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The resonant conditions of (1.1) are as follows:

(H1)
∑m
i=1 ai = 1,

∑l
j=1 bj = 1,

∑l
j=1 bjηj = 1.

This means that the linear operator Lu =
(
φCDα

0+u
)′

corresponding to the problem

(1.1) has a nontrivial solution or, in a functional framework, L is not invertible, that

is, dim kerL ≥ 1.

In order to be sure that the linear operator Q (to be speci�ed later on) is well

de�ned, we assume, in addition, that

(H2) There exist p, q ∈ Z+, q ≥ p+ 1 such that ∆(p, q) = d11d22 − d12d21, where

d11 =

m∑
i=1

ai

∫ ξi

0

sp(ξi − s)α−3

pφ(s)
ds, d21 =

m∑
i=1

ai

∫ ξi

0

sq(ξi − s)α−3

qφ(s)
ds,

d12 =

∫ 1

0

sp(1− s)α−2

pφ(s)
ds−

l∑
j=1

bj

∫ ηj

0

sp(ηj − s)α−2

pφ(s)
ds,

d22 =

∫ 1

0

sq(1− s)α−2

qφ(s)
ds−

l∑
j=1

bj

∫ ηj

0

sq(ηj − s)α−2

qφ(s)
ds.

Note that ∆(p, q) 6= 0 (see [19, 23]).

Fractional calculus is an extension of the ordinary di�erentiation and integration

to arbitrary non-integer order. In particular, time fractional di�erential equations

are used when attempting to describe the transport processes with long memory.

Recently, the study of time fractional ordinary and partial di�erential equations

has been received great attention by many researchers, both in theory and in

applications. We refer the reader to the monographs [1, 2, 20, 26, 30, 34], the

papers [35] � [39], and the references therein. The question of existence of solutions

for fractional boundary-value problems at the resonance case has been extensively

studied by many authors (see [5] � [8, 10, 12, 13, 14, 17, 18, 21, 22, 32], and the

references therein. It is worth to mention that there are a number of papers dealing

with the solutions of multi-point boundary value problems of fractional di�erential

equations at the resonance (see [7, 8, 10, 17]).

In [8], Bai and Zhang considered a three-point boundary value problem of fractional

di�erential equations with nonlinear growth given by

Dα
0+u(t) = f

(
t, u(t), Dα−1

0+ u(t)
)
, t ∈ [0, 1],

u(0) = 0, u(1) = σu(η),

where Dα
0+ is the standard Riemann-Liouville derivative, 1 < α ≤ 2, f : [0, 1] ×

R2 −→ R is continuous and σ ∈ (0, ∞), η ∈ (0, 1) are given constants such that

σηα−1 = 1. The authors applied the coincidence degree theorem to prove existence

of solutions. In [10], Chen and Tang have studied the following class of multi-point
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boundary value problems for fractional di�erential equations at the resonance by

employing the coincidence degree theorem:(
a(t)CDα

0+u(t)
)′

= f
(
t, u(t), u′(t),CDα

0+u(t)
)
, t ∈ J,

u(0) = 0, CDα
0+u(0) = 0, u(1) =

m−1∑
j=1

σju(ξj),

where 1 < α ≤ 2, f : [0, 1]×R3 −→ R satis�es the Carath�eodory conditions, a(t) ∈
C1([0, 1]), mint∈J a(t) > 0, J = [0, 1], σj ∈ R∗+, ξj ∈ (0, 1), j = 1, . . . ,m− 1, m ∈
N, m > 1, and

∑m−1
j=1 σjξj = 1. The results are obtained under the assumption that

Λ0 =
m−1∑
j=1

σj

(
ξj

∫ 1

0

s(1− s)α−1 1

φ(s)
ds−

∫ ξj

0

s(ξj − s)α−1
1

φ(s)
ds

)
6= 0.

In [7], Bai and Zhang considered the solvability of the following fractional multi-

point boundary value problems at the resonance with dim kerL = 2 by applying

the coincidence degree theorem:

Dα
0+u(t) = f

(
t, u(t), Dα−2

0+ u(t), Dα−1
0+ u(t)

)
, t ∈ (0, 1),

Iα−10+ u(0) = 0, Dα−1
0+ u(0) = D3−α

0+ (η), u(1) =

m∑
i=1

αiu(ηi),

where 2 < α < 3, 0 < η ≤ 1, 0 < η1 < η2 < · · · < ηm < 1, m ≥ 2,
∑m
i=1 αiη

α−1
i =∑m

i=1 αiη
α−2
i = 1. Dα

0+ and Iα0+ are the standard Riemann-Liouville fractional

derivative and the fractional integral, respectively, and f : [0, 1]×R3 −→ R satis�es

the Carath�eodory conditions. The results are obtained under the assumption that

R =
1

α
ηα

Γ(α)Γ(α− 1)

Γ(2α− 1)

[
1−

m∑
i=1

αiη
2α−2
i

]
− 1

α− 1
ηα−1

(Γ(α))2

Γ(2α)

[
1−

m∑
i=1

αiη
2α−1
i

]
6= 0.

