академия наук армянской сср АСТРОФИЗИКА

TOM 9

АВГУСТ, 1973

ВЫПУСК 3

РАСЧЕТ ПОЛЯ ИЗЛУЧЕНИЯ ПРИ МОНОХРОМАТИЧЕСКОМ ИЗОТРОПНОМ РАССЕЯНИИ. І. РЕЗОЛЬВЕНТНЫЕ ФУНКЦИИ

Д. И. НАГИРНЕР Поступна 18 мая 1973

Предлагается способ нахождения резольвентных функций $\mathbf{O}(\tau, \tau_0)$ основного интегрального уравнения, описывающего монохроматическое изотропное рассеяние излучения в плоском слое конечной описческой толщины τ_0 . Приводятся таблицы $\mathbf{O}(\tau, \tau_0)$ при $\tau_0 = 1$ и 2 и различных альбедо частицы, а также моментов этих функций для $\tau_0 = 0.5$ (0.5) 3.0.

Введение. Как известно [1, 2], задача о монохроматическом изотропном рассеянии излучения в плоском слое сводится к интегральному уравнению

$$S(\tau) = S_*(\tau) + \int_0^{\tau} K(|\tau - \tau'|) S(\tau') d\tau', \qquad (1)$$

где τ — оптическая глубина точек слоя, τ_0 — его оптическая толщина, $S(\tau)$ — искомая функция источников, а $S_*(\tau)$ — функция, характеризующая распределение первичных источников излучения в слое. Ядерная функция $K(\tau)$ для этого вида рассеяния

$$K(\tau) = \frac{\lambda}{2} E_1(\tau), \qquad (2)$$

где λ (0 < $\lambda \le 1$) — вероятность [выживания кванта при однократном рассеянии, а $E_1(\tau)$ — интегральная показательная функция.

Уравнение вида (1) подробно изучено. В. В. Соболевым [1] было показано, что резольвента его $\Gamma(\tau, \tau', \tau_0)$ выражается через свое частное значение $\Gamma(\tau, 0, \tau_0) = \Gamma(\tau_0 - \tau, \tau_0, \tau_0) = \Phi(\tau, \tau_0)$:

$$\Gamma(\tau, \tau', \tau_0) = \Phi(|_{1}\tau - \tau'|, \tau_0) +$$
(3)

$$+ \int_{0}^{\min\{\tau_{1}, \tau'\}} \left[\Phi\left(\tau - t, \tau_{0}\right) \Phi\left(\tau' - t, \tau_{0}\right) - \Phi\left(\tau_{0} - \tau + t, \tau_{0}\right) \Phi\left(\tau_{0} - \tau' + t, \tau_{0}\right) \right] dt.$$

Функция $\Phi(\tau, \tau_0)$ определяется уравнением

$$\Phi(\tau, \tau_0) = K(\tau) + \int_0^{\tau} K(|\tau - \tau'|) \Phi(\tau', \tau_0) d\tau'.$$
(4)

Таким образом, имея функцию $\Phi(\tau, \tau_0)$, мы можем найти значения $S(\tau)$ при помощи двух последовательных интегрирований, а интенсив-

ность излучения — трех. В частных случаях, например, при $S_*(\tau) = e^{-\eta}$ (соответствующая функция источников обозначается $P(\tau, \eta, \tau_0)$) число необходимых интегрирований сокращается [1].

В настоящее время функции, характеризующие выходящее излучение, табулированы достаточно полно [4, 5]. Из таблиц же функций, определяющих поле излучения внутри слоя, в литературе имеются следующие. Это таблицы для большого набора значений λ и τ_0 функций источников в задаче о диффузном отражении и пропускании излучения плоским слоем — $P(\tau, \eta, \tau_0)$ — в работе [6]. Там же имеются краткие таблицы функций $\Phi(\tau, \tau_0)$. Функции $\Phi(\tau, \tau_0)$ при $\tau_0 = 0.1$ (0.1) 0.5 и любых λ найдены В. В. Соболевым и И. Н. Мининым [7]. Для $\lambda = 0.5$ и 1 при $\tau_0 = 0.3$ в [7] сосчитаны также функции $P(\tau, \eta, \tau_0)$ и

$$\Psi(\tau, \tau_0) = 1 + \int_0^{\infty} \Phi(\tau', \tau_0) d\tau'.$$
(5)

Функция $\Psi(\tau, \tau_0)$ играет важную роль в теории, так как через нее выражается величина $Q(\tau, \tau_0)$ — среднее число рассеяний кванта, возникшего в слое на глубине τ [8]. Та же величина $Q(\tau, \tau_0) = P(\tau, \infty, \tau_0)$ является функцией источников в задаче с равномерным распределением источников первичного излучения.

