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or nondeterministic) and on the dependence structure of the underlying observed

process X(t).

Notice that the aforementioned prediction problem goes back to the classical

works by A. Kolmogorov, G. Szeg�o and N. Wiener, and later for di�erent classes

of stationary models has been considered by many authors. The problem has been

studied most intensively for nondeterministic processes, that is, in the case where

the prediction error is known to be positive (σ2(F ) > 0) (see Baxter [2], Devinatz

[9], Doob [10], Golinski [14], Grenander and Rosenblatt [17], Grenander and Szeg�o

[18], Helson and Szeg�o [19], Hirshman [21], Ibragimov [23], Ibragimov and Solev

[25], Kolmogorov [27], [28], Pourahmadi [29], Rozanov [32], Wiener [34] and others

(more references can be found in Bingham [5] and Ginovyan [13]). This is not

surprising because from application point of view the nondeterministic models are

more realistic and represent great interest.

The case of deterministic processes, that is, when σ2(F ) = 0, represents mostly

theoretical interest. However, it is also important from application point of view.

For example, as it was pointed out by M. Rosenblatt [31], situations of this type

arise in Neumann's theoretical model of storm-generated ocean waves. Also, such

models are of interest for meteorology, because the meteorological spectra often

have a gap in the mesoscale region (see Fortus [11]).

There are only few works devoted to the study of asymptotic behavior of prediction

error for deterministic processes. It goes back to the classical work by M. Rosenblatt

[31], where using the technique of orthogonal polynomials and Szeg�o's results, M.

Rosenblatt has investigated the asymptotic behavior of the prediction error variance

δn(F ) = σ2
n(F ) for discrete-time deterministic processes in the following two cases:

(a) the spectral density f(λ) is continuous and vanishes on an interval,

(b) the spectral density f(λ) has a high order contact with zero.

Later the problem (a) was studied by Babayan [3], [4], Davisson [8], and Fortus

[11], where some generalizations and extensions of Rosenblatt's result have been

obtained.

In this paper we consider the case (b), that is, when the spectral density f(λ) has

a high order contact with zero, and obtain su�cient conditions for hyperbolic decay

of prediction error variance, generalizing the corresponding result of Rosenblatt [31],

obtained in this case.

Throughout the paper we will use the following notation. The letters C, c,M and

m with or without indices are used to denote positive constants, the values of which

can vary from line to line. For two functions f(λ) and g(λ), λ ∈ Λ, we will write
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f(λ) ∼=
λ→λ0

g(λ) if limλ→λ0

f(λ
g(λ) = c, c 6= 0, and f(λ) ∼

λ→λ0

g(λ) if c = 1. A similar

notation we will use for sequences: for two sequences {an > 0, n ∈ N = {1, 2, . . .}}
and {bn > 0, n ∈ N}, we will write an ∼= bn if limn→∞

an
bn

= c, c 6= 0, and an∼ bn if

c = 1.

The paper is organized as follows. In the remainder of this section we introduce

the model of interest - a stationary process, recall some key notions and results

from the theory of stationary process, and state the in�nite prediction problem.

In Section 2 we state the �nite prediction problem, present a formula for �nite

prediction error in terms of orthogonal polynomials on the unit circle, and state

the Kolmogorov-Szeg�o theorem. Section 3 is devoted to the asymptotic behavior

of the �nite prediction error for nondeterministic processes. Here we brie�y review

some important known results. Section 4 is devoted to the asymptotic behavior of

the �nite prediction error for deterministic processes. Here we state and prove a

number of new theorems.

1.2. TheModel. In this subsection we introduce the model of interest - a stationary

process, recall some key notions and results from the theory of stationary process

(Kolmogorov's isometric isomorphism theorem, spectral representations of the

covariance function and the process, etc.)

Let {X(t), t ∈ Z} be a centered, real-valued, discrete-time, second-order stationary

random process de�ned on a probability space (Ω,F , P ) with covariance function

r(t), that is, IE|X(t)|2 < ∞, IE[X(t)] = 0, r(t) = IE[X(t)X(0)], t ∈ Z, where IE[·]
stands for the expectation operator with respect to measure P .

By the well-known Herglotz' theorem (see [33], p. 421), there is a �nite measure µ

on (Λ,B(Λ)), where Λ = [−π, π] andB(Λ) is the Borel σ-algebra on Λ, such that for

any t ∈ Z the covariance function r(t) admits the following spectral representation:

(1.1) r(t) =

∫ π

−π
e−itλdµ(λ).

The measure µ in (1.1) is called the spectral measure of the process X(t). The

function F (λ) = µ[−π, λ], λ ∈ Λ, is called the spectral function of the process

X(t). If F (λ) is absolutely continuous (with respect to Lebesgue measure), then

the function f(λ) = dF (λ)/dλ is called the spectral density of the process X(t).

Notice that f(λ) ≥ 0 and f(λ) ∈ L1(Λ). The set Ef = {eiλ : f(λ) > 0} is called
the spectrum of the process X(t).

We assume thatX(t) is a non-degenerate process, that is, Var[X(0)] = E|X(0)|2 =

r(0) > 0. Also, to avoid the trivial cases, we will assume that the spectral measure
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µ is non-trivial, that is, µ has in�nite support. We write

(1.2) µ(λ) = µAC(λ) + µS(λ) =

∫ λ

−π
f(u)du+ µS(λ),

so f(λ) is the spectral density and µS is the singular part of µ, that is, µS =

µSC + µPP , where µ = µAC + µSC + µPP is the Lebesgue decomposition of µ into

an absolutely continuous (with respect to Lebesgue measure) part (µAC), a singular

continuous part (µSC), and a pure point part (µPP ). The same representations we

have also for spectral function F (λ).

