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1. INTRODUCTION

This paper is devoted to the solvability of the following fractional multi-point
houndary value problems (BVPs) at the resonance
(p()°DEu(®)) = f (4, u(t), &/ (1), 4" (1), “Dgut)), tel=[0,1],

L1) m l
T a0 =0, D) =0, w0 = Y€, w1 =Y bl

where ©Dg, is the Caputo fractional derivative, 2 < 2 <3, 0< & <+ < &y <
LOo<m< -<mym<l,anbieR, i=1,...,m,j=1,...1 ¢(t) € C(0,1]),
and ¢ = mingey ¢(¢) > 0. The nonlinearity is such that the following conditions are
satisfied:
(Ho) f:[0,1] x B* — R is a Carathdodory function, that is,
(i) for each = € R*, the function t — f(t,x) is Lebesgue measurable;
(it} for almost every ¢ € [0, 1], the function t — f(t, sc) is continuous on R4,
(i) for each r > 0, there exists @, (t) € L*([0,1], R) such that for ae. ¢t € [0,1]
x| <7, we have |f(t,2)] < .(2).

and overy
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The resonant conditions of (1.1) are as follows:
l l
(Hi) 3t 0 =1, Zj:l bj =1, Zj:l bjn; = 1.
!

This means that the linear operator Lu = ((;SCD(‘)X+ u) corresponding to the problem
(1.1) has a nontrivial solution or, in a functional framework, L is not invertible, that
is, dim kerLL > 1.

In order to be sure that the linear operator @ (to be specified later on) is well

defined, we assume, in addition, that

(Hy) There exist p,q € Z',q > p+ 1 such that A(p, q) = d11das — d12da21, where
oc 3

&i p _ &i q —
dll—zaz/ i f S ds, d21—zaz/ i 5 s ————ds,

LsP(1— )2 l i gP(n; — s)* 2

d :/ ———ds — b»/ —L (s,

P )y pels) E 7o pols)
1 s9(1 — i 1(n; — 5)*72

d :/ ds— b; / 7ds.

“ 0 q¢ Z 0 qo(s)

Note that A(p,q) # 0 (see [19, 23])

Fractional calculus is an extension of the ordinary differentiation and integration

a 3

to arbitrary non-integer order. In particular, time fractional differential equations
are used when attempting to describe the transport processes with long memory.
Recently, the study of time fractional ordinary and partial differential equations
has been received great attention by many researchers, both in theory and in
applications. We refer the reader to the monographs [1, 2, 20, 26, 30, 34|, the
papers [35] — [39], and the references therein. The question of existence of solutions
for fractional boundary-value problems at the resonance case has been extensively
studied by many authors (see [5] — [8, 10, 12, 13, 14, 17, 18, 21, 22, 32], and the
references therein. It is worth to mention that there are a number of papers dealing
with the solutions of multi-point boundary value problems of fractional differential
equations at the resonance (see [7, 8, 10, 17]).
In [8], Bai and Zhang considered a three-point boundary value problem of fractional
differential equations with nonlinear growth given by
Dgu(t) = f(t ut), DG u(t), t€0,1],

u(0) =0, u(l) = ou(),
where D, is the standard Riemann-Liouville derivative, 1 < o < 2, f : [0,1] x
R? — R is continuous and o € (0, o), n € (0, 1) are given constants such that
on®~! = 1. The authors applied the coincidence degree theorem to prove existence

of solutions. In [10], Chen and Tang have studied the following class of multi-point
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boundary value problems for fractional differential equations at the resonance by

employing the coincidence degree theorem:

(a(t)CDg+u(t))' = F(tu(t),d/ (), D2 u(t)), teJ,
m—1
w(0) =0, “Dgu(0)=0, u(l)=Y ou()
j=1
where 1 < a <2, f:[0,1] x R® — R satisfies the Carathéodory conditions, a(t) €
C'([0,1]), mingesa(t) >0, J=1[0,1], o; e R%, & € (0,1),j=1,....m—1,m¢€
N, m > 1, and Z?;l 0;&; = 1. The results are obtained under the assumption that

fmfl . 15 75a71i87 Sjs '75a71i5
Aoij;% (51/0 (1—3) ¢(s)d /0 (& ) ¢(S)d>7é0

In [7], Bai and Zhang considered the solvability of the following fractional multi-
point boundary value problems at the resonance with dim kerL. = 2 by applying

the coincidence degree theorem:

