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Abstract. For some large classes of differendial equations of the fist order we give
bounds for Ahlfors-Shimizu characteristics of meromorphic solutions in the complex
plane of these equations. The considered equations largely generalize algebraic ones
for which the obtained results imply the known Goldberg theorem. Characteristics
of meromorphic solutions in a given domain weren’t studied at all. We consider
solutions in a given domain of some {large) equations and give bounds for Ahllors-

Shimizu characteristic for these solutions.
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1. INTRODUCTION

In this paper, we consider complex differential equations of the first order in two
cases: for meromorphic solutions in the complex plane and in a given domain.

For algebraic equations, there is the classieal Goldberg theorem related to meromorphic
solutions in the complex plane. We study much larger equations; respectively our
result implies as a particular case the mentioned Goldberg theorem.

Characteristics of meromorphic solutions in a given domain weren’t stuclied.
Recently G. Barsegian started similar studies; these studies were presented during
his lectures in Guangzhou university in 2017, His aprroaches based on some new
results relafed to arbitrary meromorphic functions in a given domain, see [4].

In this paper, we consider solutions in a given domain of some equations and

give bounds for Ahlfors-Shimizu characteristic for the solutions.

2. MEROMORPHIC SOLUTIONS IN THE COMPLEX PLANE
We consider the following equation
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(+) oz, w) (W)™ + b1 (z,w) (W)™ 4 P (2,w) =0,

where ¢;(z,w) = 22821 M) (2)Xipey(w) for i = 0,1,2,...,m and u(i) =
1,2,...,n(i). Obviously we should exclude the case ¢(z,w) = 0, since then the
degree m reduces.

We put the following restrictions: all coefficient x; ,(;)(w) are meromorphic in
C, all coefficients 7; ,;)(z) with i # 0 are entire functions and all coefficients
N0,u(0)(2) are polynomials. The equations () with similar restrictions we will refer
as (Fy™(C)).

Note that algebraic differential equations of the first order (see related studies
in [8]) are particular cases of equations (F;"™(C)) when all mentioned above entire
and meromorphic functions are polynomials.

For meromorphic function w in C we make use of classical Ahlfors-Shimizu

= A(r,w _ 1 P o
A(r) = A(r,w) = 7T//D(r) (1+\w|2)2d )

where D(r) = {z : [z] < r}; for entire functions 7; ,;) we denote Mi“(i)(r) =

characteristic

max,coD(r) |77i,,u(i)(z)|'

Theorem 2.1. For any equation (F5™(C)) with meromorphic solution w(z) in the
complex plane we have
] 2/4
(2.1) A(r) < Ki7? max [maXMZ-“(z) (r)} , forr =00, r¢ E,
1<i<m | p(d)
where K1 < 00 is a constant independent of w and E is a set of finite logarithmic

measure.

Corollary 2.1 ([7]). Meromorphic solutions (in the complex plane) of algebraic

differential equations are of finite order.

Indeed, in this case all Mf(i)(r) have polynomial growth so that Corollary 2.1
follows from (2.1). Thus Theorem 2.1 generalizes widely this old result in [7].

3. MEROMORPHIC SOLUTIONS IN A GIVEN DOMAIN

Let D be a simply connected domain with smooth boundary 9D of finite length.

Consider again equation (x) by assuming that w(z) is its meromorphic solutions

in the closure D = D U dD. In this case we assume that all Ni,u(i)(2) are regular

functions in z € D and all x; ,;)(w) are meromorphic functions in w € w(D). In

addition we assume that |¢o(z,w)| > ¢(D) = const > 0 for z € D and w with
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|w| < 10. The equation with similar restrictions we will refer as (F™™(D)). In
particular case when all x; ,(;)(w) are regular functions we will refer the equation
as (F""(D)).

For similar functions w(z) as above, we consider Ahlfors islands over the disk
A(p,a) = {w : |w — a|] < p} which can be defined as those domains g, for k =
1,2,...,n(D,A(p,a),w), on the Riemann surface {w(z) : z € D} which projected
one to one and onto A(p,a) (see [1] or |9, Chapter 13]).

Defining M} (D) = max,cap |7:,,(2)| and denoting by S(D) the area of D, we

formulate the following theorem.

