


G. BARSEGIAN, F. MENG, W. YUAN

(∗) φ0(z, w) (w′)
m

+ φ1(z, w) (w′)
m−1

+ · · ·+ φm(z, w) = 0,

where φi(z, w) =
∑n(i)
µ(i)=1 ηi,µ(i)(z)χi,µ(i)(w) for i = 0, 1, 2, . . . ,m and µ(i) =

1, 2, . . . , n(i). Obviously we should exclude the case φ0(z, w) ≡ 0, since then the

degree m reduces.

We put the following restrictions: all coe�cient χi,µ(i)(w) are meromorphic in

C, all coe�cients ηi,µ(i)(z) with i 6= 0 are entire functions and all coe�cients

η0,µ(0)(z) are polynomials. The equations (∗) with similar restrictions we will refer

as (F e,mp (C)).

Note that algebraic di�erential equations of the �rst order (see related studies

in [8]) are particular cases of equations (F e,mp (C)) when all mentioned above entire

and meromorphic functions are polynomials.

For meromorphic function w in C we make use of classical Ahlfors-Shimizu

characteristic

A(r) = A(r, w) =
1

π

∫ ∫
D(r)

|w′|2

(1 + |w|2)2
dσ,

where D(r) = {z : |z| < r}; for entire functions ηi,µ(i) we denote M
µ(i)
i (r) =

maxz∈∂D(r) |ηi,µ(i)(z)|.

Theorem 2.1. For any equation (F e,mp (C)) with meromorphic solution w(z) in the

complex plane we have

(2.1) A(r) ≤ K1r
2 max

1≤i≤m

[
max
µ(i)

M
µ(i)
i (r)

]2/i

, for r →∞, r /∈ E,

where K1 < ∞ is a constant independent of w and E is a set of �nite logarithmic

measure.

Corollary 2.1 ([7]). Meromorphic solutions (in the complex plane) of algebraic

di�erential equations are of �nite order.

Indeed, in this case all M
µ(i)
i (r) have polynomial growth so that Corollary 2.1

follows from (2.1). Thus Theorem 2.1 generalizes widely this old result in [7].

3. Meromorphic solutions in a given domain

Let D be a simply connected domain with smooth boundary ∂D of �nite length.

Consider again equation (∗) by assuming that w(z) is its meromorphic solutions

in the closure D̄ = D ∪ ∂D. In this case we assume that all ηi,µ(i)(z) are regular

functions in z ∈ D̄ and all χi,µ(i)(w) are meromorphic functions in w ∈ w(D̄). In

addition we assume that |φ0(z, w)| ≥ c(D) = const > 0 for z ∈ D̄ and w with
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|w| < 10. The equation with similar restrictions we will refer as (F r,m(D)). In

particular case when all χi,µ(i)(w) are regular functions we will refer the equation

as (F r,r(D)).

For similar functions w(z) as above, we consider Ahlfors islands over the disk

∆(ρ, a) = {w : |w − a| < ρ} which can be de�ned as those domains g̃k for k =

1, 2, . . . , n(D,∆(ρ, a), w), on the Riemann surface {w(z) : z ∈ D̄} which projected

one to one and onto ∆(ρ, a) (see [1] or [9, Chapter 13]).

De�ning Mµ
i (D) = maxz∈∂D |ηi,µ(z)| and denoting by S(D) the area of D, we

formulate the following theorem.

Theorem 3.1. Let w(z) be a meromorphic in D̄ solution of the equation (F r,r(D)).

Then for any set of disks ∆(ρν , aν), ν = 1, 2, . . . , q, with non-intersecting closures

we have

(3.1)

q∑
ν=1

n(D,∆(ρν , aν), w) ≤ K2S(D),

where K2 < ∞ is a constant independent of w; the constant depends only on the

equation and D.

In the next result we make use of Ahlfors-Shimizu characteristic A(D,w) (for

arbitrary domain D) and another characteristics in Ahlfors theory of covering

surfaces (see [1] and [9, Chapter 13])

L(D,w) =

∫
∂D

|w′|
(1 + |w|2)

ds.

Theorem 3.2. Let w(z) be a meromorphic in D̄ solution of the equation (F r,m(D))

with w(D̄) implying a disk D(%), where % = const > 0. Then

(3.2) A(D,w) ≤ K3S(D) + h3L(D,w),

where both constants K3 and h3 are independent on w; the constant depend only

on the equation, D and %.