Diu(t) = f(t,u(t), Dy >u(t), Dy tut)),  t e (0,1),
157 u(0) =0, Dy Mu(0) = Dz (n), Zaz u(mi),

where 2 < a<3,0<n<1,0<m <ne <- <77m<1m>2211amf‘1=
Yo and T 2 = 1.Dg, and I, are the standard Riemann-Liouville fractional
derivative and the fractional integral, respectively, and f : [0, 1] x R? — R satisfies

the Carathéodory conditions. The results are obtained under the assumption that

m

e b ey ] S ]

i=1

Jiang [17], by using the coincidence degree theorem, has obtained an existence
result for the boundary value problems of fractional differential equations at the

resonance with dim kerL = 2:
D& u(t) = f(t u(t), Dgglu(t)), vte J=10,1],

u(0) =0, Dy u(0) Zal &), Dyu(0) =Y biDgi (),

Where2<a<3,0<§1<§2<~~~<§m<1,0<n1<172<~--<77n<
LY " a=1, Z;L:lbj = 1,2?:1bj77j =1, and f:[0,1] x R? — R satisfies the

Carathéodory conditions. The results are obtained under the assumption that

(1 —Zb]n]> Zaz@ — (1 —ijn]) 2%5 #0.

In this paper, we study problem (1.1), which allow f to have a nonlinear growth.
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The rest of the paper is organized as follows. In Section 2, we introduce some
notation, definitions and preliminary results, which will be used in the proofs of our
main results (see [1, 2, 20, 26, 27, 28, 30, 34]). In Section 3, we state and prove our
main results by applying the coincidence degree theorem. In Section 4 we provide

an example.

2. PRELIMINARIES

Definition 2.1. Let o > 0. For a function u : (0,00) — R, the Riemann-Liouville
fractional integral of order o of u is defined by

eut) = gy [ (=9 uleas,

provided that the right-hand side is pointwise defined on (0,00).

Remark 2.1. The notation I§, u(t) |;—o means that the limit is taken at almost all
points of the right-sided neighborhood (0,£)(e > 0) of 0 as follows:

I u(t) [=o0= tl_i}r&_ ISy u(t).

Generally, 1§ u(t) |1=o is not necessarily equal to zero. For instance, let o € (0, 1)

and u(t) =t~*. Then we have

—o 1 ! a—1_—o
ISt im0 = t1—>0+F( )/O(t—s) s7% s =T(1 — «).
Definition 2.2. Let o > 0 and n = [a] + 1, where [a] denotes the integer part of
«a. The Caputo fractional derivative of order o of a function u : (0,00) — R is
given by

“Dgu(t) = I *u™(t) = m/o (t—s) ™) (s)ds,

provided that the right-hand side is pointwise defined on (0, 00).

Lemma 2.2. Let a,n > 0 and n = [a] + 1. Then the following relations hold:
I'(n+1)
'n—a+1)

and °Dg tF =0, (k=0,...,n—1).

CDg+tn = tniaa (T’ >n— 1)a

Lemma 2.3. Let o, > 0, and u € L'([0,1]). Then I$ IV u(t) = IS u(t) and
“Dg I u(t) = u(t), for all t € [0,1]

Lemma 2.4. Let « > 0 and n = [a] + 1, then

Igﬁr oru(t )+ Z cnt®,  cp €R.
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Lemma 2.5. Let o > 0 and n = [a] + 1. If “Dg,u(t) € C[0,1], then u(t) €
cm1([0,1]).

Proof. Let v(t) € C[0,1] be such that “Dg, u(t) = v(t). Then by Lemma 2.3, we

have
u(t) cru(t +cht cr € R.
It is easy to check that u(t) € C™~1([0, 1]) O
Lemma 2.6. Let o >0 and u € L*([0,1],R). Then for all t € [0,1] we have
1o () < 5wl
Proof. Let u € Ll([O, 1],R), then by Lemma 2.3 we have
() = Bt = [ I uls)ds < / g u(s)ds = 115

(I

Lemma 2.7. The fractional integral I3, , a > 0 is bounded in L*([0,1],R), and

Julle
“TI'(a+1)

Proof. Let u € L' ([0,1],R), then can write

| I5vullp: = /|Ig‘+u |dt< //t—sa Yu(s)|dsdt
e BN 1 1
_@/0 |u<s>|ds/8<t ) dts—r(aﬂ)/o (s = s
O

Now we recall the coincidence degree continuation theorem and some related

Mg+ ullLr <

notions (for more details see [25]).