Jiang [17], by using the coincidence degree theorem, has obtained an existence

result for the boundary value problems of fractional di�erential equations at the

resonance with dim kerL = 2:

Dα
0+u(t) = f

(
t, u(t), Dα−1

0+ u(t)
)
, ∀t ∈ J = [0, 1],

u(0) = 0, Dα−1
0+ u(0) =

m∑
i=1

aiD
α−1
0+ (ξi), Dα−2

0+ u(0) =

n∑
j=1

bjD
α−2
0+ (ηj),

where 2 < α < 3, 0 < ξ1 < ξ2 < · · · < ξm < 1, 0 < η1 < η2 < · · · < ηn <

1,
∑m
i=1 ai = 1,

∑n
j=1 bj = 1,

∑n
j=1 bjηj = 1, and f : [0, 1]× R2 −→ R satis�es the

Carath�eodory conditions. The results are obtained under the assumption that

1

3

(
1−

n∑
j=1

bjη
3
j

) m∑
i=1

aiξi −
1

2

(
1−

n∑
j=1

bjη
2
j

) m∑
i=1

aiξ
2
i 6= 0.

In this paper, we study problem (1.1), which allow f to have a nonlinear growth.
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The rest of the paper is organized as follows. In Section 2, we introduce some

notation, de�nitions and preliminary results, which will be used in the proofs of our

main results (see [1, 2, 20, 26, 27, 28, 30, 34]). In Section 3, we state and prove our

main results by applying the coincidence degree theorem. In Section 4 we provide

an example.

2. Preliminaries

De�nition 2.1. Let α > 0. For a function u : (0,∞) −→ R, the Riemann-Liouville

fractional integral of order α of u is de�ned by

Iα0+u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds,

provided that the right-hand side is pointwise de�ned on (0,∞).

Remark 2.1. The notation Iα0+u(t) |t=0 means that the limit is taken at almost all

points of the right-sided neighborhood (0, ε)(ε > 0) of 0 as follows:

Iα0+u(t) |t=0= lim
t→0+

Iα0+u(t).

Generally, Iα0+u(t) |t=0 is not necessarily equal to zero. For instance, let α ∈ (0, 1)

and u(t) = t−α. Then we have

Iα0+t
−α|t=0 = lim

t→0+

1

Γ(α)

∫ t

0

(t− s)α−1s−αds = Γ(1− α).

De�nition 2.2. Let α > 0 and n = [α] + 1, where [α] denotes the integer part of

α. The Caputo fractional derivative of order α of a function u : (0,∞) −→ R is

given by

CDα
0+u(t) = In−α0+ u(n)(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1u(n)(s)ds,

provided that the right-hand side is pointwise de�ned on (0,∞).

Lemma 2.2. Let α, η > 0 and n = [α] + 1. Then the following relations hold:

CDα
0+t

η =
Γ(η + 1)

Γ(η − α+ 1)
tη−α, (η > n− 1),

and CDα
0+t

k = 0, (k = 0, . . . , n− 1).

Lemma 2.3. Let α, β ≥ 0, and u ∈ L1
(
[0, 1]

)
. Then Iα0+I

β
0+u(t) = Iα+β0+ u(t) and

CDα
0+I

α
0+u(t) = u(t), for all t ∈ [0, 1]

Lemma 2.4. Let α > 0 and n = [α] + 1, then

Iα0+
CDα

0+u(t) = u(t) +

n−1∑
k=0

ckt
k, ck ∈ R.
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Lemma 2.5. Let α > 0 and n = [α] + 1. If CDα
0+u(t) ∈ C[0, 1], then u(t) ∈

Cn−1([0, 1]).

Proof. Let v(t) ∈ C[0, 1] be such that CDα
0+u(t) = v(t). Then by Lemma 2.3, we

have

u(t) = Iα0+v(t) +

n−1∑
k=0

ckt
k, ck ∈ R.

It is easy to check that u(t) ∈ Cn−1([0, 1]). �

Lemma 2.6. Let α > 0 and u ∈ L1
(
[0, 1],R

)
. Then for all t ∈ [0, 1] we have

Iα+1
0+ u(t) ≤ ‖Iα0+u‖L1 .

Proof. Let u ∈ L1
(
[0, 1],R

)
, then by Lemma 2.3 we have

Iα+1
0+ u(t) = I10+I

α
0+u(t) =

∫ t

0

Iα0+u(s)ds ≤
∫ 1

0

|Iα0+u(s)|ds = ‖Iα0+u‖L1 .

�

Lemma 2.7. The fractional integral Iα0+ , α > 0 is bounded in L1
(
[0, 1],R

)
, and

‖Iα0+u‖L1 ≤ ‖u‖L1

Γ(α+ 1)
.

Proof. Let u ∈ L1
(
[0, 1],R

)
, then can write

‖Iα0+u‖L1 =

∫ 1

0

|Iα0+u(t)|dt ≤ 1

Γ(α)

∫ 1

0

∫ t

0

(t− s)α−1|u(s)|dsdt

≤ 1

Γ(α)

∫ 1

0

|u(s)|ds
∫ 1

s

(t− s)α−1dt ≤ 1

Γ(α+ 1)

∫ 1

0

|u(s)|ds =
‖u‖L1

Γ(α+ 1)
.

�

Now we recall the coincidence degree continuation theorem and some related

notions (for more details see [25]).

De�nition 2.3. Let X and Y be real Banach spaces. A linear operator L : domL ⊂
X −→ Y is said to be a Fredholm operator of index zero if

(1) ImL is a closed subset of Y ;

(2) dimker L = codim ImL <∞.

It follows from De�nition 2.3 that there exist continuous projectors P : X −→ X

and Q : Y −→ Y such that

KerL = ImP, ImL = KerQ, X = Ker L⊕KerP, Y = ImL⊕ ImQ.