Отметим, что при $\tau_0 = \infty$ (полубесконечная среда) для $\Phi(\tau) = \Phi(\tau, \infty)$ получено явное выражение [9], по которому значения этой функции и вычислялись [9, 10]. Некоторые таблицы этой функции были получены и другим способом [11].

Имеющихся данных для количественного описания поля излучения внутри слоя, а также для нахождения выходящего излучения при

348

РАСЧЕТ ПОЛЯ ИЗЛУЧЕНИЯ ПРИ ИЗОТРОПНОМ РАССЕЯНИИ. і 349

произвольных источниках недостаточно. Поэтому желательно иметь подробные таблицы функций источников для разных случаев. При этом, как указывалось В. В. Соболевым [3], целесообразно начать с табулирования именно функций $\Phi(\tau, \tau_0)$, ибо все остальные характеристики поля излучения выражаются через них.

В настоящей работе функции $\Phi(\tau, \tau_0)$ при $\tau_0 < \infty$ находятся непосредственно из интегрального, уравнения (4), к изложению процедуры решения которого (или, для большей общности, уравнения (1)) мы и перейдем.

Метод решения уравнения (1). Уравнение (1) с ядром (2) фредгольмовское. Хотя при совпадении аргументов ядро обращается в бесконечность, но особенность эта слабая, так как при $\tau \to 0$

$$\frac{\lambda}{2}E_1(\tau)\sim \frac{\lambda}{2}(-\ln\tau-\tau), \qquad (6)$$

где τ — постоянная Эйлера. Ряд Неймана уравнения (1) сходится при $\lambda \ll 1$ и $\tau_0 \ll \infty$. Однако при λ , близких к единице, и больших τ_0 сходимость очень медленная. Уже при τ_0 порядка нескольких единиц необходимо сделать десятки итераций для достижения точности в 3—4 знака. Это объясняется тем, что при $\tau_0 = \infty$ значение $\lambda = 1$ является крайней точкой спектра рассматриваемого ядра.

Для решения уравнений вида (1) применялись различные численные методы, обзор которых применительно к резонансному рассеянию дан в работе [12]. Эти же методы могут быть использованы и при ядерной функции (2). Самым простым методом (не требующим предварительных вычислений) является метод последовательных приближений. Поэтому мы пошли по следующему пути: решать уравнение (1) итерациями с применением способов усиления их сходимости. Оказалось, что удобно применить различные способы при малых и больших т₀. Рассмотрим отдельно оба случая.

а) Случай - 50 < 1. Для фредгольмовского ядра справедлива билинейная формула

$$K(|\tau - \tau'|) = \lambda \sum_{n=0}^{\infty} \frac{\omega_n(\tau, \tau_0) \omega_n(\tau', \tau_0)}{\lambda_n(\tau_0)},$$
(7)

где $\omega_n(\tau, \tau_0)$ и $\lambda_n(\tau_0)$ (n = 0, 1, 2, ...) — собственные функции и собственные значения ядра:

$$\omega_n(\tau, \tau_0) = \frac{\lambda_n(\tau_0)}{\lambda} \int_0^{\infty} K(|\tau - \tau'|) \omega_n(\tau', \tau_0) d\tau', \qquad (8)$$

причем $\omega_n(\tau, \tau_0)$ нормированы. Аналогично и любая функция, представимая через ядро, может быть разложена по системе функций $\omega_n(\tau, \tau_0)$. В частности, пусть решение уравнения (1) представлено в виде ряда

$$S(\tau) = \sum_{m=0}^{\infty} S^{(m)}(\tau),$$
 (9)

где $S^{(0)}(\tau) = S_{*}(\tau)$, а

$$S^{(m-1)}(\tau) = \int_{0}^{\tau} K(|\tau - \tau'|) S^{(m)}(\tau') d\tau'.$$
 (10)

Если

$$S^{(1)}(\tau) = \sum_{n=0}^{\infty} A_n \omega_n (\tau, \tau_0), \qquad (11)$$

TO

$$S^{(m+1)}(\tau) = \sum_{n=0}^{\infty} A_n \left[\frac{\lambda}{\gamma_n(\tau_0)} \right]^m \omega_n(\tau, \tau_0).$$
(12)