Definition 2.3. Let X andY be real Banach spaces. A linear operator L : dom L C

X — Y is said to be a Fredholm operator of index zero if

(1) Im L is a closed subset of Y;
(2) dimker L = codimImL < cc.

It follows from Definition 2.3 that there exist continuous projectors P : X — X
and @ : Y — Y such that

KerL=ImP, ImL=KerQ, X=KerL®KerP, Y=ImL®ImQ.
Also, it follows that
Ly =L laomrkerp: domL(|Ker P — ImL

is invertible and its inverse is denoted by K.
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Definition 2.4. Let L be a Fredholm operator of index zero, and let ) be an open
bounded subset of X such that dom L) # 0. Then the map N : Q — X will be
called L— compact on Q if

(1) QN(9Q) is bounded,

(2) Kpg N =K,(I-Q)N:Q — X is compact.

Theorem 2.8. Let L : domL C X — Y be a Fredholm operator of index zero,
and let N : X — Y be L-compact on Q. Assume that the following conditions are
satisfied:

(1) Lx # ANz for every (x, A) € Kdom L\Ker L) ﬂaﬂ} x (0,1).

(2) Nz ¢ Im L for every x € KerL() 09.

(3) deg (QN |kerr,2(Ker L,0) # 0, where Q : Y — Y is a projection such
that ImL = Ker Q.

Then, the abstract equation Lz = Nx has at least one solution in dom L.

For our purposes, the adequate functional space is:
X = {u : CD8‘+u € C([O, 1],R), u satisfies the boundary conditions of (1.1) },

equipped with the norm:

lullx = llulloo + llu' oo + 1u”lloe + 1D ull o,
where
= t)|.
lulloo = mas Ju(®)]
By means of the functional analysis theory, we can prove that (X, | - |x) is a

Banach space. Let Y = L'[0, 1] be the space of real measurable functions t —s y/(t)
defined on [0, 1] such that ¢ — |y(¢)| is Lebesgue integrable. Then Y is a Banach
space with the norm |yl = fol |y(t)|dt. Define L to be the linear operator from
dom L XtoY :

Lu = (QSCDS‘Jru)/, u € dom L.

where dom L = {u € X | “Dg, u(t)is absolutely continuous on [0, 1]}, and define
the operator NV : X — Y as follows:

Nu(t) = f(t,u(t), o' (), u" (1), “Dgsu(t), te0,1].
Then the boundary value problem (1.1) can be written in the following form:
Lu= Nu, wué€domlL.

To study the compactness of the operator N, we will need the following lemma.
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Lemma 2.9. A subset U C X is a relatively compact set in X if and only if U is
uniformly bounded and equicontinuous. Here the uniformly boundedness means that

there exists M > 0 such that for every u € U
lullx = lulloo + I lloo + " loc + DG ullow < M
and the equicontinuity means that Ve > 0, 30 > 0, such that
@ () —u® ()| <&, YueU, Vi, tyel, |t —ta] <6, Vie{0,1,2}.
and
D& u(ty) — “Dgult)| < e, Yu €U, Vi, ta €1, |t — ta] < 6.
3. THE MAIN RESULTS

In this section we state and prove our main results.

Lemma 3.1. Let y € Y, ¢(t) € C[0,1], p = minges ¢(t) > 0 and (Hy) hold, and
let Th, To : Y — Y be two linear operators defined by

_m . éi(&_s)a—3 s Ndrds
T = [ S [ s

Tg(y)z/o (1;)(852/ r)drds — Zb/ W/()Sy(r)drds.

Then u € X is a solution of the following linear fractional differential problem:

(wﬁ%mﬁzthu=mm

(3.1) !
u(0) = 0, “Dgu(0) = 0, u” z:a7 &), u'(1) = iju'(nj),

if and only if

u(t) =c cot? 1 U r)drds, ci,c
(32) (t) =1t + cot” + F(Oé)/o ¢(S) /0 y( )d d R 1,C2 € R,
and

(3.3) Ti(y) = Ta(y) = 0.