Theorem 3.1. Let w(z) be a meromorphic in D solution of the equation (F™"(D)).

Then for any set of disks A(p,,a,), v=1,2,...,q, with non-intersecting closures
we have
(3.1) > (D, Alpy, a,),w) < K28(D),

v=1

where Ko < o0 is a constant independent of w; the constant depends only on the

equation and D.

In the next result we make use of Ahlfors-Shimizu characteristic A(D,w) (for
arbitrary domain D) and another characteristics in Ahlfors theory of covering
surfaces (see [1] and [9, Chapter 13])

|w'|
L(D,w) = /OD - |w\2)d8'
Theorem 3.2. Let w(z) be a meromorphic in D solution of the equation (F™™(D))
with w(D) implying a disk D(o), where o = const > 0. Then

(3.2) A(D,w) < K38(D) + hs L(D, w),

where both constants K3 and hs are independent on w; the constant depend only

on the equation, D and o.

4. PROOFS

4.1. Proof of Theorem 2.1. We need some obvious comments.

In the case when the first coefficient ¢¢(z,w) is nonconstant polynomial in z we
can decompose ¢g(z,w) as Ag(w)z? + Ay(w)zT=1 + -+ + Ar(w), T > 1, where
Ap(w) is a meromorphic function in w.

In the case when the first coefficient ¢g(z,w) does not depend on z we denote it

by ¢o(w); obviously it is meromorphic in w.
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All coefficients x; ,,(;)(w) are meromorphic in the complex plane. This implies
that for a fixed disk, say D(10), any coefficients x; ,;)(w), taken for any i =
0,1,2,...,m, u(i) = 1,2,...,n(i), have only a finite number of zeros in the disk
D(10). The same is true for the poles. The same is true for the zeros and poles of
functions Ag(w) and ¢g(w).

Now we take five non-passing through all these zeros and poles curves ~1,...,7s5 in
D(10) with the distance between two different similar curves > 2. Then obviously all

mentioned above functions do not vanish at any point w =a € vy =y Uy U---U~s

and there is a constant M such that the modules |---| of all mentioned above
functions < M. Taking arbitrary five values aq, ..., a5 each belonging respectively
to 71, - .-,7v5 we get the following statement.

Proposition 4.1. There are five values a, € D(10), v = 1,...,5; with non-
intersecting closures of A(1,a,), v=1,...,5, such that
1. All those functions x; ,;)(w) which include variable w does not vanish at any
point w = a € (a1,...,a5) consequently
n(i)
®; = max Z IXi,u() ()| < n(i)M < oo,

1<i<m
n(i)=1
where ®; depends only on ay,...,as and the involved coefficients;
2. Function ¢o(w) do not vanish at any point w = a € (ay,...,as), respectively
we have
dy = mi
o= min |¢o(a,)| >0,
where ®g is a constant depending only on ay,...,as and ¢g;
3. Function Ag(w) does not vanish at any point w = a € (aq,...,as), respectively
we have
®, = min |A
A 121325\ o(av)| >0,
where @, is a constant depending only on aq,. .., a5 and Ag(w).

We need the following result.
Theorem A ([2, Theorem 1]). For any meromorphic function w in C, any set
ai,asz,...,aq € C, ¢ > 4, of distinct values and any monotonically decreasing on
[0,00) function ®(r) with ¥(r) — 0 as v — oo, there is a set E C [0,00) of
finite logarithmic measure and for every r ¢ E there is a subset {z}(a,)} C D(r),
1<v<q 1<k<n*(ra,), of the a,-points of w for which
A2 (1)

(4.1) |w' (27 (av))| Z 9 (r)

,1<v<g 1<k <n'(ra),

38



SOME ESTIMATES FOR THE SOLUTIONS ...
and
q
(4.2) > n*(ran) > (g —4)A(r) — o[A(r)], o0, r¢E.
v=1

A slight modification (see [2]) replaces 9 (r) by a positive constant: given positive
g, 0 < e < 1/2, there is a constant K = K{a1,az,...,aq4,€) > 0 such that (4.1)

becomes

AY2(r)
r

(4.3) |w' (25 (av))| = K , 1<v<q 1<k<n'(ra)

for a set of a,-points which satisfy
q
(4.4) Zn*(r, a,) > (g—4—¢e)A(r) —olA(r)], r— o0, 7¢E.
v=1

Now we apply Theorem A and Proposition 4.1 to solutions w in the complex
plane of equations (£ (C)).