Если собственные числа $\lambda_1(\tau_0) < \lambda_1(\tau_0) < \cdots$ (все они больше единицы) не очень близки к наименьшему $\lambda_0(\tau_0) > 1$, то при больших *m* основной вклад в (12) дает первое слагаемое

$$S^{(m+1)}(\tau) \sim A_0 \left[\frac{\lambda}{\lambda_0(\tau_0)} \right]^m \omega_0(\tau, \tau_0).$$
(13)

Так как $\lambda_0(\tau_0)$ и $\omega_0(\tau, \tau_0)$ нам не известны, то воспользуемся тем, что в этом случае

$$S^{(m+1)}(\tau) \sim \frac{\lambda}{\lambda_0(\tau_0)} S^{(m)}(\tau), \qquad (14)$$

то есть последовательные итерации ведут себя как члены геометрической прогрессии. Это позволяет свернуть ряд последовательных приближений:

$$S(\tau) \approx \sum_{m=0}^{p} S^{(m)}(\tau) + \frac{S^{(p)}(\tau) S^{(p+1)}(\tau)}{S^{(p+1)}(\tau) - S^{(p)}(\tau)}.$$
 (15)

Вычисления показали, что такой способ усиления сходимости уменьшает необходимое число итераций примерно втрое.

350

б) Случай 5 >1. Здесь нами применялся вариационно-итерационный процесс. Такой процесс использовался ранее для нахождения интенсивности излучения [13]. Известно (см., например, [14]), что решение уравнения (1) сообщает минимум функционалу

$$\int_{0}^{1} S(\tau) \left[S(\tau) - \int_{0}^{1} K(|\tau - \tau'|) S(\tau') d\tau' - 2S_{*}(\tau) \right] d\tau.$$
 (16)

Исходя из некоторого приближения $S_0(\tau)$, находим последовательно его невязку

$$\Delta_{1}(\tau) = \int_{0}^{0} K(|\tau - \tau'|) S_{0}(\tau') d\tau' - S_{0}(\tau) + S_{*}(\tau)$$
(17)

и ее итерацию

$$\Delta_{2}(\tau) = \int_{0}^{\tau} K(|\tau - \tau'|) \Delta_{1}(\tau') d\tau'. \qquad (18)$$

Ясно, что функция $\Delta(\tau) = S(\tau) - S_0(\tau)$ удовлетворяет уравнению

$$\Delta(\tau) = \Delta_1(\tau) + \int_0^{\tau} K(|\tau - \tau'|) \Delta(\tau') d\tau'.$$
(19)

Его решение ищем в виде

$$\Delta(\tau) = \alpha S_0(\tau) + \beta \Delta_1(\tau), \qquad (20)$$

где а и β выбираем из условия минимума функционала вида (16). Легко видеть, что для их нахождения не нужно делать дополнительных итераций. Выбор $\Delta(\tau)$ в виде (20) позволяет решение $S(\tau)$ получить не в первом ($S(\tau) = (1 + \alpha) S_0(\tau) + \beta \Delta_1(\tau)$), а сразу в следующем приближении

$$S(\tau) = (1 + \alpha) [S_0(\tau) + \Delta_1(\tau)] - \alpha S_*(\tau) + \beta \Delta_2(\tau)$$
(21)

также без итераций.

Затем $S(\tau)$ можно принять за $S_0(\tau)$ и повторить приближение. Оказалось, что с каждым шагом такого процесса невязка уменьшается приблизительно на порядок. Теперь опишем, как изложенные методы использовались для нахождения функций $\Phi(\tau, \tau_0)$.

Вычисление функций $\Phi(\tau, \tau_0)$. При реализации втих методов были приняты меры для получения точности в 5 значащих цифр за возможно короткое время.

Некоторую трудность при вычислениях создает обращение в бесконечность ядерной $K(\tau)$ и резольвентной $\Phi(\tau, \tau_0)$ функций при $\tau = 0$, а также производной от $\Phi(\tau, \tau_0)$ при $\tau = \tau_0$. Для ослабления этой особенности вместо $\Phi(\tau, \tau_0)$ искалась функция

$$\lambda(\tau, \tau_0) = \Phi(\tau, \tau_0) - K(\tau).$$
⁽²²⁾

Она удовлетворяет уравнению вида (1) с

$$S_{*}(\tau) = K_{2}(\tau, \tau_{0}) = \int_{0}^{\tau_{0}} K(|\tau - \tau'|) K(\tau') d\tau'.$$
 (23)

Функция K₂(τ, τ₀) находилась численно и хранилась в памяти машины.