Proof. Let u be a solution of the problem (3.1). Then we have

o(t)°Dult) = C+/0 y(s)ds, ceR.

Since “Dg, u(0) = 0, we find

Dieult) = 5 [ wis)as.
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By Lemma 2.4, we get

t t— a—1 s
u(t) = co + 1t + cot? +/ %/ y(r)drds, c¢o,c1,c2 € R.
0 0

Since u(0) = 0, we have

t _ a—1 s
u(t) = ert + cat® + F(la)/o U ¢2) /0 y(r)drds, ci1,c2,€R.

By u”(0) = 322, a;u” (&) and Zz 1 a; = 1, we obtain

gaz /57 5_(‘:);3/0 y(r)drds = 0.

From the conditions u/(1) = Zi 1 bju'(n;) and Z] 1 b= Z 1bin; =1, we get

/01(1;(55);2/ r)drds — Zb/ '_(’Ziazfosy(r)drdso-

Thus, we have T1(y) = T2(y) = 0. On the other hand, if ¢1,co are arbitrary real

u(t) = eit + caot? +/0 (t_qﬁfs))a_ /05 y(r)drds,

then clearly «(0) = 0, and by Lemma 2.2 and 2.3, we obtain
CD0+U’( ) =0 ,
vee o, (6°Dgult)) =y(b).

Taking into account that (3.3) holds, we get the following equations:

T1 / l / T2
Z“l &) (a(il/)g)o’ “(1);%“(773‘)11(&(3)1)0.

Thus, u is a solution of the problem (3.1). This completes the proof. (]

constants and

Lemma 3.2. Assume that the conditions (Hy) — (Hz) hold.

t _Sa—l S
(3.4 K0 = [l [ wtras.

Furthermore, we have

(3.5) IKpyllx < prllyllzs,

where

(3.6) _1 R I S
' M= \Tla+1) " T(@ " Ta-1) '

Proof. It is clear that Ker L = {u | u(t) = cit + cat?, c1,c0 € R}. Furthermore,
Lemma 3.1 implies that
(3.7) ImL={yeY |Ti(y) =Ta(y) = 0}.
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Consider a continuous linear mapping @ : Y — Y defined by

(3.8) Qy = Q)" + Qa(y)t* ",
where p, ¢ are given in (Hj), and
Q:1(y) = @(dmﬂ(y) — do1T(y)),
Q2(y) = @( —dioT(y) + diiTa(y)).

We prove that Ker @Q = I'm L. Obviously, ImL C Ker Q. Also, if y € Ker @, then

dooT1(y) — d21To(y) = 0.
—d12T1(y) + di1 Tz (y) = 0.

The determinant of coefficients for (3.9) is A(p, q¢) # 0. Therefore T3 (y) = Ta(y) = 0,
implying that y € Im L. Thus, Ker Q@ C Im L. Now, we show that Q%y = Qy,

(3.9)

y €Y. For y €Y, we have

Q(Qiy)trh) = A . [dooT1 (Q1(y)tP ") — dnTo (Q1(y)t"™))]

= oY (dzzdu - d21d12)Q1y = Quy,

and

! p [dooT1 (Q2(y)t9™") = dan T2 (Q2(y)t9™ )]

= (d22d21 - d21d22)Q2y =0.
b.q
Similarly, we obtain

Q2P =0, Q2(Q2(y)t"™") = Qay.

Therefore, we get

Q% = Q ()P ")t + Qu (Qaly)tr )P !
+ Qo (Q1 ()P 4 Qo (Qa(y)t1 1)t}
= QY+ Q2(y)t ! = Qy,

showing that the operator @) is a projector.

Take y € Y of the form y = (y — Qy) + Qy to obtain (y — Qy) € KerQ = ImL
and Qy € Im@Q. Thus, Y = Im@Q + Im L. Also, for any y € Im@Q N Im L, from
y € ImQ there exist constants ci, ca € R such that y(t) = ¢t~ + c2t?7 !, and

from y € I'm L we obtain

(3.10) {dncl + daico =0,

d1201 + d2262 =0.
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The determinant of coefficients for (3.10) is A(p,q) # 0. Therefore (3.10) has a

unique solution ¢; = ¢y = 0, which implies that Im Q N Im L = 0. Then, we have
(3.11) Y=ImQdKerQ=ImQ@Q®ImL.