Also, it follows that

Lp = L |domL
⋂
Ker P : domL

⋂
Ker P −→ ImL

is invertible and its inverse is denoted by Kp.
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De�nition 2.4. Let L be a Fredholm operator of index zero, and let Ω be an open

bounded subset of X such that domL
⋂

Ω 6= ∅. Then the map N : Ω −→ X will be

called L− compact on Ω if

(1) QN(Ω) is bounded,

(2) KP,QN = Kp(I −Q)N : Ω −→ X is compact.

Theorem 2.8. Let L : domL ⊂ X −→ Y be a Fredholm operator of index zero,

and let N : X −→ Y be L-compact on Ω. Assume that the following conditions are

satis�ed:

(1) Lx 6= λNx for every (x, λ) ∈
[(
domL\Ker L

)⋂
∂Ω
]
× (0, 1).

(2) Nx /∈ ImL for every x ∈ KerL
⋂
∂Ω.

(3) deg (QN |Ker L,Ω
⋂
Ker L, 0) 6= 0, where Q : Y −→ Y is a projection such

that ImL = KerQ.

Then, the abstract equation Lx = Nx has at least one solution in domL
⋂

Ω.

For our purposes, the adequate functional space is:

X :=
{
u : CDα

0+u ∈ C
(
[0, 1],R

)
, u satis�es the boundary conditions of (1.1)

}
,

equipped with the norm:

‖u‖X = ‖u‖∞ + ‖u′‖∞ + ‖u′′‖∞ + ‖CDα
0+u‖∞,

where

‖u‖∞ = max
t∈[0,1]

|u(t)|.

By means of the functional analysis theory, we can prove that (X, ‖ · ‖X) is a

Banach space. Let Y = L1[0, 1] be the space of real measurable functions t −→ y(t)

de�ned on [0, 1] such that t −→ |y(t)| is Lebesgue integrable. Then Y is a Banach

space with the norm ‖y‖L1 =
∫ 1

0
|y(t)|dt. De�ne L to be the linear operator from

domL
⋂
X toY :

Lu =
(
φCDα

0+u
)′
, u ∈ domL.

where domL =
{
u ∈ X | CDα

0+u(t) is absolutely continuous on [0, 1]
}
, and de�ne

the operator N : X −→ Y as follows:

Nu(t) = f
(
t, u(t), u′(t), u′′(t),CDα

0+u(t)
)
, t ∈ [0, 1].

Then the boundary value problem (1.1) can be written in the following form:

Lu = Nu, u ∈ domL.

To study the compactness of the operator N , we will need the following lemma.
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Lemma 2.9. A subset U ⊂ X is a relatively compact set in X if and only if U is

uniformly bounded and equicontinuous. Here the uniformly boundedness means that

there exists M > 0 such that for every u ∈ U

‖u‖X = ‖u‖∞ + ‖u′‖∞ + ‖u′′‖∞ + ‖CDα
0+u‖∞ ≤M,

and the equicontinuity means that ∀ε > 0, ∃δ > 0, such that

|u(i)(t1)− u(i)(t2)| < ε, ∀u ∈ U, ∀t1, t2 ∈ I, |t1 − t2| < δ, ∀i ∈ {0, 1, 2}.

and

|CDα
0+u(t1)− CDα

0+u(t2)| < ε, ∀u ∈ U, ∀t1, t2 ∈ I, |t1 − t2| < δ.

3. The main results

In this section we state and prove our main results.

Lemma 3.1. Let y ∈ Y, φ(t) ∈ C1[0, 1], µ = mint∈I φ(t) > 0 and (H1) hold, and

let T1, T2 : Y −→ Y be two linear operators de�ned by

T1(y) =

m∑
i=1

ai

∫ ξi

0

(ξi − s)α−3

φ(s)

∫ s

0

y(r)drds,

T2(y) =

∫ 1

0

(1− s)α−2

φ(s)

∫ s

0

y(r)drds−
l∑

j=1

bj

∫ ηj

0

(ηj − s)α−2

φ(s)

∫ s

0

y(r)drds.

Then u ∈ X is a solution of the following linear fractional di�erential problem:

(3.1)


(
φ(t)CDα

0+u(t)
)′

= y(t), t ∈ I = [0, 1],

u(0) = 0, CDα
0+u(0) = 0, u′′(0) =

m∑
i=1

aiu
′′(ξi), u

′(1) =

l∑
j=1

bju
′(ηj),

if and only if

u(t) = c1t+ c2t
2 +

1

Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0

y(r)drds, c1, c2 ∈ R,(3.2)

and

T1(y) = T2(y) = 0.(3.3)

Proof. Let u be a solution of the problem (3.1). Then we have

φ(t)CDα
0+u(t) = c+

∫ t

0

y(s)ds, c ∈ R.

Since CDα
0+u(0) = 0, we �nd

CDα
0+u(t) =

1

φ(t)

∫ t

0

y(s)ds.
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By Lemma 2.4, we get

u(t) = c0 + c1t+ c2t
2 +

∫ t

0

(t− s)α−1

φ(s)

∫ s

0

y(r)drds, c0, c1, c2 ∈ R.

Since u(0) = 0, we have

u(t) = c1t+ c2t
2 +

1

Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0

y(r)drds, c1, c2,∈ R.

By u′′(0) =
∑m
i=1 aiu

′′(ξi) and
∑l
i=1 ai = 1, we obtain

l∑
i=1

ai

∫ ξi

0

(ξi − s)α−3

φ(s)

∫ s

0

y(r)drds = 0.