Кроме того, были сделаны замены переменных, так что $K(\tau)$, $\lambda(\tau, \tau_0)$ и все промежуточные приближения вычислялись: при $\tau_0 \leq 1$ в точках $\tau = \frac{\tau_0}{2}e^{-x}$ и $\tau = \tau_0 - \frac{\tau_0}{2}e^{-x}$, где x = 0 (Δx) $n \cdot \Delta x$, а при $\tau_0 > 1$ в точках $\tau = ae^{-x}$ и $\tau = \tau_0 - ae^{-x}$ с теми же x, а также $\tau = a(\Delta \tau)(\tau_0 - a)$. Значения Δx , а и $\Delta \tau$ выбирались из соображений удобства и достижения определенной точности.

Величина *п* выбиралась таким образом, чтобы при $\tau < (\tau_0/2) e^{-n\Delta x}$ (или $\tau < ae^{-n\Delta x}$) с точностью до пяти значащих цифр было справедливо равенство (6), а $K(\tau_0 - \tau)$, $\chi(\tau, \tau_0)$ и $\chi(\tau_0 - \tau, \tau_0)$ можно было бы с той же точностью заменить на $K(\tau_0)$, $\chi(0, \tau_0)$ и $\chi(\tau_0, \tau_0)$, соответственно.

Аналогичные замены переменной интегрирования были сделаны и при вычислении интегралов в (1). При этом обращалось внимание на то, чтобы при нахождении функций, входящих в подынтегральное выражение, количество обращений к вычислению экспоненциальных и логарифмических функций было сведено к минимуму.

Для нахождения значений функций в точках, отличных от точек указанного набора, применялась интерполяция по формуле Лагранжа с четырьмя узлами. Для того, чтобы не менять формулу при интерполировании вблизи краев таблиц с равноотстоящими узлами, все таблицы продолжались в обе стороны на один шаг.

Все интегралы вычислялись по квадратурным формулам Гаусса с числом узлов 10—14. Это обеспечивало желаемую точность.

В качестве исходного приближения были взяты $\chi(\tau, \tau_0) = K_2(\tau, \tau_0)$ при $\tau_0 \ll 1$, $\chi(\tau, \tau_0) = 1$ при $1 < \tau_0 \ll 2$. При $\tau_0 > 2$ использовалось приближенное решение, полученное в работе [15] для резонансного расссяния, но пригодное и в нашем случае:

$$\chi(\tau,\tau_0) = \chi(\tau) \frac{\Psi(\tau_0-\tau)}{\Psi(\tau_0)} + K(\tau) \left[\frac{\Psi(\tau_0-\tau)}{\Psi(\tau_0)} - 1 \right], \quad (24)$$

где $\chi(\tau) := \chi(\tau, \infty) = \Phi(\tau) - K(\tau)$. Наконец, при $\lambda = 1$ и $\tau_0 > 3$ начальным приближением служило более точное (асимптотическое при $\tau_0 \to \infty$) выражение, найденное В. В. Соболевым именно для монохроматического изотропного рассеяния [16]

$$\lambda(\tau, \tau_0) = \lambda(\tau) - \sqrt{3} \frac{\Psi(\tau) - \Psi(\tau_0 - \tau) + \Psi(\tau_0)}{2 \Psi(\tau_0) - \tau_0 \sqrt{3}} \frac{-\tau \sqrt{3}}{\sqrt{3}}.$$
 (25)

Значения функций Х(с) и Ψ(с) = Ψ(с, ∞) были взяты из работы [10].

Соответственно сказанному были составлены две программы вычисления функций $\Phi(\tau, \tau_0)$ при $\tau_0 \ll 1$ и $\tau_0 > 1$. Программы написаны на языке машин группы M-20. Все вычисления производились на ЭВМ БЭСМ-3М и M-222 Вычислительного центра ЛГУ.

По этим программам вычисления можно производить для τ_0 , не превосходящих 10. На вычисление таблицы одной функции $\Phi(\tau, \tau_0)$ (т. е. для данных h и τ_0) при $\tau_0 < 1$ уходило примерно 6 минут машинного времени БЭСМ-ЗМ, включая перфорацию и печать. Время, затрачиваемое на то же при $\tau_0 > 1$, составляло 10—15 минут, постепенно увеличиваясь с увеличением τ_0 .