Thus, dim Ker L = 2 = dim Im @ = codim Ker QQ = codim I'm L, showing that L
is a Fredholm operator of index zero.
Let a mapping P : X — X be defined by
1
0

(3.12) Pu(t) = u/(0)t + uT()t?

We note that P is a linear continuous projector and I'm P = Ker L. It follows from
u = (u— Pu)+ Pu that X = Ker P+ Ker L. By simple calculation, we obtain that

KerL N KerP = {0}, and hence
(3.13) X =KerL® Ker P.
Define K, : Im L — dom L N Ker P as follows:

IR A () Ll
K)®) =5 [ s [ vtrnas.

Now, we show that K, is the inverse of L |gom Lnier p. In fact, for u € dom L N

Ker P, we have

(K, Lyu(t) = = (1a) /0 (t ;2; _ /O | ( CDngu)/(r)drds = 12.°D&, u(t)
= u(t) + u(0) + v'(0)t + @t?

In view of u € dom L N Ker P, we have u(0) = 0 and Pu = 0. Thus

(3.14) (K, Dyu(t) = u(t),

and for y € Im L, we find

/

B2 )] =)

¢

Thus, K, = (L ldom LAKer P )71. Again, for each y € I'm L, in view of Lemmas 2.3,

(LI () = L)) = | o60) D 5.

2.6 and 2.7, we can write

2
1Epllx =D max |(Kpy) @ (t)] + max [°Dg: (Kpy)(¢)
=0

(ol

2

s
1o ( O;y) (t)‘ + max

= max
o tel tel
2 1—1
I t I oyt
<5 max 155 'y 1 max wy()‘
el I tel I
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yll: yllz:

= pl (o + 1 —14)
and the result follows. O

+ < pillyllcr,

~

Lemma 3.3. Suppose that 2 is an open bounded subset of X such that dom L () #
(). Then N is L-compact on €.

Proof. It is clear that QN () and K, (I —Q)N(Q) are bounded, due to the fact that
f satisfies the Carathéodory conditions. Using the Lebesgue dominated convergence
theorem, we can easily show that QN and Kpo N = K,(I — Q)N : Q — X
are continuous. By the hypothesis (ii7) on the function f, there exists a constant
M > 0, such that [(I — Q)N (u(t))| < M, for all w € Q and ¢ € [0,1]. For i =0,1,2,
0<t; <ty <1,and u €, we can write

|(Kpq Nu) (k) = (Kpg Nu) ()

1 to (t2 _ S)a—i—l s 3 w(r\drds
“ta ol e [ U @
_ (=TT oy Nu(rydrds
/0 o / (I - Q) Nu(r)drd
M h a—i—1 — s a—i—1 s " —g a—i—1 s
Sipr(a—i) {/0 (t2 — ) (t1 —s) d ‘*‘/t1 (t2 —s) d }
M e e,
pl (o +1 —1)

Furthermore, we have

|Dg Kpg Nu(ts) — “Dgs Kp.g Nul(ty)]

1 to 1 t1
= ’Qb(tz)/o (I —Q)Nu(s)ds — m/o (I — Q)Nu(s)ds

= ' ((25(12) - ¢(11)> /Otl(I — Q)Nu(s)ds + @ /;2(—7 — Q)Nu(s)ds

M M
SEW(Q) —¢(t)] + ;(b —t1).

Since t®, t*~1, t*=2 and ¢(t) are uniformly continuous on [0, 1], we conclude that
K,(I — Q)N : Q — X is compact. O

Now we are in position to state the main result of this paper.
Theorem 3.4. Assume that, in addition to (Hp) — (Hz), the following conditions
hold.
(H3) There exists a Carathéodory function ® : [0,1] x (RT)* — R* that is
nondecreasing with respect to the last four arguments and satisfies the inequality:
‘f(t,$073317$2,$3)‘ < ®(t, |zol, |@1], |22], |z3]).
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(Hy) lim, o0 sup % fol ‘(I)(S,T, T, r) |ds < plim where p1 is defined by (3.6), and

1 2 5
m= (i 7o)
(Hs) There exists a constant A > 0 such that for u € dom L\Ker L, if |u (t)| > A
or |u” ()| > A for all t € [0,1], then Ty (Nu) # 0 or To(Nu) # 0.
(Hg) There exists a constant B > 0 such that for any ci, ca € R, if |c1] >
B, |co| > B, then either

TlN(Clt + CQtZ) + TQN(Clt + CQtQ) < 0,
or
TlN(Clt + CQtQ) + TQN(Clt + CQtQ) > 0.