From the conditions u′(1) =
∑l
j=1 bju

′(ηj) and
∑l
j=1 bj =

∑l
j=1 bjηj = 1, we get∫ 1

0

(1− s)α−2

φ(s)

∫ s

0

y(r)drds−
l∑

j=1

bj

∫ ηj

0

(ηj − s)α−2

φ(s)

∫ s

0

y(r)drds = 0.

Thus, we have T1(y) = T2(y) = 0. On the other hand, if c1, c2 are arbitrary real

constants and

u(t) = c1t+ c2t
2 +

∫ t

0

(t− s)α−1

φ(s)

∫ s

0

y(r)drds,

then clearly u(0) = 0, and by Lemma 2.2 and 2.3, we obtain{
CDα

0+u(0) = 0

∀ t ∈ [0, 1],
(
φ(t)CDα

0+u(t)
)′

= y(t).

Taking into account that (3.3) holds, we get the following equations:

u′′(0)−
m∑
i=1

aiu
′′(ξi) =

T1(y)

Γ(α− 2)
= 0, u′(1)−

l∑
j=1

bju
′(ηj) =

T2(y)

Γ(α− 1)
= 0.

Thus, u is a solution of the problem (3.1). This completes the proof. �

Lemma 3.2. Assume that the conditions (H0)− (H2) hold.

(Kpy)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0

y(r)drds.(3.4)

Furthermore, we have

‖Kpy‖X ≤ ρ1‖y‖L1 ,(3.5)

where

ρ1 =
1

µ

(
1

Γ(α+ 1)
+

1

Γ(α)
+

1

Γ(α− 1)
+ 1

)
.(3.6)

Proof. It is clear that Ker L =
{
u | u(t) = c1t + c2t

2, c1, c2 ∈ R
}
. Furthermore,

Lemma 3.1 implies that

ImL =
{
y ∈ Y | T1(y) = T2(y) = 0

}
.(3.7)
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Consider a continuous linear mapping Q : Y −→ Y de�ned by

Qy = Q1(y)tp−1 +Q2(y)tq−1,(3.8)

where p, q are given in (H2), and

Q1(y) =
1

∆(p, q)

(
d22T1(y)− d21T2(y)

)
,

Q2(y) =
1

∆(p, q)

(
− d12T1(y) + d11T2(y)

)
.

We prove that KerQ = ImL. Obviously, ImL ⊂ KerQ. Also, if y ∈ KerQ, then

(3.9)

{
d22T1(y)− d21T2(y) = 0.

−d12T1(y) + d11T2(y) = 0.

The determinant of coe�cients for (3.9) is ∆(p, q) 6= 0. Therefore T1(y) = T2(y) = 0,

implying that y ∈ ImL. Thus, KerQ ⊂ ImL. Now, we show that Q2y = Qy,

y ∈ Y . For y ∈ Y, we have

Q1(Q1(y)tp−1) =
1

∆(p, q)

[
d22T1

(
Q1(y)tp−1

)
− d21T2

(
Q1(y)tp−1

))]
=

1

∆(p, q)

(
d22d11 − d21d12

)
Q1y = Q1y,

and

Q1

(
Q2(y)tq−1

)
=

1

∆(p, q)

[
d22T1

(
Q2(y)tq−1

)
− d21T2

(
Q2(y)tq−1

)]
=

1

∆(p, q)

(
d22d21 − d21d22

)
Q2y = 0.

Similarly, we obtain

Q2

(
Q1(y)tp−1

)
= 0, Q2

(
Q2(y)tq−1

)
= Q2y.

Therefore, we get

Q2y = Q1

(
Q1(y)tp−1

)
tp−1 +Q1

(
Q2(y)tq−1

)
tp−1

+Q2

(
Q1(y)tp−1

)
tq−1 +Q2

(
Q2(y)tq−1

)
tq−1

= Q1(y)tp−1 +Q2(y)tq−1 = Qy,

showing that the operator Q is a projector.

Take y ∈ Y of the form y =
(
y −Qy

)
+Qy to obtain

(
y −Qy

)
∈ KerQ = ImL

and Qy ∈ ImQ. Thus, Y = ImQ + ImL. Also, for any y ∈ ImQ ∩ ImL, from

y ∈ ImQ there exist constants c1, c2 ∈ R such that y(t) = c1t
p−1 + c2t

q−1, and

from y ∈ ImL we obtain

(3.10)

{
d11c1 + d21c2 = 0,

d12c1 + d22c2 = 0.
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The determinant of coe�cients for (3.10) is ∆(p, q) 6= 0. Therefore (3.10) has a

unique solution c1 = c2 = 0, which implies that ImQ ∩ ImL = 0. Then, we have

Y = ImQ⊕KerQ = ImQ⊕ ImL.(3.11)

Thus, dimKer L = 2 = dim ImQ = codimKerQ = codim ImL, showing that L

is a Fredholm operator of index zero.

Let a mapping P : X −→ X be de�ned by

Pu(t) = u′(0)t+
u′′(0)

2
t2.(3.12)

We note that P is a linear continuous projector and ImP = Ker L. It follows from

u = (u−Pu)+Pu that X = Ker P +Ker L. By simple calculation, we obtain that

KerL ∩KerP = {0}, and hence

X = Ker L⊕Ker P.(3.13)

De�ne Kp : ImL −→ domL ∩Ker P as follows:

(Kpy)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0

y(r)drds.