Результаты вычислений. Таким образом были составлены подробные таблицы функций $\Phi(\tau, \tau_0)$ для монохроматического изотропного рассеяния. Точность их—5 значащих цифр. Эти таблицы хранятся на перфокартах и в напечатанном виде. Для тех, что на перфокартах, значения аргумента такие же, какие указывались выше при описании вычислений, что дает возможность находить $\Phi(\tau, \tau_0)$ путем интерполирования по 4 точкам с той же точностью 5 знаков. Сетка значений λ и τ_0 та же, что и в таблицах Карлстедта и Малликина [4].

Точность полученных значений оценивалась несколькими способами. Например, проверялось, что при изменении параметров программ ($a, \Delta x, n$ и др.) и числа узлов квадратурных формул результат не изменяется в пределах 5 значащих цифр. Кроме того, по таблицам $\Phi(\tau, \tau_0)$ были вычислены функции Амбарцумяна $\phi(\eta, \tau_0)$ и $\psi(\eta, \tau_0)$ (см. II часть работы [17]), значения которых совпали с полученными другим путем в [4] в пределах 5-6 значащих цифр.

Отметим, что значения $\Phi(\tau, \tau_0)$, имеющиеся в [6], в некоторых случаях отличаются от наших уже в третьем знаке.

Не имея возможности поместить здесь сколько-нибудь подробные таблицы $\Phi(\tau, \tau_0)$, сделаем извлечение из них для $\tau_0 = 1$ и $\tau_0 = 2$ (табл. 1 и 2).