Then, the problem (1.1) has at least one solution.

Remark 3.5. A sufficient condition for (H3) to be satisfied is the existence of
functions 6;(t) € Y, ¢ = 0,...,5 and a constant v € (0,1) such that for all
Zo,T1,%2,23 € R and t € [0,1] the nonlinearity f verifies one of the following

growth conditions:

IN

M- 14

-
Il
o

f(t, @0, 21, 22, 23) 0;(t)|zi| + 04(t)|z0l” + 05(1),

IN

f(t, @0, 21, 22, x3) 0; ()il + 0a(t)|z1]" + 05(1),

f(t7$075€17$27$3) 9z(t)|$z| + 04(t)|22|” + 95(75)7

R

S
Il
=)

Gz(t)|xl| + 94(t)|$3|y + 95(t).

-

o

f(t, @0, 21, 22, x3)
1=

In this case, (Hy) reduces to the following;:
* 3
(Hi) >ieo l0illzr < leerQ-

Proof of Theorem 3.4. Consider the set

O = {u € dom L\Ker L | Lu = ANu, \ € [0, 1]},
and observe that for u € Q, we have Lu = ANu. Thus, A # 0, Nu € ImL =
Ker@Q CY, and hence, Q(Nu) =0, that is, T (Nu) = To(Nu) = 0. It follows from
condition (Hy) that there exist t1,¢2 € [0,1], such that |u'(t1)] < A, [u”(t2)] < A.
If t; = to = 0, then we have |u/(0)] < A, |u”(0)] < A. Otherwise, in view of
Lu = ANu, we obtain

_ u’(0) o A [
u(t) = v (0)t + 5 t* + F(a)/o
57
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If to ;é O, then

A 2 (ty — 5)=3 [®
u”(ta2) = u”(0) + / / Nu(r)drds,
L= O Ty e S M0
and, together with |u”(t2)] < A, we get

b2 — )3 s ul| 1
[u” (0)] < |u”(t2)| + F(al— % /0 (t2 ¢(s)) /0 |Nu(r)|drds < A+ N|]|T]z[0< [Ll)'

Consequently, we have
1

[Nullr
If t1 # 0, then
, o . A t1 (tl _ 5)(172 s
u'(t1) = u'(0) +u"(0)t1 + Mo —1) / ) /0 Nu(r)drds,

and, according to (3.15) and |u/(t1)] < A, we get

t1 _g)a—2 s
O < )]+ 0O+ s [ S [ INuGlards

1 1 1
<24+ (e + 1) Vel
Therefore
(3.16) W/ (0)] < 24 + 1 ( I ) [Nullp:.
- p\T'(a) T(a—-1)

Next, for u € 1, we get
2
— @ (¢
|Pullx = ; e |(Pu) (1) +tr€n[g>§]! Dgs (Pu)(t)|
< 2|d/(0)] + 3Ju"(0)].

From (3.15) and (3.16), we obtain

(3.17) |1Pullx < 7A+ pa|| Nulp:.

Again, for all u € 4, we have (I — P)u € dom LN Ker P, and hence, by (3.14) and
(3.5), we find

(3.18)

I(I = Plullx = [|KpL(I = P)ul|x < p1f|[L(I = P)ul[r = pr|[Lullzr < pr[[Nul| s
From (3.17) and (3.18), we obtain
(3.19) lullx < 1Pullx + (T = Pullx < 7A+ (p1 + p2) [ Nul 1.