4. Proofs

4.1. Proof of Theorem 2.1. We need some obvious comments.

In the case when the �rst coe�cient φ0(z, w) is nonconstant polynomial in z we

can decompose φ0(z, w) as Λ0(w)zT + Λ1(w)zT−1 + · · · + ΛT (w), T ≥ 1, where

Λ0(w) is a meromorphic function in w.

In the case when the �rst coe�cient φ0(z, w) does not depend on z we denote it

by φ0(w); obviously it is meromorphic in w.

37



G. BARSEGIAN, F. MENG, W. YUAN

All coe�cients χi,µ(i)(w) are meromorphic in the complex plane. This implies

that for a �xed disk, say D(10), any coe�cients χi,µ(i)(w), taken for any i =

0, 1, 2, . . . ,m, µ(i) = 1, 2, . . . , n(i), have only a �nite number of zeros in the disk

D(10). The same is true for the poles. The same is true for the zeros and poles of

functions Λ0(w) and φ0(w).

Now we take �ve non-passing through all these zeros and poles curves γ1,. . . ,γ5 in

D(10) with the distance between two di�erent similar curves > 2. Then obviously all

mentioned above functions do not vanish at any point w = a ∈ γ = γ1∪γ2∪· · ·∪γ5

and there is a constant M such that the modules | · · · | of all mentioned above

functions ≤ M . Taking arbitrary �ve values a1, . . . , a5 each belonging respectively

to γ1, . . . , γ5 we get the following statement.

Proposition 4.1. There are �ve values aν ∈ D(10), ν = 1, . . . , 5; with non-

intersecting closures of ∆(1, aν), ν = 1, . . . , 5, such that

1. All those functions χi,µ(i)(w) which include variable w does not vanish at any

point w = a ∈ (a1, . . . , a5) consequently

Φi = max
1≤i≤m

n(i)∑
µ(i)=1

|χi,µ(i)(aν)| ≤ n(i)M <∞,

where Φi depends only on a1, . . . , a5 and the involved coe�cients;

2. Function φ0(w) do not vanish at any point w = a ∈ (a1, . . . , a5), respectively

we have

Φ0 = min
1≤ν≤q

|φ0(aν)| > 0,

where Φ0 is a constant depending only on a1, . . . , a5 and φ0;

3. Function Λ0(w) does not vanish at any point w = a ∈ (a1, . . . , a5), respectively

we have

ΦΛ = min
1≤ν≤5

|Λ0(aν)| > 0,

where ΦΛ is a constant depending only on a1, . . . , a5 and Λ0(w).

We need the following result.

Theorem A ([2, Theorem 1]). For any meromorphic function w in C, any set

a1, a2, . . . , aq ∈ C, q > 4, of distinct values and any monotonically decreasing on

[0,∞) function ψ(r) with ψ(r) → 0 as r → ∞, there is a set E ⊂ [0,∞) of

�nite logarithmic measure and for every r /∈ E there is a subset {z∗k(aν)} ⊂ D(r),

1 ≤ ν ≤ q, 1 ≤ k ≤ n∗(r, aν), of the aν-points of w for which

(4.1) |w′(z∗k(aν))| ≥ ψ(r)
A1/2(r)

r
, 1 ≤ ν ≤ q, 1 ≤ k ≤ n∗(r, aν),
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and

(4.2)

q∑
ν=1

n∗(r, aν) ≥ (q − 4)A(r)− o[A(r)], r →∞, r /∈ E.

A slight modi�cation (see [2]) replaces ψ(r) by a positive constant: given positive

ε, 0 < ε < 1/2, there is a constant K = K{a1, a2, . . . , aq, ε) > 0 such that (4.1)

becomes

(4.3) |w′(z∗k(aν))| ≥ KA1/2(r)

r
, 1 ≤ ν ≤ q, 1 ≤ k ≤ n∗(r, aν)

for a set of aν-points which satisfy

(4.4)

q∑
ν=1

n∗(r, aν) ≥ (q − 4− ε)A(r)− o[A(r)], r →∞, r /∈ E.

Now we apply Theorem A and Proposition 4.1 to solutions w in the complex

plane of equations (F e,mp (C)).

Due to de�nitions and Theorem A we have the following.