By the well-known Cram�er theorem (see [33], p. 430), for any stationary process

{X(t), t ∈ Z} with spectral measure µ there exists an orthogonal stochastic measure

Z = Z(B), B ∈ B(Λ), such that for every t ∈ Z the process X(t) admits the

following spectral representation:

(1.3) X(t) =

∫ π

−π
eitλdZ(λ).

Moreover, IE
[
|Z(B)|2

]
= µ(B) for every B ∈ B(Λ). For de�nition and properties of

orthogonal stochastic measures and stochastic integral in (1.3) we refer, e.g., [33],

Chapter VI.

Given a probability space (Ω,F , P ), de�ne the L2-space of random variables

ξ = ξ(ω), IE[ξ] = 0:

(1.4) L2(P ) =

{
ξ : ||ξ||2 =

∫
Ω

|ξ(ω)|2dP (ω) <∞
}
.

Then L2(P ) becomes a Hilbert space with the following inner product: for ξ, η ∈
L2(P )

(1.5) (ξ, η) = IE[ξη] =

∫
Ω

ξ(ω)η(ω)dP(ω).

For a, b ∈ Z, −∞ ≤ a ≤ b ≤ ∞, we de�ne the space Hb
a(X) to be the closed linear

subspace of the space L2(P ) spanned by the random variables X(t, ω), t ∈ [a, b]:

(1.6) Hb
a(X) = sp{X(t), a ≤ t ≤ b}L2(P ).

Observe that the subspaceHb
a(X) consists of all �nite linear combinations,

∑n
k=1 ckX(tk)

(a ≤ tk ≤ b, k, n ∈ N), as well as, their L2(P )-limits.

De�nition 1.1. The space H(X) = H∞−∞(X) is called the Hilbert space generated

by the process X(t), or the time-domain of X(t).

Consider the weighted L2-space L2(µ) of complex-valued functions ϕ(λ), λ ∈ Λ,

de�ned by

(1.7) L2(µ) =

{
ϕ(λ) : ||ϕ||2µ :=

∫ π

−π
|ϕ(λ)|2dµ(λ) <∞

}
.
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Then L2(µ) becomes a Hilbert space with the following inner product: for ϕ,ψ ∈
L2(µ)

(1.8) (ϕ,ψ)µ =

∫ π

−π
ϕ(λ)ψ(λ)dµ(λ).

For a, b ∈ Z, −∞ ≤ a ≤ b ≤ ∞ de�ne the space Hb
a(µ) to be the closed linear

subspace of the space L2(µ) spanned by the exponents eitλ, t ∈ [a, b]:

(1.9) Hb
a(µ) = sp{eitλ, a ≤ t ≤ b}L2(µ).

De�nition 1.2. The Hilbert spaceH(µ) := H∞−∞(µ) is called the frequency-domain

of the process X(t).

Kolmogorov's Isometric Isomorphism Theorem states that for any stationary process

X(t) with spectral measure µ there exists a unique isometric isomorphism V between

the time- and frequency-domains H(X) and L2(µ), such that V [X(t)] = eitλ for

any t ∈ Z. In particular, we have

1. For any random variable Y ∈ H(X) there exist a unique function ϕ(λ) ∈ L2(µ),

such that Y admits the spectral representation

(1.10) Y =

∫ π

−π
ϕ(λ)dZ(λ),

where Z is the orthogonal stochastic measure in the spectral representation (1.3)

of X(t), and for any function ϕ(λ) ∈ L2(µ) the stochastic integral (1.10) de�nes an

element Y ∈ H(X).

2. For any Yi ∈ H(X) and ϕi(λ) = V [Yi] ∈ L2(µ), i = 1, 2,

(1.11) (Y1, Y2) = (ϕ1, ϕ2)µ.

3. Any linear problem in the time-domain H(X) can be translated into one in

the frequency-domain L2(µ), and vice versa. This fact allows to study stationary

processes using analytic methods.

1.3. The in�nite prediction problem. Observe �rst that since by assumption

X(t) is a non-degenerate process, the time-domain H(X) of X(t) is non-trivial,

that is, H(X) contains elements di�erent from zero.

De�nition 1.3. The space Ht
t−n(X) is called the �nite history, or past of length

n and present of the process X(u) up to time t. The space Ht(X) = Ht
−∞(X) is

called the entire history, or in�nite past and present of the process X(u) up to time

t. The space

(1.12) H−∞(X) = ∩tHt
−∞(X)

is called the remote past of the process X(u).
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It is clear that

H−∞(X) ⊂ · · · ⊂ Ht
−∞(X) ⊂ Ht+τ

−∞(X) ⊂ · · · ⊂ H(X), τ ∈ N.

The Hilbert space setting provides a natural framework for stating and solving the

problem of predicting future values of the process X(u) from the observed past

values. Assume that a realization of the process X(u) for times u ≤ t is observed

and we want to predict the value X(t + τ) for some τ ≥ 1 from the observed

values. Since we will never know what particular realization is being observed, it is

reasonable to consider as a predictor X̂(t, τ) for X(t+τ) a function of the observed

values, g({X(u), u ≤ t}), which is good �on the average�. So, as an optimality

criterion for our predictor we take the L2-distance, that is, the mean squared error,

and consider only the linear predictors. With these restrictions, the in�nite linear

prediction problem can be stated as follows.