Now, we show that Kp is the inverse of L |domL∩Ker P . In fact, for u ∈ domL ∩
Ker P , we have

(KpL)u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0

(
φCDα

0+u
)′

(r)drds = Iα0+
CDα

0+u(t)

= u(t) + u(0) + u′(0)t+
u′′(0)

2
t2.

In view of u ∈ domL ∩Ker P , we have u(0) = 0 and Pu = 0. Thus

(KpL)u(t) = u(t),(3.14)

and for y ∈ Im L, we �nd

(LKp)y(t) = L(Kpy)(t) =

[
φ(t)CDα

0+I
α
0+

(I10+y
φ

)
(t)

]′
= y(t).

Thus, Kp =
(
L |domL∩Ker P

)−1
. Again, for each y ∈ Im L, in view of Lemmas 2.3,

2.6 and 2.7, we can write

‖Kpy‖X =

2∑
i=0

max
t∈I

∣∣(Kpy)(i)(t)
∣∣+ max

t∈I

∣∣CDα
0+(Kpy)(t)

∣∣
=

2∑
i=0

max
t∈I

∣∣∣∣Iα−i0+

(
I10+y

φ

)
(t)

∣∣∣∣+ max
t∈I

∣∣∣∣(I10+yφ
)

(t)

∣∣∣∣
≤

2∑
i=0

max
t∈I

∣∣∣∣∣Iα+1−i
0+ y(t)

µ

∣∣∣∣∣+ max
t∈I

∣∣∣∣I10+y(t)

µ

∣∣∣∣
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≤
2∑
i=0

‖y‖L1

µΓ(α+ 1− i)
+
‖y‖L1

µ
≤ ρ1‖y‖L1 ,

and the result follows. �

Lemma 3.3. Suppose that Ω is an open bounded subset of X such that domL
⋂

Ω 6=
∅. Then N is L-compact on Ω.

Proof. It is clear that QN(Ω) andKp(I−Q)N(Ω) are bounded, due to the fact that

f satis�es the Carath�eodory conditions. Using the Lebesgue dominated convergence

theorem, we can easily show that QN and KP,QN = Kp(I − Q)N : Ω −→ X

are continuous. By the hypothesis (iii) on the function f , there exists a constant

M > 0, such that |(I −Q)N(u(t))| ≤M , for all u ∈ Ω and t ∈ [0, 1]. For i = 0, 1, 2,

0 ≤ t1 ≤ t2 ≤ 1, and u ∈ Ω, we can write∣∣∣(KP,QNu
)(i)

(t2)−
(
KP,QNu

)(i)
(t1)

∣∣∣
=

1

Γ(α− i)

∣∣∣∣∫ t2

0

(t2 − s)α−i−1

φ(s)

∫ s

0

(I −Q)Nu(r)drds

−
∫ t1

0

(t1 − s)α−i−1

φ(s)

∫ s

0

(I −Q)Nu(r)drds

∣∣∣∣
≤ M

µΓ(α− i)

{∫ t1

0

(t2 − s)α−i−1 − (t1 − s)α−i−1ds+

∫ t2

t1

(t2 − s)α−i−1ds
}

=
M

µΓ(α+ 1− i)
(tα−i2 − tα−i1 ).

Furthermore, we have∣∣CDα
0+KP,QNu(t2)− CDα

0+KP,QNu(t1)
∣∣

=

∣∣∣∣ 1

φ(t2)

∫ t2

0

(I −Q)Nu(s)ds− 1

φ(t1)

∫ t1

0

(I −Q)Nu(s)ds

∣∣∣∣
=

∣∣∣∣( 1

φ(t2)
− 1

φ(t1)

)∫ t1

0

(I −Q)Nu(s)ds+
1

φ(t2)

∫ t2

t1

(I −Q)Nu(s)ds

∣∣∣∣
≤M
µ2

∣∣φ(t2)− φ(t1)
∣∣+

M

µ

(
t2 − t1

)
.

Since tα, tα−1, tα−2 and φ(t) are uniformly continuous on [0, 1], we conclude that

Kp(I −Q)N : Ω −→ X is compact. �

Now we are in position to state the main result of this paper.

Theorem 3.4. Assume that, in addition to (H0)− (H2), the following conditions

hold.

(H3) There exists a Carath�eodory function Φ : [0, 1] × (R+)4 −→ R+ that is

nondecreasing with respect to the last four arguments and satis�es the inequality:∣∣∣f(t, x0, x1, x2, x3)∣∣∣ ≤ Φ
(
t, |x0|, |x1|, |x2|, |x3|

)
.
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(H4) limr→∞ sup 1
r

∫ 1

0

∣∣Φ(s, r, r, r, r)∣∣ds < 1
ρ1+ρ2

where ρ1 is de�ned by (3.6), and

ρ2 =
1

µ

(
2

Γ(α)
+

5

Γ(α− 1)

)
.

(H5) There exists a constant A > 0 such that for u ∈ domL\Ker L, if |u′
(t)| > A

or |u′′
(t)| > A for all t ∈ [0, 1], then T1(Nu) 6= 0 or T2(Nu) 6= 0.

(H6) There exists a constant B > 0 such that for any c1, c2 ∈ R, if |c1| >
B, |c2| > B, then either

T1N
(
c1t+ c2t

2
)

+ T2N
(
c1t+ c2t

2
)
< 0,

or

T1N
(
c1t+ c2t

2
)

+ T2N
(
c1t+ c2t

2
)
> 0.

Then, the problem (1.1) has at least one solution.