Property 4.1. Let a1, . . . , a5 be the points mentioned in Proposition 4.1. Then in

any D(r) with r /∈ E, there is a set Z(r) consisting of
∑5
ν=1 n

∗(r, aν) points z∗k(aν),

1 ≤ ν ≤ 5, 1 ≤ k ≤ n∗(r, aν), such that at each similar point we have inequality

(4.1) for 1 ≤ ν ≤ 5, 1 ≤ k ≤ n∗(r, aν), and we have also

5∑
ν=1

n∗(r, aν) ≥ (1− ε)A(r)− o[A(r)], r →∞, r /∈ E.

Due to the last inequality for r →∞, r /∈ E, we have
∑5
ν=1 n

∗(r, aν)→∞ and

since the points z∗k(aν) cannot have any limit point in any �nite disk we obtain the

following.

Property 4.2. For any constant H > 1 there is a constant r(H) such that any

disk D(r) with r ≥ r(H), r /∈ E, implies a point z∗k(aν) occurring in Property 4.1

and satisfying also |z∗k(aν)| > H.

Now we take any point z∗k(aν) satisfying Property 4.2 and put it into equation

(∗). We have

φ0(z∗k(aν), w(z∗k(aν))) (w′(z∗k(aν)))
m

+ φ1(z∗k(aν), w(z∗k(aν))) (w′(z∗k(aν)))
m−1

+

(4.5) · · ·+ φm(z∗k(aν), w(z∗k(aν))) = 0.

It is well known (see [10, Section III, Problem 21]) that all roots of an algebraic

equation

zm + b1z
m−1 + · · ·+ bm = 0
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are contained in the disk |z| ≤ max1≤i≤m(m|bi|)1/i.

Applying this to (4.5) we get

(4.6) |w′(z∗k(aν))| ≤ max
1≤i≤m

[
m
φi(z

∗
k(aν), w(z∗k(aν)))

φ0(z∗k(aν), w(z∗k(aν)))

]1/i

.

Notice that item 1 in Proposition 4.1 is valid for w = a = w(z∗k(aν)) (since

w(z∗k(aν)) ∈ (a1, . . . , a5)), so that we have

(4.7) |φi(z∗k(aν), w(z∗k(aν)))| ≤ n(i)Φi max
µ(i)

M
µ(i)
i (r), i = 1, 2, . . . ,m.

Now we need to consider below bounds for φ0 which in our case is polynomial in z

and meromorphic in w.

We can have only the following cases for φ0(z, w):

(case 1) there are non-constant polynomial coe�cients η0,µ(0)(z);

(case 2) all η0,µ(0)(z) are constants however not all χ0,µ(0)(w) are constants;

(case 3) all η0,µ(0)(z) are constants and, in addition, all χ0,µ(0)(w) are constants.

In the �rst case we can decompose φ0(z, w) (as Λ0(w)zT + Λ1(w)zT−1 + · · · +
ΛT (w), T ≥ 1) and note that at the pair (z, w), where w ∈ (a1, . . . , a5) and |z|
is enough large, the term Λ0(aν) (z∗k(aν)))

T
become dominant in φ0(z∗k(aν), aν),

so that we have |φ0(z∗k(aν), aν)| ≥ (1/2)|Λ0(aν)||z∗k(aν)|T for |z∗k(aν)| > r0; here

obviously r0 depends on φ0 and values a1, . . . , a5. Consequently taking r(H) (in

Property 4.2) equals to r0 and taking into account item 3 in Proposition 4.1 (i.e.

ΦΛ = min1≤ν≤q |Λ0((aν)| > 0) and also Property 4.2 we obtain the following

assertion: for any disk D(r) with r ≥ r(H), r /∈ E, there is a value aν ∈ (a1, . . . , a5)

and corresponding point z∗k(aν) with |z∗k(aν)| > H such that

|φ0(z∗k(aν), w(z∗k(aν))| ≥ 1

2
ΦΛ|(z∗k(aν)|T > 1

2
ΦΛH

T .

Making use of (4.6) and (4.7) applied at the same point (where |z∗k(aν)| > H) we

have

|w′(z∗k(aν))| ≤ max
1≤i≤m

[
2mn(i)Φi

ΦΛHT
max
µ(i)

M
µ(i)
i (r)

]1/i

.

Then applying (4.3) we get

A(r) ≤ 1

K2
r2 max

1≤i≤m

[
max
µ(i)

M
µ(i)
i (r)

2mn(i)Φi
ΦΛHT

]2/i

, for r →∞, r /∈ E,

so that obtain Theorem 2.1 with

K1 ≤
1

K2
max

1≤i≤m

[
2mn(i)Φi

ΦΛHT

]2/i

.