Due to definitions and Theorem A we have the following.

Property 4.1. Let aq,...,as be the points mentioned in Proposition 4.1. Then in
any D(r) with r ¢ E, there is a set Z(r) consisting of Zi:l n*(r,a,) points z(ay),
1<v <5, 1<k<n*(ra,), such that at each similar point we have inequality
(4.1) for 1 <v <5, 1 <k <n*(r,a,), and we have also

Zn*(r, a,) > (1 —e)A(r) —o[A(r)], " — o0, ¢ E.

Due to the last inequality for r — oo, r ¢ E, we have Zi:1 n*(r,a,) — oo and
since the points z;(a,) cannot have any limit point in any finite disk we obtain the

following.

Property 4.2. For any constant H > 1 there is a constant r(H) such that any
disk D(r) with r > r(H), r ¢ E, implies a point z}(a,) occurring in Property 4.1
and satisfying also |z;(a,)| > H.

Now we take any point z}(a,) satisfying Property 4.2 and put it into equation
(x). We have

b0z (), w(zi (@) (W (27 ()™ + é1(27 (@), (i (@) (W' (@)™ +

(4.5) ot Om(zi(an), wiz(ay))) = 0.
It is well known (see [10, Section III, Problem 21]) that all roots of an algebraic
equation
2" b2 b, =0
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are contained in the disk |2| < max;<;<p, (m|b;|)*/".

Applying this to (4.5) we get

% * 1/4
(4.6) w (z(a)] < max |m2ilEla) wzi(a) 17
lsism (bo(Zk(a,,),w(Zk(al,)))
Notice that item 1 in Proposition 4.1 is valid for w = a = w(z}(a,)) (since
w(zf(ay)) € (a1,...,as)), so that we have
(4.7) |6i(2 (aw), w(z(a,)] < n(i)®; max MID (1), i =1,2,...,m.

(i)
Now we need to consider below bounds for ¢y which in our case is polynomial in z
and meromorphic in w.
We can have only the following cases for ¢o(z, w):
(case 1) there are non-constant polynomial coefficients 7 ,,(0)(2);
(case 2) all 1g,,,(0)(2) are constants however not all xq, ,(0)(w) are constants;

(case 3) all 1 ,,(0)(2) are constants and, in addition, all xq,,(0)(w) are constants.

In the first case we can decompose ¢o(z,w) (as Ag(w)z? + Ay (w)zT=1 4+ -+ +
Ar(w), T > 1) and note that at the pair (z,w), where w € (a,...,as) and |z|
is enough large, the term Ag(a,) (z,’;(al,)))T become dominant in ¢o(2}(a.),a.),
so that we have |¢o(2;(ay),a,)| > (1/2)|Ao(a)||2;(a,)|T for |z} (ay,)| > r0; here
obviously ro depends on ¢y and values aq,...,as. Consequently taking r(H) (in
Property 4.2) equals to rg and taking into account item 3 in Proposition 4.1 (i.e.
®) = minj<,<4|Ao((ay)] > 0) and also Property 4.2 we obtain the following
assertion: for any disk D(r) with r > r(H), r ¢ E, there is a value a, € (ay,...,as)

and corresponding point zj(a,) with |z} (a,)| > H such that
@05 (aw), w(zi (@) = 5 Pal (2 (an)[" > SOAHT.