Remark 3.5. A su�cient condition for (H3) to be satis�ed is the existence of

functions θi(t) ∈ Y, i = 0, . . . , 5 and a constant ν ∈ (0, 1) such that for all

x0, x1, x2, x3 ∈ R and t ∈ [0, 1] the nonlinearity f veri�es one of the following

growth conditions:∣∣∣f(t, x0, x1, x2, x3)∣∣∣ ≤ 3∑
i=0

θi(t)|xi|+ θ4(t)|x0|ν + θ5(t),

∣∣∣f(t, x0, x1, x2, x3)∣∣∣ ≤ 3∑
i=0

θi(t)|xi|+ θ4(t)|x1|ν + θ5(t),

∣∣∣f(t, x0, x1, x2, x3)∣∣∣ ≤ 3∑
i=0

θi(t)|xi|+ θ4(t)|x2|ν + θ5(t),

∣∣∣f(t, x0, x1, x2, x3)∣∣∣ ≤ 3∑
i=0

θi(t)|xi|+ θ4(t)|x3|ν + θ5(t).

In this case, (H4) reduces to the following:

(H∗4 )
∑3
i=0 ‖θi‖L1 < 1

ρ1+ρ2
.

Proof of Theorem 3.4. Consider the set

Ω1 =
{
u ∈ domL\Ker L | Lu = λNu, λ ∈ [0, 1]

}
,

and observe that for u ∈ Ω1, we have Lu = λNu. Thus, λ 6= 0, Nu ∈ ImL =

KerQ ⊂ Y , and hence, Q(Nu) = 0, that is, T1(Nu) = T2(Nu) = 0. It follows from

condition (H5) that there exist t1, t2 ∈ [0, 1], such that |u′(t1)| ≤ A, |u′′(t2)| ≤ A.
If t1 = t2 = 0, then we have |u′(0)| ≤ A, |u′′(0)| ≤ A. Otherwise, in view of

Lu = λNu, we obtain

u(t) = u′(0)t+
u′′(0)

2
t2 +

λ

Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0

Nu(r)drds.
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If t2 6= 0, then

u′′(t2) = u′′(0) +
λ

Γ(α− 2)

∫ t2

0

(t2 − s)α−3

φ(s)

∫ s

0

Nu(r)drds,

and, together with |u′′(t2)| ≤ A, we get

|u′′(0)| ≤ |u′′(t2)|+ 1

Γ(α− 2)

∫ t2

0

(t2 − s)α−3

φ(s)

∫ s

0

|Nu(r)|drds ≤ A+
‖Nu‖L1

µΓ(α− 1)
.

Consequently, we have

|u′′(0)| ≤ A+
1

µΓ(α− 1)
‖Nu‖L1 .(3.15)

If t1 6= 0, then

u′(t1) = u′(0) + u′′(0)t1 +
λ

Γ(α− 1)

∫ t1

0

(t1 − s)α−2

φ(s)

∫ s

0

Nu(r)drds,

and, according to (3.15) and |u′(t1)| ≤ A, we get

|u′(0)| ≤ |u′(t1)|+ |u′′(0)|+ 1

Γ(α− 1)

∫ t1

0

(t1 − s)α−2

φ(s)

∫ s

0

|Nu(r)|drds

≤ 2A+
1

µ

(
1

Γ(α)
+

1

Γ(α− 1)

)
‖Nu‖L1 .

Therefore

|u′(0)| ≤ 2A+
1

µ

(
1

Γ(α)
+

1

Γ(α− 1)

)
‖Nu‖L1 .(3.16)

Next, for u ∈ Ω1, we get

‖Pu‖X =

2∑
i=0

max
t∈[0,1]

∣∣(Pu)(i)(t)
∣∣+ max

t∈[0,1]

∣∣CDα
0+(Pu)(t)

∣∣
≤ 2|u′(0)|+ 3|u′′(0)|.

From (3.15) and (3.16), we obtain

‖Pu‖X ≤ 7A+ ρ2‖Nu‖L1 .(3.17)

Again, for all u ∈ Ω1, we have (I−P )u ∈ domL∩Ker P , and hence, by (3.14) and

(3.5), we �nd

(3.18)

‖(I − P )u‖X = ‖KpL(I − P )u‖X ≤ ρ1‖L(I − P )u‖L1 = ρ1‖Lu‖L1 ≤ ρ1‖Nu‖L1 .

From (3.17) and (3.18), we obtain

(3.19) ‖u‖X ≤ ‖Pu‖X + ‖(I − P )u‖X ≤ 7A+
(
ρ1 + ρ2

)
‖Nu‖L1 .

On the other hand, from (H3), we have

‖Nu‖L1 =

∫ 1

0

∣∣∣f(s, u(s), u′(s), u′′(s),CDα
0+u(s)

)∣∣∣ds
≤
∫ 1

0

∣∣∣Φ(s, u(s), u′(s), u′′(s),CDα
0+u(s)

)∣∣∣ds
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≤
∫ 1

0

∣∣∣Φ(s, ‖u‖X , ‖u‖X , ‖u‖X , ‖u‖X)∣∣∣ds.(3.20)

Because the function Φ is Carath�eodory, the function Ψ : R+ −→ R+, given by

Ψ(r) = 1
r

∫ 1

0

∣∣Φ(s, r, r, r, r)∣∣ds, is well de�ned. Let l = limr→∞ sup Ψ(r). By (H4)

we have 0 < l < 1
ρ1+ρ2

, and hence, for each 0 < ε < 1
ρ1+ρ2

− l, there exists rε such
that r ≥ rε =⇒ Ψ(r) < l + ε. If ‖u‖X ≥ rε, then Ψ(‖u‖X) < 1

ρ1+ρ2
, and hence,

(3.20) implies that

(3.21) ‖Nu‖L1 ≤ (l + ε)‖u‖X .