The in�nite linear prediction problem. Given a �parameter� of the process

X(u) (e.g., the covariance function r(t) or the spectral function F (λ)), the entire

history Ht
−∞(X) of X(u), and a natural number τ ∈ N, �nd a random variable

X̂(t, τ) such that

a) X̂(t, τ) is linear, that is, X̂(t, τ) ∈ Ht
−∞(X),

b) X̂(t, τ) is mean-square optimal (best) among all elements Y ∈ Ht
−∞(X),

that is, X̂(t, τ) minimizes the mean-squared error ||X(t+ τ)− Y ||2L2(P ) :

(1.13) ||X(t+ τ)− X̂(t, τ)||2L2(P ) = min
Y ∈Ht

−∞(X)
||X(t+ τ)− Y ||2L2(P ).

The solution - the random variable X̂(t, τ) satisfying a) and b), is called the best

linear τ -step ahead predictor for an element X(t+ τ) ∈ H(X). The quantity

(1.14) σ2(τ) = ||X(t+ τ)− X̂(t, τ)||2L2(P ) = ||X(t+ τ)||2L2(P ) − ||X̂(t, τ)||2L2(P ),

which is independent of t, is called the prediction error (variance).

The advantage of the Hilbert space setting now becomes apparent. Namely, by

the projection theorem in Hilbert spaces (see [29], p. 312), such a predictor exists,

is unique, and is given by

(1.15) X̂(t, τ) = PtX(t+ τ),

where Pt := P(−∞,t] is the orthogonal projection operator in H(X) onto Ht
−∞(X).

Remark 1.1. The reason for restricting attention to linear predictors is that

the best linear predictor X̂(t, τ), in this case, depends only on knowledge of the

covariance function r(t) or the spectral function F (λ). The prediction problem

becomes much more di�cult when nonlinear predictors are allowed.
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1.4. Deterministic and nondeterministic processes. From prediction point of

view it is natural to distinguish the class of processes for which we have error-free

prediction, that is, σ2(τ) = 0 for all τ ≥ 1, or equivalently, X̂(t, τ) = X(t + τ) for

all t ∈ Z and τ ≥ 1. In this case, the prediction is called perfect. It is clear that a

process X(t) possessing perfect prediction represents a singular case of extremely

strong dependence between the random variables forming the process. Such a process

X(t) is called deterministic or singular. From the physical point of view, singular

processes are exceptional. From application point of view it is of interest the class

of processes for which we have σ2(τ) > 0 for all τ ≥ 1. In this case the prediction

is called imperfect, and the process X(t) is called nondeterministic.

Observe that the time-domain H(X) of any non-degenerate stationary process

{X(t), t ∈ Z} can be represented as the orthogonal sum H(X) = H1(X) ⊕
H−∞(X), where H−∞(X) is the remote past of X(t) de�ned by (1.12), and H1(X)

is the orthogonal complement of H−∞(X). So, we can give the following geometric

de�nition of the deterministic (singular), nondeterministic and purely nondeterministic

(regular) processes.

De�nition 1.4. A stationary process {X(t), t ∈ Z} is called

• deterministic or singular ifH−∞(X) = H(X), that is,Ht
−∞(X) = Hs

−∞(X)

for all t, s ∈ Z,
• nondeterministic ifH−∞(X) is a proper subspace ofH(X), that is,H−∞(X) ⊂
H(X),

• purely nondeterministic (PND) or regular if H−∞(X) = {0}, that is, the
remote past H−∞(X) of X(t) is the trivial subspace, consisting of the

singleton zero.

The next result, known as Wold's decomposition theorem (see [1], p. 65), provides

a key step for solution of the in�nite prediction problem in the time-domain setting,

and essentially says that any stationary process can be represented in the form of a

sum of two orthogonal stationary components, one of which is perfectly predictable

(singular component), while for the other (regular component) an explicit formula

for the predictor can be obtained.

Theorem 1.1 (Wold's decomposition). Every centered non-degenerate discrete-

time stationary process X(t) admits a decomposition

(1.16) X(t) = XS(t) +XR(t),

where
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(a) the processes XR(t) and XS(t) are stationary, centered, mutually uncorrelated

(orthogonal), and completely subordinated to X(t), that is, Ht
−∞(XR) ⊆

Ht
−∞(X) and Ht

−∞(XS) ⊆ Ht
−∞(X) for all t ∈ Z.

(b) the process XS(t) is deterministic (singular),

(c) the process XR(t) is purely nondeterministic (regular) and has the in�nite

moving-average representation:

(1.17) XR(t) =

∞∑
k=0

bkε0(t− k),

∞∑
k=0

|bk|2 <∞,

where ε0(t) is an innovation of XR(t), that is, ε0(t) is a standard white

noise process, such that Ht
−∞(XR) = Ht

−∞(ε0) for all t ∈ Z.
(d) the representation (1.16) is unique.

The next theorem contains spectral characterizations of deterministic, nondeterministic

and purely nondeterministic processes (see [24], p. 35-36, [32], p. 58, 64)).

Theorem 1.2. Let X(t) be a discrete-time non-degenerate stationary process with

spectral function F (λ) = FR(λ) + FS(λ) =
∫ λ
−π f(u)du + FS(λ). The following

assertions hold.

(a) (Kolmogorov-Szeg�o alternative). Either

H0
−∞(FR) = H(FR)⇔

∫ π

−π
log f(λ) dλ = −∞⇔ σ2(f) = 0⇔ X(t) is deterministic,

or else

H0
−∞(FR) 6= H(FR)⇔

∫ π

−π
log f(λ) dλ > −∞⇔ σ2(f) > 0⇔ X(t) is nondeterministic.

(b) The process X(t) is regular (PND) if and only if it is nondeterministic and

FS(λ) ≡ 0.