Д. И. НАГИРНЕР

Таблица 1

ЗНАЧЕНИЯ ФУНКЦИЙ Ф (т. т.) ПРИ т

			~~~			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.5	0.7	0.8	0.9	0.95	1.00
0.01	1.125	1.671	1.979	2.319	2.506	2.706
0.02	0.9578	1.440	1.716	2.027	2.199	2.386
0.03	0.8609	1.306	1.566	1.860	2.025	2.204
0.04	0.7928	1.213	1.460	1.744	1.903	2.078
0.05	0.7404	1.141	1.379	1.654	1.810	1.981
0.06	0.6978	1.082	1.313	1.582	1.734	1.903
0.07	0.6620	1.033	1.258	1.521	1.671	1.838
0.08	0.6311	.0.9905	1.210	1.468	1.617	1.781
0.09	0.6041	0.9532	1.168	1.422	1.569	1.732
0.10	0.5800	0.9199	1.131	1.381	1.526	1.688
0.12	0.5385	0.8626	1.066	1.310	1.452	1.612
0.14	0.5037	0.8142	1.012	1.250	1.390	1.548
0.16	0.4738	0.7725	0.9642	1.198	1.336	1.492
0.18	0.4476	0.7357	0.9225	1.152	1.288	1.443
0.20	0.4243	0.7028	0.8851	1.110	1.245	1.398
0.25	0.3755	0.6332	0.8054	1.022	1.152	1.302
0.30	0.3363	0.5762	0.7396	0.9473	1.074	1.220
0.35	0.3037	0.5280	0.6833	0.8830	1.006	1.148
0.40	0.2758	0.4861	0.6338	0.8256	0.9443	1.083
0.45	0.2517	0.4490	0.5894	0.7734	0.8881	1.023
0.50	0.2304	0.4156	0.5490	0.7253	0.8357	0.9659
0.55	0.2115	0.3853	0.5118	0.6802	0.7863	0.9118
0.60	0.1944	0.3575	0.4772	0.6376	0.7391	0.8596
0.65	0.1789	0.3317	0.4447	0.5969	0.6937	0.8088
0.70	0.1648	0.3075	0.4139	0.5578	0.5495	0.7590
0.75	0.1517	0.2848	0.3844	0.5197	0.6062	0.7096
0.80	0.1396	0.2631	0.3559	0.4824	0.5634	0.6604
0.85	0.1282	0.2422	0.3281	0.4454	0.5206	0.6106
0.90	0.1174	0.2218	0.3005	0.4080	0.4769	0.5596
0.95	0.1068	0.2012	0.2722	0.3690	0.4311	0.5054
1.00	0.0955	0.1778	0.2393	0.3226	0.3759	0.4395
A come to a		- 11				

Таблица 2								
ЗНАЧЕНИЯ ФУНКЦИЙ Ф (¬, ¬₀) ПРИ ¬₀ = 2								
X	0.5	0.7	0.8	0.9	0.95	1.00		
0.01	1.129	1.685	2.007	2.378	2.593	2.840		
0.02	0.9613	1.454	1.745	2.088	2.290	2.524		
0.03	0.8645	1.321	1.595	1.922	2.117	2.346		
0.04	0.7965	1.228	1.490	1.807	1.998	2.223		
0.05	0.7441	1.156	1.410	1.719	1.907	2.129		
0.06	0.7016	1.098	1.345	1.648	1.833	2.054		
0.07	0.6659	1.049	1.290	1.589	1.772	1.992		
0.08	0.6351	1.007	1.243	1.538	1.720	1.939		
0.09	0.6081	0.9698	1.202	1.493	1.674	1.893		
0.10	0.5841	0.9368	1.165	1.453	1.633	1.852		
0.12	0.5428	0.8800	1.101	1.384	1.563	1.782		
0.14	0.5081	0.8323	1.048	1.327	1.505	1.723		
0.16	0.4783	0.7911	1.002	1.278	1.454	1.673		
0.18	0.4523	0.7549	0.9615	1.234	1.410	1.629		
0.20	0.4291	0.7226	0.9253	1.195	1.370	1.590		
0.25	0.3808	0.6546	0.8486	1.112	1.287	1.507		
0.30	0.3420	0.5992	0.7859	1.044	1.218	1.439		
0.35	0.3098	0.5526	0.7328	0.9861	1.158	1.381		
0.40	0.2824	0.5125	0.6865	0.9352	1.106	1.329		
0.45	0.2588	0.4772	0:6456	0.8896	1.059	1.282		
0.50	0.2381	0.4458	0.6088	0.8482	1.017	1.239		
0.55	0.2197	0.4176	0.5754	0.8102	0.9769	1.199		
0.60	0.2034	0.3920	0.5448	0.7749	0.9398	1.161		
0.65	0.1886	0.3686	0.5166	0.7420	0.9049	1.124		
0.70	0.1753	0.3471	0.4904	0.7110	0.8717	1.090		
0.75	0.1632	0.3273	0.4659	0.6816	0.8400	1.056		
0.80	0.1521	0.3089	0.4430	0.6538	0.8097	1.023		
0.85	0.1420	0.2917	0.4215	0.6272	0.7804	0.9914.		
0.90	0.1327	0.2757	0.4012	0.6018	0.7522	0.9602		
0.95	0.1241	0.2608	0.3819	0.5774	0.7248	0.9296		
1.00	0.1162	0.2467	0.3637	0.5539	0.6982	0.8996		
1.10	0.1020	0.2210	0.3297	0.5092	0.6469	0.8405		
1.20	0.08968	0.1980	0.2988	0.4673	0.5978	0.7826		
1.30	0.07896	0.1773	0.2702	0.4276	0.5505	0.7255		
1.40	0.06954	0.1585	0.2438	0.3896	0.5044	0.6688-		
1.50	0.06121	0.1414	0.2191	0.3532	0.4594	0.6121		
1.60	0.05378	0.1255	0.1957	0.3178	0.4149	0.5551		
1.70	0.04709	0.1107	0.1734	0.2830	0.3705	0.4972		