Therefore, in view of (3.19) and (3.21), we obtain

rε ≤ ‖u‖X ≤
7A

1−
(
ρ1 + ρ2

)
(l + ε)

.

Consequently, we have

(3.22) ‖u‖X ≤ max

{
rε,

7A

1− (l + ε)
(
ρ1 + ρ2

)} =
7A

1− (l + ε)
(
ρ1 + ρ2

) .
Since (3.22) is valid for all 0 < ε < 1

ρ1+ρ2
− l, we get

‖u‖X ≤
7A

1− l
(
ρ1 + ρ2

) .
So, Ω1 is bounded. Denote

Ω2 =
{
u ∈ Ker L | Nu ∈ ImL

}
,

and observe that for u ∈ Ω2, we have u ∈ Ker L =
{
u | u(t) = c1t+c2t

2, c1, c2 ∈ R
}
,

and Q(Nu) = 0, that is,

T1N
(
c1t+ c2t

2
)

= T2N
(
c1t+ c2t

2
)

= 0.

From condition (H6), we get |c1| ≤ B, |c2| ≤ B. Hence, Ω2 is bounded. De�ne

Ω3 :=
{
u ∈ Ker L | −λJu+ (1− λ)QNu = 0, λ ∈ [0, 1]

}
provided that the �rst part of condition (H6) holds, or

Ω3 :=
{
u ∈ Ker L | −λJu+ (1− λ)QNu = 0, λ ∈ [0, 1]

}
provided that the second part of (H6) holds, where J : Ker L −→ ImQ is the

linear isomorphism given by

J
(
c1t+ c2t

2
)

= ω1t
p−1 + ω2t

q−1, c1, c2 ∈ R,(3.23)

with

ω1 =
1

∆(p, q)

(
d22|c1| − d21|c2|

)
, ω2 =

1

∆(p, q)

(
− d12|c1|+ d11|c2|

)
.
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Without loss of generality, we assume that the �rst part of (H6) holds.

In fact u ∈ Ω3, means that u = c1t+ c2t
2 and −λJu+ (1− λ)QNu = 0. Then we

obtain

−λJ
(
c1t+ c2t

2
)

+ (1− λ)QN
(
c1t+ c2t

2
)

= 0.(3.24)

If λ = 0, then |c1| ≤ B, |c2| ≤ B. If λ = 1, then

(3.25)

{
d22|c1| − d21|c2| = 0

−d12|c1|+ d11|c2| = 0.

The determinant of coe�cients for (3.25) is ∆(p, q) 6= 0. Thus, the system (3.25)

has only zero solution, that is, c1 = c2 = 0.

Otherwise, if λ 6= 0 and λ 6= 1, in view of (3.23), the equation (3.24) becomes

λ
(
ω1t

p−1 + ω2t
q−1) = (1− λ)

(
Q1N

(
c1t+ c2t

2
)
tp−1 +Q2N

(
c1t+ c2t

2
)
tq−1

)
.

Hence {
λω1 = (1− λ)Q1

(
c1t+ c2t

2
)
,

λω2 = (1− λ)Q2

(
c1t+ c2t

2
)
.

Thus, we have {
λ|c1| = (1− λ)T1N

(
c1t+ c2t

2
)
,

λ|c2| = (1− λ)T2N
(
c1t+ δ2t

2
)
.

Then, we get

λ
(
|δ1|+ |δ2|

)
= (1− λ)

(
T1N

(
δ1t+ δ2t

2
)

+ T2N
(
δ1t+ δ2t

2
))

< 0.

By the �rst part of condition (H6), we have |δ1| ≤ B, |δ2| ≤ B. Hence, Ω3 is

bounded.

Now, we proceed to show that all the conditions of Theorem 2.8 are satis�ed.

Let Ω be a bounded open set of X containing
⋃3
i=1 Ωi. By Lemma 3.3, N is L-

compact on Ω. Because Ω1 and Ω2 are bounded sets, we have

(1) Lu 6= λNu for each (u, λ) ∈
[(
domL\KerL

)
∩ ∂Ω

]
× (0, 1);

(2) Nu /∈ ImL for each u ∈ KerL ∩ ∂Ω.

To show that the condition (3) of Theorem 2.8 is satis�ed, we de�ne

H(u, λ) = ±λJu+ (1− λ)QNu,

and observe that, because Ω3 is bounded, then we have

H(u, λ) 6= 0, ∀u ∈ KerL
⋂
∂Ω.

Appealing to the homotopy property of the degree, we obtain

deg
(
QN |kerL,Ω

⋂
KerL, 0

)
= deg

(
H(·, 0),Ω

⋂
KerL, 0

)
=deg

(
H(·, 1),Ω

⋂
KerL, 0

)
= deg

(
± J,Ω

⋂
KerL, 0

)
6= 0.
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Thus, the condition (3) of Theorem 2.8 is also satis�ed.

Finally, we can apply Theorem 2.8, to conclude that the abstract equation Lu =

Nu has at least one solution in dom L
⋂

Ω, and hence, the boundary value problem

(1.1) has at least one solution in X. Theorem 3.4 is proved. �

4. An example

To illustrate our main result, we discuss an example.