Remark 1.2. The condition

(1.18)

∫ π

−π
log f(λ) dλ > −∞

is called Szeg�o condition. Observe that (1.18) is satis�ed if and only if log f ∈
L1(Λ), since log f(λ) ≤ f(λ) and f(λ) ∈ L1(Λ). Also, the Szeg�o condition (1.18)

is connected with the character of zeros of the spectral density f(λ), and does

not depend on the di�erential properties of f(λ). For example, for any α ≥ 0

the function f(λ) = exp{−|λ|−α} is in�nitely di�erentiable, for α < 1 the Szeg�o

condition is satis�ed, and hence a stationary process X(t) with this spectral density

is nondeterministic, while for α ≥ 1 the Szeg�o condition is violated, and X(t) is

deterministic (see [30], p. 151, [29], p. 68).
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Remark 1.3. A stationary process X(t) is deterministic if either it has pure

discrete spectrum, or pure singular spectrum, or the Szeg�o condition is violated:

log f /∈ L1(Λ). Thus, for X(t) to be nondeterministic, its spectral density f(λ)

cannot be zero too often (see [29], p. 68).

2. The Finite Prediction Problem

In practice we never will have the observed entire in�nite past, instead will be

available only the �nite past.

Suppose we have observed the values X(−n), . . . , X(−1) of a centered, real-

valued stationary process X(t) with covariance function r(t) and spectral function

F (λ), the one-step ahead �nite prediction problem in predicting a random variable

X(0) based on the observed valuesX(−n), . . . , X(−1) is: �nd the orthogonal projection

X̂n(0) = P[−n,−1]X(0) of X(0) onto the space Hn(X) = H−1
−n(X) = sp{X(t), −n ≤

t ≤ −1}, that is, �nd constants ĉk = ĉk,n, k = 1, 2, . . . , n, that minimize the one-

step ahead prediction error variance σ2
n(F ) = σ2

n(1, F ):

σ2
n(F ) = min

ξ∈Hn(X)
‖X(0)− ξ‖2L2(P ) = min

{ck}

∥∥∥∥∥X(0)−
n∑
k=1

ckX(−k)

∥∥∥∥∥
2

L2(P )

=

∥∥∥∥∥X(0)−
n∑
k=1

ĉkX(−k)

∥∥∥∥∥
2

L2(P )

= ||X(0)− X̂n(0)||2L2(P ).(2.1)

If such constants ĉk can be found, then the best linear 1-step ahead predictor X̂n(0)

of a random variable X(0) based on the observed �nite past: X(−n), . . . , X(−1)

can be computed by

(2.2) X̂n(0) =

n∑
k=1

ĉkX(−k), ĉk = ĉk,n,

and the mean-squared prediction error σ2
n(F ) can be computed by formula (2.1).

Using Kolmogorov's isometric isomorphism V : X(t) ↔ eitλ between the time-

and frequency-domains H(X) and L2(F ), in view of (2.1), for σ2
n(F ) we can write

σ2
n(F ) = min

{ck}

∥∥∥∥∥X(0)−
n∑
k=1

ckX(−k)

∥∥∥∥∥
2

L2(P )

= min
{ck}

∫ π

−π

∣∣∣∣∣1−
n∑
k=1

cke
−ikλ

∣∣∣∣∣
2

dF (λ)

= min
{ck}

∫ π

−π

∣∣∣∣∣einλ −
n∑
k=1

cke
i(n−k)λ

∣∣∣∣∣
2

dF (λ) = min
{qn∈Qn}

∫ π

−π

∣∣qn(eiλ)
∣∣2 dF (λ),(2.3)

where Qn =
{
qn : qn(z) =

∑n
k=0 ckz

n−k, c0 = 1
}
stands for the set of polynomials

of degree n with coe�cient of the leading term equal to 1.
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Thus, the problem of �nding σ2
n(F ) becomes to the solution of the following

minimum problem:

(2.4)

∫ π

−π
|qn(eiλ|2dF (λ) = min, qn(z) ∈ Qn.

The polynomial pn(z) = pn(z, F ) that solves the minimum problem (2.4) is called

the optimal polynomial for F (λ) in the class Qn. This minimum problem was solved

by G. Szeg�o (see [18], Section 2.2) by showing that the optimal polynomial pn(z, F )

exists, is unique and can be expressed in terms of orthogonal polynomials ϕn(z),

n ∈ Z+ = {0, 1, 2, . . .}, on the unit circle T = {z ∈ C : |z| = 1} with respect to

F (λ).

Recall that the system of orthogonal polynomials {ϕn(z) = ϕn(z;F ), z = eiλ, n ∈
Z+} is uniquely determined by the following conditions:

(i) ϕn(z) = κn(F )zn + lower order terms

is a polynomial of degree n, in which the coe�cient κn = κn(F ) is real

and positive;

(ii) for arbitrary nonnegative integers k and j

1

2π

∫ π

−π
ϕk(z)ϕj(z)dF (λ) = δkj =

{
1, for k = j
0, for k 6= j,

z = eiλ.

Theorem 2.1 (Szeg�o theorem). The optimal polynomial for F (λ) in the class Qn,
that is, the polynomial pn(z) = pn(z, F ) that solves the minimum problem (2.4) is

given by pn(z) = κ−1
n (F )ϕn(z), and the minimum itself is equal to κ−2

n (F ). Thus,

we have

σ2
n(F ) = min

{qn∈Qn}

∫ π

−π

∣∣qn(eiλ)
∣∣2 dF (λ) =(2.5)

=

∫ π

−π

∣∣pn(eiλ, F )
∣∣2 dF (λ) = κ−2

n (F ).

