 (2008).

[7] R. G. Halburd and R. J. Korhonen, “Difference analogue of the Lemma on the Logarithmic
Derivative with applications to difference equations”, J. Math. Anal. Appl., 314, 477 — 487
(2006).

7



L. LIU, J. ZHANG

[8] I. Laine and C. C. Yang, “Clunie theorems for difference and g-difference polynomials”, J.
Lond. Math. Soc., 76, 556 — 566 (2007).
[9] R. G. Halburd and R. J. Korhonen, “Finite order solutions and the discrete Painlevé
equations”, Proc. London Math. Soc., 94, 443 — 474 (2007).
[10] O. Ronkainen, “Meromorphic solutions of difference Painlevé equations”, Ann. Acad. Sci.
Fenn. Diss., 155, 59 pp. (2010).
[11] J. L. Zhang and L. Z. Yang, “Meromorphic solutions of Painlevé III difference equations”,
Acta Mathematica Sinica, Chinese series., 57, 181 — 188 (2014).
[12] J. L. Zhang and H. X. Yi, “Properties of meromorphic solutions of Painlevé III difference
equations”, Adv. Differ.Equ., 2013, 256, (2013).
[13] J. L. Zhang and H. X. Yi, “Borel exceptional values of meromorphic solutions of Painlevé IIT
difference equations”, Adv. Differ. Equ., 2014, 144 (2014).

Ilocrynuna 15 suBaps 2019
ITocse mopaborku 8 mas 2019
[Mpunsra k nybaukanun 19 mexabps 2019

78