Making use of (4.6) and (4.7) applied at the same point (where |2} (a,)| > H) we

have

1/4
|w’(z3(ay))] < max N )(r)} )

) NP )
{mn(z)@z max Miﬂ(l
1<i<m

Then applying (4.3) we get

2mn (i) P;

A(r) B HT

' 2/i
2 max {maxM.“(l)(r) } , forr — 00, r ¢ E,

<
- KQT 1<i<m | p()
so that obtain Theorem 2.1 with

1
Klgﬁ max

1<i<m

2mn(i)®; 2/
O HT
In the second case, ¢o(z, w) become function in w merely, namely become function

¢o(w) in Proposition 4.1. Due to item 2 in Proposition 4.1, function ¢o(w) do not
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vanish at any point w = a € (aq, ..., as), respectively, we have &y = 1r<nir<1 lpo(ay)| >
<v<q
0. Repeating the above arguments we get Theorem 2.1 with
1 2mn(i)®; 1"
K < — ST
B CR { o,
In the third case, ¢o(z,w) is simply a constant: ¢g(z,w) = co = const which

should be non-zero, otherwise the degree m in our equation reduces. With the same
arguments we obtain Theorem 2.1 with

max

Koo L 2mn(i)®; 1"
t= K2 1<i<m '

ol
The discussed three cases exclude each other so that in any given case we have

Theorem 2.1 with one of the mentioned K.

4.2. Proof of Theorem 3.1. Assume that ex(px,ar), K = 1,2,..., n, are some
disjoint domains in D which w maps one-to-one onto A(pg,ar); note that for
different (even all) ey (pg,ax) the values of ap and/or pp may coincide. Any set
of domains ey (pg,ar) contains a subdomain e ( ak) such that w (e (p’“ ak))
coincides with A(Z%, ay,). Clearly, each e, (2, a) is contained in a domain ey, (pg, ax).
The diameters d (ek (L5, ay)) of the domains ey (£, ay,) were first given in [2]
and were applied to CDE. Later on similar applications were given in [6] and [5]

based on the following inequality
- Pk 3
2. (er (Goo)) = /5 V5DV

where S(D) is the Euclidean area of D. We need a slightly more sharp inequality
established in [[3], inequality (6)]:

3T
(4.8) Zd(ek V5 251/2 (ex(pK,ar)).
In addition we have also the following.

Lemma 4.1 ([3, Lemma 2]|). Let z;, be the point in ey (pr,ar) which w maps onto

ak, i.e. w(zx) = ag. Then

Pk
(4.9) |w'(z)| > 2 (e (Za)) k=1,2,...,n
24 (er (5 ar)
Now we take ¢ pairwise different values a,, ¢ = 1,2,...,q, and consider as
Ueg ( ak) the union of all domains e, +, v =1,2,...,¢,t =1,2,..., n(a,), which

w maps one-to-one and onto the disk A(p,,a,). (Important remark: in this case

the disk A(p,,a,) remains the same for all t = 1,2,..., n(a,)). In other words,

function w maps each domain e, ; onto an Ahlfors simple island over A(p,,a,) so
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that n(a,) becomes (in this case) the usual number n(D,A(p,,a,),w) of simple
islands over A(p,,a,).
Thus we can rewrite (4.8) and (4.9) as

q n(D,Apv,a), w) q n(D, A(ﬂbﬂb) w)
(4.10) S dlews) < \/ SY2 (ev,)

v=1 k=1

and

(@I ' Gala)] 2 s, v =120 = 120D, Al ), ),

where z(a,) € e, and satisfies w(z(a,)) = a,.
Denote N = >?_ n(D,A(py,a,),w). Due to (4.10) we conclude that the set
of all domains e, ; implies some domains é5, s =1,2,...,7 = [%N + 1]/, (here [z]’

means entire part of z), which satisfy

/ q n(D A(pu,au)ﬂﬂ)
> = 51/2 (eV,t) )

indeed assuming contrary we come to contradiction with inequality (4.8). Since
(N/n) <2, we have for any s =1,2,...,1n = [1N+ 1]/,

a n(D,A(py,an),w)

(4.12) ) < NG Z Z 512 (e,,).