Example 4.1. Let us consider the following fractional boundary value problem

(4.1)

(
φ(t)CD

5
2

0+u(t)
)′

= f
(
t, u(t), u′(t), u′′(t),CD

5
2

0+u(t)
)
, t ∈ [0, 1]

u(0) = CDα
0+u(0) = 0, u′′(0) = −u′′

(
1

3

)
+ 2u′′

(
1

6

)
,

u′(1) = −2u′
(

1

4

)
+ 3u′

(
1

2

)
.

where φ(t) = et−3 and

f
(
t, x0, x1, x2, x3

)
= x2 + cosx3

(
1− sinx1

)
+
√
|x2|.

Now show that the conditions of Theorem 3.4 are ful�lled.

Corresponding to the notation of the problem (1.1), we have that α = 5
2 , l =

2, m = 2, a1 = −1, a2 = 2, ξ1 = 1
3 , ξ2 = 1

6 , b1 = −2, b2 = 3, η1 = 1
4 , η2 =

1
2 , µ = mint∈I φ(t) = e−3 > 0. Then we have a1 +a2 = b1 +b2 = 1, b1η1 +b2η2 = 1.

Thus, the condition (H1) is satis�ed.

Also, we �nd

T1(y) = −
∫ 1

3

0

(1

3
− s
)− 1

2

e3−s
∫ s

0

y(r)drds+ 2

∫ 1
6

0

(1

6
− s
)− 1

2

e3−s
∫ s

0

y(r)drds,

T2(y) =

∫ 1

0

(1− s) 1
2 e3−s

∫ s

0

y(r)drds− 2

∫ 1
4

0

(1

4
− s
) 1

2

e3−s
∫ s

0

y(r)drds

+ 3

∫ 1
2

0

(1

2
− s
) 1

2

e3−s
∫ s

0

y(r)drds.

By simple calculations, we get

∆(1, 2) =

∣∣∣∣∣∣
−761
993

−301
982

1545
311

463
431

∣∣∣∣∣∣ =
263

376
6= 0,

Therefore, the condition (H2) holds.

On the other hand, we have∣∣∣f(t, x0, x1, x2, x3)∣∣∣ ≤ |x2|+√|x2|+ 2.
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It is easy to see that the condition (H3) holds, where

θ0(t) = θ1(t) = θ3(t) = 0, θ2(t) = 1, θ4(t) =
1

2
, θ5(t) = 2, ν =

1

2
.

Next, we have

(
ρ1 + ρ2

) 3∑
i=0

‖θi‖L1 = e−3
(

1

Γ(3.5)
+

3

Γ(2.5)
+

6

Γ(1.5)
+ 1

)
=

833

1620
< 1.

Therefore, the condition (H∗4 ) holds.

Let A = 9 and assume that |u′′(t)| > 9 holds for all t ∈ [0, 1]. Then, by the

continuity of u′′(t), we have either u′′(t) > 9 for all t ∈ [0, 1], or u′′(t) < −9 for all

t ∈ [0, 1]. If u′′(t) > 9, then for all t ∈ [0, 1] we obtain

T2(y) =

∫ 1

0

(1− s) 1
2 e3−s

∫ s

0

(
u′′(r) + cosCDα

0+u(r)
(
1− sinu′(r)

)
+
√
|u′′(r)|

)
drds

− 2

∫ 1
4

0

(1

4
− s
) 1

2

e3−s
∫ s

0

(
u′′(r) + cosCDα

0+u(r)
(
1− sinu′(r)

)
+
√
|u′′(r)|

)
drds

+ 3

∫ 1
2

0

(1

2
− s
) 1

2

e3−s
∫ s

0

(
u′′(r) + cosCDα

0+u(r)
(
1− sinu′(r)

)
+
√
|u′′(r)|

)
drds.

≥ 5

∫ 1

0

s(1− s) 1
2 e3−sds− 14

∫ 1
4

0

s
(1

4
− s
) 1

2

e3−sds+ 15

∫ 1
2

0

s
(1

2
− s
) 1

2

e3−sds

≥ 7280

257
.

If u′′(t) < −9, then for all t ∈ [0, 1] we obtain

T2(y) =

∫ 1

0

(1− s) 1
2 e3−s

∫ s

0

(
u′′(r) + cosCDα

0+u(r)
(
1− sinu′(r)

)
+
√
|u′′(r)|

)
drds

− 2

∫ 1
4

0

(1

4
− s
) 1

2

e3−s
∫ s

0

(
u′′(r) + cosCDα

0+u(r)
(
1− sinu′(r)

)
+
√
|u′′(r)|

)
drds

+ 3

∫ 1
2

0

(1

2
− s
) 1

2

e3−s
∫ s

0

(
u′′(r) + cosCDα

0+u(r)
(
1− sinu′(r)

)
+
√
|u′′(r)|

)
drds.

≤ −4

∫ 1

0

s(1− s) 1
2 e3−sds+ 14

∫ 1
4

0

s
(1

4
− s
) 1

2

e3−sds− 12

∫ 1
2

0

s
(1

2
− s
) 1

2

e3−sds

≤ −12329

544
.

So, the condition (H5) is satis�ed.

Let B = 1 and c1, c2 ∈ R be such that |c1| > 1, |c2| > 1. Then we have

T1N
(
c1t+ c2t

2
)

+ T2N
(
c1t+ c2t

2
)

=
(
2|c2|+

√
2|c2|

)
(d11 + d12) < 0.

So, the condition (H6) is satis�ed.

Thus, all the assumptions of Theorem 3.4 are satis�ed, and hence, the problem

(4.1) has at least one solution.
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