Remark 2.1. Denote Q∗n =
{
qn : qn(z) =

∑n
k=0 ckz

n−k, cn = 1
}
. Then we have

(see [18], Section 3.1):

σ2
n(F ) = min

{qn∈Q∗n}

∫ π

−π

∣∣qn(eiλ)
∣∣2 dF (λ) =

∫ π

−π

∣∣p∗n(eiλ, F )
∣∣2 dF (λ),(2.6)

where p∗n(z) = pn(z, F ) is the optimal polynomial for F (λ) in the class Q∗n.

Remark 2.2. From the obvious embeddingQ∗n ⊂ Q∗n+1, it follows that the sequence

{σ2
n(F ), n ∈ N} is non-increasing in n: σ2

n+1(F ) ≤ σ2
n(F ). Also, it follows from (2.5)

that σ2
n(F ) is a non-decreasing functional of F (λ):

σ2
n(F1) ≤ σ2

n(F2) when F1(λ) ≤ F2(λ), λ ∈ Λ.(2.7)
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Indeed, by the de�nition of optimal polynomials pn(z, F1) and pn(z, F2), corresponding

to spectral functions F1 and F2, respectively, we have

σ2
n(F1) =

∫ π

−π

∣∣pn(eiλ, F1)
∣∣2 dF1(λ) ≤

∫ π

−π

∣∣pn(eiλ, F2)
∣∣2 dF1(λ)

≤
∫ π

−π

∣∣pn(eiλ, F2)
∣∣2 dF2(λ) = σ2

n(F2).

The �nite prediction problem is to describe the asymptotic behavior of σ2
n(F )

as the length of the observed past increases (n→∞). The problem was solved by

G. Szeg�o in 1915 in the special case where F (λ) is pure absolute continuous, that

is, FS(λ) = 0, and by A. Kolmogorov in 1941 in the general case (see, e.g., [18],

p. 44 or [22], p. 49). The solution is given in the theorem that follows, known as

Kolmogorov-Szeg�o theorem.

Remark 2.3. If F (λ) is purely absolutely continuous, that is, dF (λ) = f(λ)dλ,

then instead of σ2
n(F ) and σ2(F ) we will write σ2

n(f) and σ2(f), respectively.

Theorem 2.2 (Kolmogorov-Szeg�o theorem). For any non-trivial spectral function

F (λ) the following limiting relation hold:

lim
n→∞

σ2
n(F ) = σ2(F ) = σ2(f) = 2πG(f),(2.8)

where f(λ) is the spectral density, that is, the derivative of the absolutely continuous

part of F (λ), and G(f) is the geometric mean of f(λ), given by

(2.9) G(f) =

{
exp

{
1

2π

∫ π
−π log f(λ) dλ

}
if log f ∈ L1(Λ)

0, otherwise.

De�ne the relative prediction error δn(F ) to be

(2.10) δn(F ) := σ2
n(F )− σ2(F ).

Observe that δn(F ) ≥ 0 and δn(F ) → 0 as n → ∞. Note that if the underlying

process X(t) is deterministic, then δn(F ) = σ2
n(F ).

The problem of interest is to describe the rate of decrease of relative prediction

error δn(F ) to zero as n → ∞, depending on the regularity nature (deterministic

or nondeterministic) and the dependence (memory) structure of the model X(t).

This problem we discuss in Section 3 for nondeterministic processes and in Section

4 for deterministic processes.

3. Asymptotic behavior of the prediction error variance for

nondeterministic processes

In this section we study the asymptotic behavior of the �nite prediction error

for nondeterministic processes, and review some important known results.
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We assume that the model process X(t) is regular, or equivalently, is purely

nondeterministic (PND), that is, X(t) has a non-trivial spectral function F (λ) =∫ λ
−π f(u)du + FS(λ) with dFs(λ) = 0 and ln f(λ) ∈ L1(Λ), and describe the rate

of decrease of relative prediction error δn(F ) to zero as n → ∞, depending on the

dependence (memory) structure of the model X(t) and the smoothness properties

of its spectral density f(λ).

3.1. Asymptotic behavior of δn(f) for short-memory processes. Recall that

a short memory processes is a second order stationary processes possessing a

spectral density f(λ) which is bounded away from zero and in�nity, that is, there

are constantsm andM such that 0 < m ≤ f(λ) ≤M <∞. A typical short memory

model example is the stationary autoregressive moving average (ARMA)(p, q) process

X(t) de�ned to be a stationary solution of the di�erence equation: ψp(B)X(t) =

θq(B)ε(t), t ∈ Z, where ψp and θq are polynomials of degrees p and q, respectively,

B is the backward shift operator de�ned by BX(t) = X(t− 1), and {ε(t), t ∈ Z} is
a discrete-time white noise, that is, a sequence of zero-mean, uncorrelated random

variables.

We �rst give a result that contains a necessary and su�cient condition for exponential

rate of decrease to zero for δn(f) = σ2
n(f)−σ2(f). Notice that the �rst result of this

type goes back to the paper by Grenander and Rosenblatt [17]. The next theorem

was proved by Ibragimov [23] (see also Golinskii and Ibragimov [15]).

Theorem 3.1. A necessary and su�cient condition for

(3.1) δn(f) = O(qn), q = e−b, b > 0, n→∞

is that f(λ) is a spectral density of a short-memory process, and 1/f(λ) ∈ Ab,

where Ab is the class of 2π�periodic continuous functions ϕ(λ), λ ∈ R, admitting

an analytic continuation into the strip z = λ+ iµ, −∞ < λ <∞, |µ| ≤ b.

Observe that (3.1) will be true for all b > 0 if and only if the analytic continuation

of f(λ) is an entire function of z = λ+ iµ.