In the second case, φ0(z, w) become function in w merely, namely become function

φ0(w) in Proposition 4.1. Due to item 2 in Proposition 4.1, function φ0(w) do not
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vanish at any point w = a ∈ (a1, . . . , a5), respectively, we have Φ0 = min
1≤ν≤q

|φ0(aν)| >
0. Repeating the above arguments we get Theorem 2.1 with

K1 ≤
1

K2
max

1≤i≤m

[
2mn(i)Φi

Φ0

]2/i

.

In the third case, φ0(z, w) is simply a constant: φ0(z, w) = c0 = const which

should be non-zero, otherwise the degree m in our equation reduces. With the same

arguments we obtain Theorem 2.1 with

K1 ≤
1

K2
max

1≤i≤m

[
2mn(i)Φi
|c0|

]2/i

.

The discussed three cases exclude each other so that in any given case we have

Theorem 2.1 with one of the mentioned K1.

4.2. Proof of Theorem 3.1. Assume that ek(ρk, ak), k = 1, 2, . . . , n, are some

disjoint domains in D which w maps one-to-one onto ∆(ρk, ak); note that for

di�erent (even all) ek(ρk, ak) the values of ak and/or ρk may coincide. Any set

of domains ek(ρk, ak) contains a subdomain ek
(
ρk
2 , ak

)
such that w

(
ek
(
ρk
2 , ak

))
coincides with ∆(ρk2 , ak). Clearly, each ek

(
ρk
2 , ak

)
is contained in a domain ek(ρk, ak).

The diameters d
(
ek
(
ρk
2 , ak

))
of the domains ek

(
ρk
2 , ak

)
were �rst given in [2]

and were applied to CDE. Later on similar applications were given in [6] and [5]

based on the following inequality
n∑
k=1

d
(
ek

(ρk
2
, ak

))
≤
√

3π

2

√
S(D)

√
n,

where S(D) is the Euclidean area of D. We need a slightly more sharp inequality

established in [[3], inequality (6′)]:

(4.8)

n∑
k=1

d
(
ek

(ρk
2
, ak

))
≤
√

3π

2

n∑
k=1

S1/2(ek(ρk, ak)).

In addition we have also the following.

Lemma 4.1 ([3, Lemma 2]). Let zk be the point in ek(ρk, ak) which w maps onto

ak, i.e. w(zk) = ak. Then

(4.9) |w′(zk)| ≥ ρk

2d
(
ek
(
ρk
2 , ak

)) , k = 1, 2, . . . , n.

Now we take q pairwise di�erent values aν , q = 1, 2, . . . , q, and consider as

∪ek
(
ρk
2 , ak

)
the union of all domains eν,t, ν = 1, 2, . . . , q, t = 1, 2, . . . , n(aν), which

w maps one-to-one and onto the disk ∆(ρν , aν). (Important remark: in this case

the disk ∆(ρν , aν) remains the same for all t = 1, 2, . . . , n(aν)). In other words,

function w maps each domain eν,t onto an Ahlfors simple island over ∆(ρν , aν) so
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that n(aν) becomes (in this case) the usual number n(D,∆(ρν , aν), w) of simple

islands over ∆(ρν , aν).

Thus we can rewrite (4.8) and (4.9) as

(4.10)

q∑
ν=1

n(D,∆(ρν ,aν),w)∑
k=1

d (eν,t) ≤
√

3π

2

q∑
ν=1

n(D,∆(ρν ,aν),w)∑
k=1

S1/2 (eν,t)

and

(4.11) |w′(zt(aν))| ≥ ρν
2d (eν,t)

, ν = 1, 2, . . . , q, t = 1, 2, . . . , n(D,∆(ρν , aν), w),

where zt(aν) ∈ eν,t and satis�es w(zt(aν)) = aν .

Denote N =
∑q
ν=1 n(D,∆(ρν , aν), w). Due to (4.10) we conclude that the set

of all domains eν,t implies some domains ẽs, s = 1, 2, . . . , ñ =
[

1
2N + 1

]′
, (here [x]′

means entire part of x), which satisfy

d (ẽs) ≤
1

ñ

√
3π

2

q∑
ν=1

n(D,∆(ρν ,aν),w)∑
k=1

S1/2 (eν,t) ;

indeed assuming contrary we come to contradiction with inequality (4.8). Since

(N/ñ) ≤ 2, we have for any s = 1, 2, . . . , ñ =
[

1
2N + 1

]′
,

(4.12) d (ẽs) ≤
√

6π
1

N

q∑
ν=1

n(D,∆(ρν ,aν),w)∑
k=1

S1/2 (eν,t) .