On the other hand, from (H3), we have

|Nul|p: = /01 ‘f(S,u(s),u’(s),u”(s),CD(‘iﬂru(s))‘ds

< /01 ‘@(s,u(s)m’(s),u”(s),CDg+u(s))’ds
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1
(3.20) < [ oGl e ) s

Because the function ® is Carathéodory, the function ¥ : Rt — R, given by
U(r) = %fol ‘@(s,r, T, r)|ds, is well defined. Let [ = lim,_, o, sup ¥(r). By (H4)
1 1
we have 0 < [ < I and hence, for each 0 < ¢ < -
that r > r. = U(r) < l+4e. If |lul|x > re, then ¥(JJulx) <

(3.20) implies that

— [, there exists r. such

1
i and hence,

(3.21) INuflr < I+ e)llullx-
Therefore, in view of (3.19) and (3.21), we obtain

< Jlullx < “
r u .
- X_l—(p1+p2)(l+s)

Consequently, we have

TA 7A
(3.22) lullx < max {”’ L—(+¢)(p1 + p2) } 1=+ +p)

Since (3.22) is valid for all 0 < € < p141-p2 — 1, we get
Jullx <
T 1=Up1+p2)

So, €1 is bounded. Denote

Qy = {u € KerL| Nu € ImL},

and observe that for u € s, we have u € Ker L = {u | u(t) = crt+eat?, c1,c0 € R},
and Q(Nu) = 0, that is,

TyN (e1t + eat®) = ToN (et + cot?) = 0.
From condition (Hg), we get |c1| < B, |ca| < B. Hence, 2y is bounded. Define
Q= {u e KerL | -Mu+(1—NQNu=0, €0, 1]}
provided that the first part of condition (Hg) holds, or
0y = {u e KerL| —Mu+(1—NQNu=0, A€o, 1]}

provided that the second part of (Hg) holds, where J : Ker L — ImQ@ is the

linear isomorphism given by
(3.23) J(Clt + CQtQ) = w1tp71 + (.dgtqil, c1,c0 € R,
with

(= diz]cr| + dinleal).
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Without loss of generality, we assume that the first part of (Hg) holds.

In fact u € Q3, means that u = ¢t + cot? and —AJu + (1 — A\)QNu = 0. Then we
obtain

(3.24) M (e1t + cat®) + (1 = QN (crt + cat®) = 0.

If X =0, then |c1| < B,|cz| < B. If A =1, then

{d22|01| —dayl|ea| =0

(3.25)
—d12‘01| + d11|02| = 0

The determinant of coefficients for (3.25) is A(p,q) # 0. Thus, the system (3.25)

has only zero solution, that is, ¢c; = co = 0.

Otherwise, if A # 0 and X # 1, in view of (3.23), the equation (3.24) becomes
)\(wltp_l + wth—l) = (1 - )\) (QlN(Clt + CQtQ)tp_l + QQN(Clt + CQtQ)tq_1>.

Hence
Awp = (1 — /\)Ql(clt + CQtz),
Aws = (1 —N)Q2 (C1t + 02t2).
Thus, we have
Ner| = (1= NTiN (ert + eat?),
Aea| = (1 = N)ToN (1t + 62t2).
Then, we get
A8+ 1821) = (1= 2) (TN (81 + 6562) + TaN (61t + 6t2) ) < 0.

By the first part of condition (Hg), we have |01 < B,|d2] < B. Hence, Q3 is
bounded.

Now, we proceed to show that all the conditions of Theorem 2.8 are satisfied.
Let Q be a bounded open set of X containing Ule Q;. By Lemma 3.3, N is L-
compact on €. Because Q; and € are bounded sets, we have

(1) Lu # ANu for each (u, ) € KdomL\KerL) N 8(2] x (0,1);
(2) Nu ¢ ImL for each v € KerL N 0N.
To show that the condition (3) of Theorem 2.8 is satisfied, we define

H(u,\) = £AJu+ (1 — \)QNu,
and observe that, because (23 is bounded, then we have
H(u,\) #0, Vue KerL()o9.
Appealing to the homotopy property of the degree, we obtain
deg (QN lkerr, ﬂ KerL, 0) = deg (H(7 0),9 m KerlL, 0)
:deg<H(~, 1),QﬂKerL,()) = deg( + J,QﬂKerL,O) #0.
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Thus, the condition (3) of Theorem 2.8 is also satisfied.
Finally, we can apply Theorem 2.8, to conclude that the abstract equation Lu =
Nu has at least one solution in dom L (), and hence, the boundary value problem

(1.1) has at least one solution in X. Theorem 3.4 is proved. O

4. AN EXAMPLE

To illustrate our main result, we discuss an example.