Thus, to have exponential rate of decrease to zero for δn(f) the underlying model

should be short-memory process with su�ciently smooth spectral density f(λ).

Now we give a result that contains a necessary and su�cient condition for

hyperbolic rate of decrease to zero for δn(f):

δn(f) = O(n−γ), γ > 0, n→∞.(3.2)

Bounds of type (3.2) with γ > 1 for di�erent classes of spectral densities were

obtained by Baxter [2], Devinatz [9], Geronimus [12], Grenander and Rosenblatt
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[17], Grenander and Szeg�o [18], and others (see [13] and references therein). The

most general result in this direction has been obtained by Ibragimov [23]. To state

Ibragimov's theorem, we �rst introduce the H�older class of functions.

For a function ϕ(λ) ∈ Lp(Λ), we de�ne its Lp-modulus of continuity by

ωp(ϕ; δ) = sup
0<|t|≤δ

||ϕ(·+ t)− ϕ(·)||p, δ > 0.(3.3)

Given numbers 0 < α < 1, r ∈ Z+ := {0, 1, 2, . . .}, and p ≥ 1, we put γ := r + α.

The H�older class of functions, denoted by Hp(γ), is de�ned to be the set of those

functions ϕ(λ) ∈ Lp(Λ) that have r-th derivative ϕ(r)(λ), such that ϕ(r)(λ) ∈ Lp(Λ)

and ωp(ϕ
(r); δ) = O(δα) as δ → 0.

Theorem 3.2. A necessary and su�cient condition for

δn(f) = O(n−γ), γ = 2(r + α) > 1; 0 < α < 1, r ∈ Z+, as n→∞(3.4)

is that f(λ) is a spectral density of a short-memory process belonging to H2(γ).

Remark 3.1. It follows from Theorem 3.2 that if δn(f) = O(n−γ) with γ > 1,

then the underlying model X(t) is necessarily a short-memory process. Moreover,

as it was pointed out by Grenander and Rosenblatt [17] (see, also, Devinatz [9], p.

118), if the model is not a short-memory process, that is, the spectral density f(λ)

has zeros or is unbounded, then, in general, we cannot expect δn(f) to go to zero

faster than 1/n as n→∞. This question we discuss in the next subsection.

3.2. Asymptotic behavior of δn(f) for long memory and antipersistent

processes. Recall that a second order stationary process X(t) is said to be anti-

persistent if the spectral density f(λ) vanishes at frequency zero: f(0) = 0. And,

we say that X(t) displays long memory or long-range dependence if the spectral

density f(λ) has a pole at frequency zero, that is, it is unbounded at the origin.

A well-known example of processes that displays long memory or is anti-persistent

is an autoregressive fractionally integrated moving average ARFIMA(p, d, q) process

X(t) de�ned to be a stationary solution of the di�erence equation:

ψp(B)(1−B)dX(t) = θq(B)ε(t), d < 1/2,

where B is the backward shift operator, ε(t) is a discrete-time white noise, and ψp

and θq are polynomials of degrees p and q, respectively. The spectral density f(λ)

of X(t) is given by

(3.5) f(λ) = |1− e−iλ|−2dh(λ), d < 1/2,
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where h(λ) is the spectral density of an ARMA(p, q) process. Note that the condition

d < 1/2 ensures that
∫ π
−π f(λ)dλ <∞, implying that the processX(t) is well de�ned

because E|X(t)|2 =
∫ π
−π f(λ)dλ.

Observe that for 0 < d < 1/2 the model X(t) speci�ed by (3.5) displays long-

memory, for d < 0 it is anti-persistent, and for d = 0 it displays short-memory. For

d ≥ 1/2 the function f(λ) in (3.5) is not integrable, and thus it cannot represent a

spectral density of a stationary process (see Brockwell and Davis [7], Section 13.2).

The following theorem was proved by A. Inoue (see [26], Theorem 4.3).

Theorem 3.3. Let f(λ) have the form (3.5) with 0 < d < 1/2, where h(λ) is the

spectral density of an ARMA(p, q) process. Then

(3.6) δn(f) ∼ d2

n
as n→∞.

Another well-known example of processes that displays long memory or is anti-

persistent is the Jacobian model. We say that a stationary processX(t) is a Jacobian

process, and the corresponding model is a Jacobian model, if its spectral density

f(λ) has the following form:

(3.7) f(λ) = h(λ)

m∏
k=1

|eiλ − eiλk |−2dk ,

where h(λ) is the spectral density of a short-memory process, the points λk ∈ [−π, π]

are distinct, and dk < 1/2, k = 1, . . . ,m.

The asymptotic behavior of δn(f) as n→∞ for Jacobian model (3.7) has been

considered in a number of papers (see Golinskii [14], Grenander and Rosenblatt

[17], Ibragimov [23], Ibragimov and Solev [25].)

The following theorem was proved in Ibragimov and Solev [25].

Theorem 3.4. Let f(λ) have the form (3.7), where h(λ) is the spectral density of a

short-memory process, the points λk ∈ [−π, π] are distinct, and dk < 1/2 (dk 6= 0),

k = 1, . . . ,m. If f(λ) satis�es the Lipschitz condition with exponent α ≥ 1/2, then

(3.8) δn(f) ∼ 1

n
as n→∞.

More results for this case can be found in Ginovyan [13] and in the references

therein.