Since ẽs coincides with one of eν,t, we conclude ẽs implies an aν-point zt(aν); to

stress that this is namely a point lying in ẽs (which satis�es (4.12)) we denote it

by z̃t(aν). This means that (4.10) is valid also for any given ẽs with corresponding

point z̃t(aν). Now (4.10) and (4.12) yield

(4.13) N ≤
√

24π

ρν
|w′(z̃t(aν))|

q∑
ν=1

n(D,∆(ρν ,aν),w)∑
k=1

S1/2 (eν,t) .

Applying Cauchy-Schwarz inequality to the last double sum we have

q∑
ν=1

n(D,∆(ρν ,aν),w)∑
k=1

S1/2 (eν,t) ≤ N1/2

 q∑
ν=1

n(D,∆(ρν ,aν),w)∑
k=1

S (eν,t)

1/2

,

so that (4.13) yields

N ≤ 24π

ρ2
ν

|w′(z̃t(aν))|2
q∑

ν=1

n(D,∆(ρν ,aν),w)∑
k=1

S (eν,t) ,

and taking into account that the last sum dominated by the area S(D) we obtain

(4.14)

q∑
ν=1

n(D,∆(ρν , aν), w) ≤ 24π

ρ2
ν

|w′(z̃t(aν))|2 S(D).
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Assume now that w(z) is a solution of (F r,r(D)) in Theorem 3.1. Considering the

equation (F r,r(D)) at this point z̃t(aν), we notice that all coe�cients in (F r,r(D))

are de�ned at this point since we assumed in Theorem 3.1 that (a1, . . . , aq) ∈ w(D̄).

Arguing as in (4.6) we obtain

(4.15) |w′(z̃t(aν))| ≤ max
1≤i≤m

[
m
φi(z̃t(aν), w(z̃t(aν)))

φ0(z̃t(aν), w(z̃t(aν)))

]1/i

.

Since the values a1,. . . ,aq are �xed in Theorem 3.1 and functions χi,µ(i)(w) are

regular (so that all χi,µ(i)(aν) are �nite for any ν = 1, 2, . . . , q) we have

Φi = max
1≤ν≤q

n(i)∑
µ(i)=1

|χi,µ(i)(aν)| <∞;

note that Φi depend only on functions χi,µ(i)(w) and values a1,. . . ,aq.

Applying this to (4.15) we get

|w′(z̃t(aν))| ≤ max
1≤i≤m

mn(i) max
µ(i)

M
µ(i)
i (D)

c(D)

n(i)∑
µ(i)=1

|χi,µ(i)(aν)|

1/i

≤ max
1≤i≤m

[
mn(i)Φi max

µ(i)

M
µ(i)
i (D)

c(D)

]1/i

≤ max
1≤i≤m

[mn(i)Φi]
1/i

max
1≤i≤m

[
max
µ(i)

M
µ(i)
i (D)

c(D)

]1/i

.

In turn applying the last inequality to (4.14) we obtain the following inequality

q∑
ν=1

n(D,∆(ρν , aν), w) ≤ 24π

ρ2
max

1≤i≤m
[mn(i)Φi]

2/i
max

1≤i≤m

[
max
µ(i)

M
µ(i)
i (D)

c(D)

]2/i

S(D),

i.e. we obtain Theorem 3.1 with

K2 =
24π

ρ2
max

1≤i≤m
[mn(i)Φi]

2/i
max

1≤i≤m

[
max
µ(i)

M
µ(i)
i (D)

c(D)

]2/i

.

4.3. Proof of Theorem 3.2. Let w(z) be a meromorphic function in D̄ solving

equation (F r,m(D)). Clearly we should assume that all χi,µ(i)(w) de�ned on w(D̄).

Remember that D(%) ⊂ w(D̄) so that all coe�cients χi,µ(i)(aν) de�ned at any

point w = a ∈ D(%).