1.80	0.04098	0.09667	0.1518	0.2483	0.3256	0.4376		
1.90	0.03524	0.08289	0.1300	0.2125	0.2785	0.3743		
2.00	0.02924	0.06748	0.1048	0.1698	0.2215	0.2963		

Д. И. НАГИРНЕР

ЗНАЧЕНИЯ МОМЕНТОВ Фл (-)

Таблица З

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.5	0.7	0.8	0.9	0.95	1.0
0.5	0.2151	0.3392	0.4140	0.4998	0.5475	0.5991
	0.03934	0.06387	0.07914	0.09702	0.1071	0.1182
	0.01152	0.01890	0.02354	0.02902	0.03213	0.03554
	0.004022	0.006628	0.008273	0.01022	0.01133	0.01255
	0.001537	0.002538	0.003172	0.003923	0.004352	0.004822
-	0.0006203	0.001025	0.001282	0.001587	0.001761	O.001952
1.0	0.3020	0.5103	0.6514	0.8309	0.9404	1.067
	0.09714	0.1752	0.2310	0.3049	0.3513	0.4060
	0.05382	0.09887	0.1320	0.1764	0.2045	0.2380
	0.03625	0.06730	0.09036	0.1215	0.1413	0.1650
	0.02705	0.05051	0.06801	0.09173	0.1069	0.1250
	0.02147	0.04021	0.05423	0.07328	0.08545	0.1000
1.5	0.3490	0.6191	0.8193	1.098	1.283	1.515
	0.1510	0.2933	0.4084	0.5785	0.6955	0.8463
	0.1176	0.2373	0.3373	0.4880	0.5940	0.7314
	0.1146	0.2357	0.3383	0.4948	0.6055	0.7499
	0.1253	0.2602	0.3756	0.5526	0.6784	0.8427.
	0.1467	0.3064	0.4438	0.6550	0.8056	1.003
2.0	0.3758	0.6900	0.9399	1.316	1.588	1.955
	0.1938	0.4015	0.5861	0.8865	1.115	1.436
	0.1892	0.4138	0.6227	0.9780	1.245	1.632
	0.2368	0.5325	0.8136	1.292	1.669	2.207
	0.3368	0.7690	1.185	1.900	2.465	3.277
	0.5166	1.191	1.844	2.974	3.870	5.160
2.5	0.3913	0.7366	1.026	1.494	1.858	2.391
	0.2261	0.4933	0.7504	1.207	1.588	2.172
	0.2588	0.6062	0.9604	1.616	2.177	3.054
	0.3890	0.9455	1.532	2.638	3.599	5.114
	0.6735	1.674	2.744	4.790	6.581	9.421
	1.2678	3.194	5.274	9.283	12.81	18.43
3.0	0.4005	0.7671	1.088	1.636	2.095	2.826
	0.2496	0.5675	0.8944	1.523	2.094	3.055
	0.3206	0.7965	1.322	2.386	3.385	5.108
	0.5543	1.446	2.469	4.598	6.633	10.19
	1.1194	3.006	5.219	9.897	14.42	22.37
(34 C	2.4790	6.777	11.89	22.81	33.44	52.21

. .

357

ЗНАЧЕНИЯ МОМЕНТОВ Ф^{*} (т₀)

Таблица 4

				4		
X	0.5	0.7	0.8	0.9	0.95	1.0
0.5	0.2151	0.3392	0.4140	0.4998	0.5475	0.5991
	0.06823	0.1058	0.1279	0.1529	0.1666	0.1814
	0.02597	0.03984	0.04791	0.05693	0.06188	0.06714
	0.01065	0.01623	0.01944	0.02301	0.02495	0.02702
	0.004553	0.006902	0.008244	0.009729	0.01053	0.01139
	0.001999	0.003018	0.003598	0,004236	0.004581	0.004946
1.0	0.3020	0.5103	0.6514	0.8309	0.9404	1.067
	0.2043	0.3350	0.4203	0.5260	0.5891	0.6614
	0.1605	0.2587	0.3213	0.3975	0.4424	0.4934
	0.1343	0.2139	0.2638	0.3238	0.3590	0.3985
	0.1164	0.1838	0-2256	0.2754	0.3043	0.3366
	0.1033	0.1620	0.1981	0.2407	0.2653	0.2928
1.5	0.3490	0.6191	0.8193	1.098	1.283	1.515
	0.3725	0.6353	0.8206	1.069	1.230	1.426
	0.4500	0.7503	0.9557	1.224	1.395	1.601
	0.5734	0.9418	1.188	1.505	1.704	1.942
	0.7539	1.224	1.534	1,928	2.171	2.461
	1.012	1.629	2.031	2.535	2.845	3.211
2.0	0.3758	0.6900	0.9399	1.316	1.588	1.955
	0.5577	0.9786	1.294	1.746	2.060	2.474
	0.9170	1.568	2.038	2.692	3.136	3.710
	1.579	2.653	3.408	4.437	5.123	5.999
	2.793	4.634	5.903	7.603	8.722	10.14
	5.034	8.268	10.46	1.337	15.26	17.62
2.5	0.3913	0.7366	1.026	1.494	1.857	2.391
	0.7522	1.348	1.815	2.526	3.056	3.807
	1.574	2.743	3.623	4.914	5.847	7.140
	3.426	5.860	7.637	10.18	11.98	14.43
	7.640	12.88	16.63	21.88	25.54	30.46
	17.32	28.89	37.00	48.22	55.92	66.17
3.0	0.4005	0.7671	1.088	1.636	2.095	2.826
	0.9519	1.734	2.369	3.386	4.191	5.424
	2.427	4.296	5.747	7.974	9.678	12.22
	6.405	11.11	14.65	19.93	23.87	29.22
	17.26	29.51	38.50	51.62	61.20	74.97
	47.22	79.77	103.2	136.8	161.0	195.3