4. Asymptotic behavior of the predictor error for deterministic

processes

4.1. Background. In this section we discuss the asymptotic behavior of the predictor

error for deterministic processes. We assume that the process X(t) possesses a
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spectral density f(λ) and the Szeg�o condition (1.18) is violated. As it was mentioned

in Introduction, this problem was �rst studied by M. Rosenblatt [31], where using

the technique of orthogonal polynomials and Szeg�o's results, M. Rosenblatt has

investigated the asymptotic behavior of the prediction error δn(f) = σ2
n(f) in the

following two cases:

(a) the spectral density f(λ) is continuous and vanishes on an interval,

(b) the spectral density f(λ) has a high order contact with zero, so that the

Szeg�o condition is violated.

For the case (a), in [31] M. Rosenblatt proved the following result.

Theorem 4.1. Let the spectral density f(λ) of a discrete-time stationary process

X(t) be positive and continuous on the interval (π/2 − α, π/2 + α), 0 < α < π,

and zero elsewhere, then the prediction error σ2
n(f) approaches zero exponentially

as n→∞. More precisely, the following asymptotic relation holds:

(4.1) δn(f) := σ2
n(f) ∼=

(
sin

α

2

)2n+1

as n→∞,

implying that

(4.2) lim
n→∞

(σn(f))1/n = sin
α

2
.

Later this result has been generalized by Babayan [3], [4] to the case of several

arcs, without having to stipulate continuity of the spectral density f(λ) (see also

Davisson [8]). To state the corresponding result we �rst introduce the concept

of a trans�nite diameter of a set (see, e.g., Goluzin [16], Chapter 7). Let E be

a bounded closed set in the complex plane. Denote by Tn(z, E) the Chebyshev

polynomial which deviates least from zero on the set E in the uniform metric. We

set Cn(E) = maxz∈E |Tn(z, E)|. Then limn→∞(Cn(E))1/n =: τ(E) exists and is

called the trans�nite diameter (or Chebyshev constant, or capacity) of the set E.

Remark 4.1. Notice that the trans�nite diameter of the unit circle T is equal

to 1 (see Goluzin [16], Section 7.1), and the trans�nite diameter of an arc of T
of length 2α (0 < α < π) is equal to sin(α/2) (see Rosenblatt [31]). Thus, the

right hand side of (4.2) is the trans�nite diameter of the closure of the spectrum

Ef = {eiλ : λ ∈ [π/2− α, π/2 + α]} of the process X(t).

Using some results from geometric function theory, in [4] was proved the following

theorem, extending Theorem 4.1.

Theorem 4.2. Let the spectrum Ef = {eiλ : f(λ) > 0} of the process X(t) consist

of a �nite number of arcs of the unit circle. Then the following asymptotic relation
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holds:

(4.3) lim
n→∞

(σn(f))1/n = τ(Ef ),

where Ef is the closure of Ef .

Remark 4.2. It follows from Theorem 4.2 and Remark 4.1 that if the spectral

density f(λ) vanish on an interval, then the prediction error σn(f) decreases to

zero exponentially, that is, σn(f) = O(e−bn), b > 0 as n → ∞. Conversely, a

necessary condition for σn(f) to tend to zero exponentially is that f(λ) should

vanish on a set of positive Lebesgue measure.

Concerning the case (b), in [31] M. Rosenblatt proved that if the spectral density

f(λ) of a stationary process X(t) is positive away from zero, and has a very high

order contact with zero at λ = 0, so that the Szeg�o condition (1.18) is violated,

then the prediction error δn(f) = σ2
n(f) decreases to zero hyperbolically as n→∞.

More precisely, in [31] was considered a deterministic process X(t) with spectral

density fa(λ) given by formula:

(4.4) fa(λ) =
e(2λ−π)ϕ(λ)

cosλ(πϕ(λ))
, fa(−λ) = fa(λ), 0 ≤ λ ≤ π,

where ϕ(λ) = a
2 cotλ and a is a �xed positive parameter.

It is easy to show that

(4.5) fa(λ) ∼ exp

{
− aπ

2|λ|

}
| sin(λ)| as λ→ 0,

so that fa(λ) has a very high order contact with zero only at λ = 0.

In [31], using the formula (2.5) and the technique of orthogonal polynomials on

the unit circle, M. Rosenblatt proved the following result.

Theorem 4.3. For a process X(t) with spectral density fa(λ) given by (4.4) the

following asymptotic formula for prediction error δn(f) = σ2
n(f) holds:

(4.6) δn(fa) = σ2
n(fa) ∼=

Γ2
(
a+1

2

)
π22−a n−a ∼ n−a as n→∞.

In the next subsection we extend Theorem 4.3 to more broad class of spectral

densities.

4.2. The main results. In this subsection, we analyze the asymptotic behavior

of the prediction error in the case where the spectral density f(λ) of the model has

a high order contact with zero, so that the Szeg�o condition (1.18) is violated.

Based on Rosenblatt's result for this case - Theorem 4.3, we can expect that

for any deterministic process with spectral density possessing a zero of type (4.5),

the rate of prediction error σ2
n(f) should be the same as in (4.6). However, the
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method applied in [31] does not allow to prove this assertion. Here, using a di�erent

approach, we extend Rosenblatt's theorem to more broad class of spectral densities.

To this end, we �rst examine the asymptotic behavior of the ratio σn(fg)/σn(f)

as n→∞, where g(λ) is some nonnegative function, such that the product f(λ)g(λ)

is a spectral density, that is, fg ∈ L1(Λ).

To make the approach clear, we �rst assume that f(λ) is a spectral density of

a nondeterministic process, in which case the geometric mean G(f) is positive (see

(2.8) and (2.9)). Then, in this case, we can write

(4.7) lim
n→∞

σ2
n(fg)

σ2
n(f)

=
σ2
∞(fg)

σ2
∞(f)

=
G(fg)

G(f)
= G(g).