Example 4.1. Let us consider the following fractional boundary value problem

(qb(t)CDoiu(t))' = f(tu(t), o (8), 4" (1), CDE u(t)), t € [0,1]

1

(w1 u(0) = D u(0) =0, w'(0) =~ (3 ) 2" ().

1 1
"1)=—=2u' (| = (=),
u'(1) u (4> + 3u <2)
where ¢(t) = e!~3 and
f(t,xo,zl,xg,xg) =9 +cos:1:3(1 fsinxl) + V |xal.

Now show that the conditions of Theorem 3.4 are fulfilled.

Corresponding to the notation of the problem (1.1), we have that a = %, l =
2, m=2, ap = —1, ap = 2, 51:%, 522%, by = =2, by = 3, 771:%, Mo =
%7 p = minger ¢(t) = e=3 > 0. Then we have aj +az = by +by = 1, byny +bane = 1.
Thus, the condition (H;) is satisfied.

Also, we find

1 1
3 1 _1 i s % 1 _ 1 B s
Ti(y) = _/0 (§ — s) 263_‘5/0 y(r)drds + 2/0 (6 — s) 3 S/O y(r)drds,

Tr(y) = /01(1 —5)Eed /OS y(r)drds — 2/0411 G — s)ée?’_s /OS y(r)drds

1 1
-i-3/2 (l—s)ﬁe
O 2

By simple calculations, we get

w
|
w
o\
w
<
—
=
—
QU
3
j<%
[Va)

—761 —301
993 982 263
A(1,2) = s
(1.2) 1545 463 376 7 7
311 431

Therefore, the condition (Hz) holds.
On the other hand, we have

‘f(t,$079€1,$2,3?3)‘ < || + V22| + 2.
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It is easy to see that the condition (Hj) holds, where
1
eo(t) = 61(t) = 93(t) = O7 92(t) = 1, 64(t) = 5, 95(t> = 2, vV =

Next, we have

3
1 3 6 833
(p1+p2)§|| I =e (F(3.5) e T ) 1620

Therefore, the condition (H}) holds.

Let A = 9 and assume that |u”(¢)] > 9 holds for all ¢ € [0,1]. Then, by the
continuity of u”(t), we have either v”(¢) > 9 for all ¢ € [0, 1], or u”(t) < —9 for all
t €10,1]. If w”(t) > 9, then for all ¢ € [0, 1] we obtain

|
[\}
S—
ol
/N
| =
|
®
N———
[N
o)
o
|
w
o\
»
N
:\
—~
=
SN~—
+
Q
@]
o3
S
o
=%
I
N
3
N~—
—~
—
|
0
®,
=
Q\
—
N~—
SN—"
+
=
/;
=
-
N~
=%
3
QL
)

+ 3/0é (% _ 8) %63*8 AS (u”(T) + cos CD&.U(T) (1 - Sinu’(r)) + |U//(T)|>d7’ds.

L , o 3 1 3
> 5/ s(1 —s)2e3%ds — 14/ 5(7 - 5) e37%ds + 15/ 5(, - 5) 3% ds
0 0 4 0 2

7280
> —.
- 257
If w”(t) < =9, then for all ¢ € [0, 1] we obtain

To(y) = /01(1 —5)zeds /OS (u"(r) + cos “Dgu(r) (1 — sind/ (1)) + |u”(r)\)drds

_ 2/1i (i - 8)%&”*5 /S (u"(r) + cos D u(r) (1 — sinw'(r) + |UH(T)|>deS

0

+ 3/0; (% _ s>%e3—s /OS (u"(r) + cos CDSZru(r)(l —sin/(r)) + |u”(r)|)drd5.

L , TN IS
—4/ s(1—s)2e* %ds + 14/ S(* - s) e375ds — 12/ s(f - s) e375ds
0 0 4 0 2
< _12329.
- 544
So, the condition (Hj) is satisfied.
Let B =1 and ¢1,ce € R be such that |e1]| > 1, |e2] > 1. Then we have

IN

TlN(Clt + Cgtz) + TQN(Clt + Cgtz) = (2|CQ| + 2|CQ|)(d11 + d12) < 0.

So, the condition (Hg) is satisfied.
Thus, all the assumptions of Theorem 3.4 are satisfied, and hence, the problem

(4.1) has at least one solution.
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