3-504

В таблицах 3 и 4 приведены значения моментов функций  $\Phi(\tau, \tau_0)$ , входящих в некоторые формулы [2]:

$$\Phi_{n}(\tau_{0}) = \int_{0}^{\tau_{n}} \Phi(\tau, \tau_{0}) d\tau,$$

$$\Phi_{n}^{*}(\tau_{0}) = \int_{0}^{\tau_{n}} (\tau_{0} - \tau)^{n} \Phi(\tau, \tau_{0}) d\tau$$
(26)

для различных  $\tau_0$  и  $\lambda$  и n = 0 (1) 5. Эти моменты были вычислены В. М. Лоскутовым.

Полученные таблицы можно применить для оценки точности приближенных решений. Откладывая подробную оценку точности асимптотик различных величин (см. часть III работы), скажем здесь лишь о точности формул (24) и (25). Сравнение начального приближения с окончательными значениями функции  $\chi(\tau, \tau_0)$  показало, что формула (24) дает эту функцию с точностью 20% при  $\tau_0 = 3.5$  и любых  $\lambda$ . В то же время при  $\lambda = 1$  и  $\tau_0 = 3.5$  по формуле (25) получаем  $\chi(\tau, \tau_0)$ с относительной ошибкой порядка  $10^{-3}$ . Точность формул для  $\Phi(\tau, \tau_0)$ такая же.

В заключение заметим, что составленные программы годятся для решения уравнений (4) или (1) при  $\tau_0 \leq 10$  не только при ядре вида (2), но и при произвольном ядре. Например, легко могут быть сосчитаны резольвентные функции  $\Phi^0(\tau, \tau_0)$ ,  $\Phi^1(\tau, \tau_0)$  и  $\Phi^2(\tau, \tau_0)$  при трехчленной индикатрисе рассеяния. Они соответствуют последовательным трем составляющим поля излучения при разложении его характеристик по косинусам углов, кратных азимуту [2]. Небольшая таблица полученных таким образом значений этих функций помещена в книге [2].

Выражаю благодарность Т. М. Максимовой за помощь при проведении расчетов.

Хенинградский государственный университет

## THE CALCULATION OF RADIATION FIELD UNDER THE ASSUMPTION OF MONOCHROMATIC ISOTROPIC SCATTERING. I. THE GREEN FUNCTIONS

#### D. I. NAGIRNER

The method of computation of the Green function  $\Phi(\tau, \tau_0)$  of the basic integral equation of the theory of monochromatic isotropic

#### РАСЧЕТ ПОЛЯ ИЗЛУЧЕНИЯ ПРИ ИЗОТРОПНОМ РАССЕЯНИИ. I 359

scattering of radiation in a slab of finite optical thickness  $\tau_0$  is given. The tables of  $\Phi(\tau, \tau_0)$  for  $\tau_0 = 1$  and 2 and of the moments of  $\Phi$  for  $\tau_0 = 0.5(0.5)3.0$  and various values of the particle albedo are presented.

#### **ЛИТЕРАТУРА**

- 1. В. В. Соболев, Перенос лучистой энергии в атмосферах звозд и планет, ГИТТА, М., 1956.
- 2. В. В. Соболев, Рассеяние света в атмосферах планет, Наука, М., 1972.
- 3. В. В. Соболев, ДАН СССР, 120, 69, 1958.
- 4. J. L. Carlstedt, T. W. Mullikin, Ap. J., Suppl. ser., 12, No. 113, 1966.
- 5. Y. Soboutt, Ap. J., Suppl. ser., 7, No. 72, 1963.
- 6. H. H. Kagiwada, R. E. Kalaba, Mem. RM-4958-PR, April 1966, The RAND Corporation.
- 7. В. В. Соболев, И. Н. Минин, Астрон. ..., 38, 1025, 1961.
- 8. В. В. Соболев, Астрофизика, 3, 5, 1967.
- 9. И. Н. Минин, ДАН СССР, 120, 63, 1958.
- 10. А. Б. Шнейсайс, Вестн. ЛГУ, № 7, 144, 1973.
- 11. H. Kagiwada, R. Kalaba, Calcolo, 4, No. 1, 11, 1967.
- 12. D. G. Hummer, G. Rybicki, Comp. Phys., 7, Academ. Press, N.-Y., 1967.
- 13. Т. А. Гермоленова, ДАН СССР, 181, 519, 1968.
- 14. С. Г. Михлин, Вариационные методы в математической физике, Наука, М., 1970.
- 15. Ю. Ю. Абрамов, А. М. Дыхне, А. П. Напартович, ИАЭ-1804, М., 1969.
- 16. В. В. Соболев, ДАН СССР, 155, 336, 1964.
- 17. В. М. Лоскутов, Астрофизика, 9, 344, 1973.