Since é; coincides with one of e, ;, we conclude &, implies an a,-point 2 (a,); to
stress that this is namely a point lying in €, (which satisfies (4.12)) we denote it
by Z;(a,). This means that (4.10) is valid also for any given é, with corresponding
point Z(a,). Now (4.10) and (4.12) yield

,,7a,,),w)
V24 AL
(4.13) N - T (z(an) Z Z SY2 (e,4)

Applying Cauchy-Schwarz inequality to the last double sum we have

q n(D,A(py,a,),w) q n(D,Apy,au),w) /2

Z Z SV <NV Y Sl |
v=1 k=1

so that (4.13) yields

n(D,A(py,ay),w)

247r I
N +(a,))| Z Z S (evt)

and taking into account that the last sum dominated by the area S(D) we obtain

(4.14) ZnDAW%>Lffm<mm%w>
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Assume now that w(z) is a solution of (F™" (D)) in Theorem 3.1. Considering the
equation (F™"(D)) at this point Z;(a, ), we notice that all coefficients in (F™" (D))
are defined at this point since we assumed in Theorem 3.1 that (a1,...,a,) € w(D).

Arguing as in (4.6) we obtain

[masi(zt(a»,w(zt(ay))) v
doGu(an) w(E(@)]

Since the values ay,...,a, are fixed in Theorem 3.1 and functions x; ,;)(w) are

(4.15) 0/ ()| < max.

regular (so that all x; ,(;)(a,) are finite for any v =1,2,...,q) we have

n(i)
o, = 12132( ;1|X1u %) au)| < o9

note that ®; depend only on functions x; ,;)(w) and values a1,. .. ,a,.
Applying this to (4.15) we get

i i n(z 172
M (D) R

Z |Xi,u(i) (au)|

n(i)=1

< ) _—
[w'(Ze(an))]| [max mn(l)glgf D)

< max |[mn(i)®; max

1<i<m u@ (D)
1/i
Mﬂ(i) D
< max [mn(i)®;]"" max maxé .
1<i<m 1<i<m | p(G)  ¢(D)

In turn applying the last inequality to (4.14) we obtain the following inequality

Zn(D,A(pu,au), w) < —- max [mn(i)fbi]zﬂ max

p2 1<i<m 1<i<m

M“()(D) 2/i
[%( (D) ] S(D)

Ky = — max [mn(i)@if/i max

max
p? 1<i<m 1<i<m

O]
u@) (D) '

4.3. Proof of Theorem 3.2. Let w(z) be a meromorphic function in D solving
equation (F™™(D)). Clearly we should assume that all x; ,,;)(w) defined on w(D).
Remember that D(9) C w(D) so that all coefficients x; ,,(;)(a,) defined at any
point w = a € D(p).
Arguing as in the Proposition 4.1 we can fix five points a,, € D(p), v =1,...,5,
with non-intersecting closures of A(p/10,a,), v = 1,...,5, such that these points

do not pass through zeros and poles of these coefficients. Respectively we have
n(1)

‘:1I<nf¥§n Z |X“L (ay)| < 0.
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Repeating the proof of Theorem 3.2 with similar ai,...,a5, we find first the point

Zi(a,), (where a,, € (ay,...,as5)) and obtain (instead of (4.14)) the following inequality

5 2
S n(D,A(1a,),w) < (?) 247 W' (Z(a))|* S(D).

v=1
Then we put this 2 (a, ) into equation (F™™ (D)) and arguing as above (after (4.15)),

we get similarly

r . 1/
p(i) (D) n(i) /
o/ Ga(@))] < max | mn(o) max === gj ity (@)
L ()=
- ) 1/i
. M"(D
< o, [l me )]
The last two inequalities yield
5
(4.16) > n(D,A(a,),w) < K3S(D),
v=1

where

0 ) 1<i<m 1<i<m | p() (D)

so that K5 depends only on equation (F™™(D)) and p.

2 @ 1"
1 : M"(D
K3 =247 (O> max [mn(i)@i]wl max [max l()] :

Finally we need the second fundamental theorem in Ahlfors theory of covering
surfaces (see [1] and |9, Chapter 13]): for any w in D and any set of pairwise

different points a,, v=1,2,...,q, ¢ > 4, we have
q
(g —DAD,w) <Y n(D, Alpy, a,),w) + hL(D, w),
v=1

where h < o0 is a constant depending on A(p,,a,), v=1,2,...,q.

Applying this inequality with the above five values a,...,a5, we have

5
A(D,w) < Zn (D,A (le,ay> ,w) + hsL(D,w),
v=1

where h3 depends on these values ay,. .. ,as; in other words depends only on p. From

here taking into account (4.16) we obtain Theorem 3.2 with the above defined K.
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