Arguing as in the Proposition 4.1 we can �x �ve points aν ∈ D(%), ν = 1, . . . , 5,

with non-intersecting closures of ∆(%/10, aν), ν = 1, . . . , 5, such that these points

do not pass through zeros and poles of these coe�cients. Respectively we have

Φi = max
1≤i≤m

n(i)∑
µ(i)=1

|χi,µ(i)(aν)| <∞.
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Repeating the proof of Theorem 3.2 with similar a1,. . . ,a5, we �nd �rst the point

z̃t(aν), (where aν ∈ (a1, . . . , a5)) and obtain (instead of (4.14)) the following inequality

5∑
ν=1

n (D,∆ (1, aν) , w) ≤
(

10

%

)2

24π |w′(z̃t(aν))|2 S(D).

Then we put this z̃t(aν) into equation (F r,m(D)) and arguing as above (after (4.15)),

we get similarly

|w′(z̃t(aν))| ≤ max
1≤i≤m

mn(i) max
µ(i)

M
µ(i)
i (D)

c(D)

n(i)∑
µ(i)=1

|χi,µ(i)(aν)|

1/i

≤ max
1≤i≤m

[
mn(i)Φi max

µ(i)

M
µ(i)
i (D)

c(D)

]1/i

.

The last two inequalities yield

(4.16)

5∑
ν=1

n (D,∆ (, aν) , w) ≤ K3S(D),

where

K3 = 24π

(
10

%

)2

max
1≤i≤m

[mn(i)Φi]
2/i

max
1≤i≤m

[
max
µ(i)

M
µ(i)
i (D)

c(D)

]2/i

;

so that K3 depends only on equation (F r,m(D)) and %.

Finally we need the second fundamental theorem in Ahlfors theory of covering

surfaces (see [1] and [9, Chapter 13]): for any w in D̄ and any set of pairwise

di�erent points aν , ν = 1, 2, . . . , q, q > 4, we have

(q − 4)A(D,w) ≤
q∑

ν=1

n(D,∆(ρν , aν), w) + hL(D,w),

where h <∞ is a constant depending on ∆(ρν , aν), ν = 1, 2, . . . , q.

Applying this inequality with the above �ve values a1,. . . ,a5, we have

A(D,w) ≤
5∑

ν=1

n

(
D,∆

(
1

4
, aν

)
, w

)
+ h3L(D,w),

where h3 depends on these values a1,. . . ,a5; in other words depends only on %. From

here taking into account (4.16) we obtain Theorem 3.2 with the above de�ned K3.

Ñïèñîê ëèòåðàòóðû

[1] L. Ahlfors, �Zur Theorie der �Uberlagerungs��achen�, Acta Soc. Sci. Fenn., 1/9, 1 � 40 (1930).
[2] G. Barsegian, �Estimates of derivatives of meromorphic functions on sets of a-points�, Journal

of London Math. Soc., 34(2), 543 � 400 (1986).
[3] G. Barsegian, �A new principle for arbitrary meromorphic functions in a given domain�,

Georgian Math. Journal, 25(2), 181 � 186 (2018).
[4] G. Barsegian, �Survey of Some General Properties of Meromorphic Functions in a Given

Domain�, 47 � 67, in book �Analysis as a Life. Dedicated to Heinrich Begehr on the Occasion
of his 80th Birthday�, Editors: Rogosin S., Celebi, O., Birkhauser (2019).

44



SOME ESTIMATES FOR THE SOLUTIONS ...

[5] G. Barsegian, I. Laine and D. T. L�e, �On topological behavior of solutions of some algebraic
di�erential equations�, Complex Variables and Elliptic Equations, 53, 411 � 421 (2008).

[6] G. Barsegian and D. T. L�e, �On a topological description of solutions of complex di�erential
equations�, Complex Variables, 50(5), 307 � 318 (2005).

[7] A. A. Gol'dberg, �On the single valued integrals of di�erential equations of the �rst order�,
Ukrainian Math. J., 8, 254 � 261 (1956).

[8] I. Laine, �Nevanlinna theory and complex di�erential equations�, Berlin: Walter de Gruyter
(1993).

[9] R. Nevanlinna, Eindeutige Analytische Funktionen, Springer-Verlag, Berlin (1936).
[10] G. Polya and G. Szeg�o, Aufgaben und Lehrs�atze aus der Analysis, Zweiter Band, Springer-

Verlag, Berlin-G�ottingen-Heidelberg (1954).

Ïîñòóïèëà 13 èþëÿ 2019

Ïîñëå äîðàáîòêè 13 èþëÿ 2019

Ïðèíÿòà ê ïóáëèêàöèè 6 ôåâðàëÿ 2020

45