It turns out that under some additional assumptions imposed on functions f and g,

the asymptotic relation (4.7) remains valid also in the case of deterministic process,

that is, when σ2
∞(f) = 0, or equivalently, G(f) = 0.

To state the corresponding results we need some de�nitions.

De�nition 4.1. A sequence of numbers {an, n ∈ N} is said to be slowly decreasing

if

(4.8) lim
n→∞

an+1

an
= 1.

It is easy to check that the following simple assertions hold:

1. If {an, n ∈ N} is a slowly decreasing sequence, then for any ν ∈ N

(4.9) lim
n→∞

an+ν

an
= 1.

2. If {an, n ∈ N} is a sequence such that an → a 6= 0 as n → ∞, then {an} is a
slowly decreasing sequence.

3. If {an, n ∈ N} and {bn, n ∈ N, } are non-zero slowly decreasing sequences, then

can, c 6= 0, 1/an, a
k
n, k ∈ N, anbn and an/bn also are slowly decreasing sequences.

4. If {an, n ∈ N} is a non-zero slowly decreasing sequence, and {bn, n ∈ N} is a
sequence such that

(4.10) lim
n→∞

bn
an

= c 6= 0,

then {bn, n ∈ N} is also a slowly decreasing sequence.

5. If {an, n ∈ N} is a slowly decreasing sequence of nonnegative numbers, then

(4.11) lim
n→∞

(an)
1/n

= 1.

Remark 4.3. It follows from assertion 2 that the notion of slowly decreasing

sequence is more signi�cant in the case where an → 0 as n → ∞. Also, it follows

from assertion 5 that if {an, n ∈ N} is a slowly decreasing sequence of nonnegative

numbers such that an → 0 as n → ∞, then it converges to zero slowly than the
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geometric progression {qn, n ∈ N} for any q, 0 < q < 1, that is, qn = o(an) as

n→∞.

In what follows we consider the class of processes for which the sequence of

prediction errors {σn(f)} is slowly decreasing. Moreover, in view of Remarks 4.2

and 4.3, it is reasonable to consider deterministic processes except those for which

the spectral densities vanish on an interval.

De�nition 4.2. We de�ne the class A to be the set of all nonnegative, Riemann

integrable functions h(λ), λ ∈ Λ. Also, de�ne A+ = {h ∈ A : h(λ) > m > 0},
A− = {h ∈ A : h(λ) 6M <∞}, and A−+ = A+ ∩A−.

Now we are in position to state the main results of this paper.

The following theorem describes the asymptotic behavior of the ratio σn(fg)/σn(f)

as n→∞ for the class of above described processes.

Theorem 4.4. Let the spectral density f(λ) be such that the sequence {σn(f)} is
slowly decreasing, and let g(λ) = h(λ) · t1(λ)

t2(λ) , where h(λ) ∈ A−+ and t1(λ), t2(λ) are

nonnegative trigonometric polynomials. If f(λ)g(λ) ∈ A, then

(4.12) lim
n→∞

σ2
n(fg)

σ2
n(f)

= G(g),

where G(g) is the geometric mean of g(λ).

The next theorem extends Rosenblatt's Theorem 4.3.

Theorem 4.5. Let f(λ) = fa(λ)g(λ), where fa(λ) is de�ned by (4.4) and g(λ)

satis�es the assumptions of Theorem 4.4. Then

(4.13) δn(f) = σ2
n(f) ∼=

Γ2
(
a+1

2

)
G(g)

π22−a n−a ∼ n−a as n→∞,

where G(g) is the geometric mean of g(λ).

4.3. Auxiliary lemmas. To prove the theorems, we �rst establish a number of

lemmas.

Lemma 4.1. Assume that the sequence σn(f) is slowly decreasing, that is,

(4.14) lim
n→∞

σn+1(f)

σn(f)
= 1.

Then for any nonnegative trigonometric polynomial t(λ) we have

(4.15) lim inf
n→∞

σ2
n(ft)

σ2
n(f)

> G(t),

where G(t) is the geometric mean of t(λ).
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Proof. Let the polynomial t(λ) be of degree ν. Then by Fej�er-Riesz theorem (see

[18], Section 1.12), there exists an algebraic polynomial sν(z) of degree ν in z ∈ C,
such that

(4.16) t(λ) = |sν(eiλ)|2, sν(z) 6= 0, |z| < 1.

Observing that ln |sν(z)|2 is a harmonic function, we have

ln |sν(0)|2 =
1

2π

∫ π

−π
ln |sν(eiλ)|2dλ,

implying that

(4.17) |sν(0)|2 = G(t) > 0.

Let p∗n(z, ft) be the optimal polynomial of degree n for f(λ)t(λ) in the class Q∗n
(see formula (2.6)). We set

(4.18) rn+ν(z) =
p∗n(z, ft)sν(z)

sν(0)
,

and observe that rn+ν(z) ∈ Q∗n+ν , and

(4.19)

∫ π

−π
|rn+ν(eiλ)|2f(λ)dλ >

∫ π

−π
|p∗n+ν(eiλ, f)|2f(λ)dλ.

Therefore, in view of (4.16), (4.18) and (4.19),we can write

σ2
n(ft) =

∫ π

−π
|p∗n(eiλ, ft)|2f(λ)t(λ)dλ =

∫ π

−π
|p∗n(eiλ, ft)sν(eiλ)|2f(λ)dλ.

= |sν(0)|2
∫ π

−π
|rn+ν(eiλ)|2f(λ)dλ > |sν(0)|2

∫ π

−π
|p∗n+ν(eiλ, f)|2f(λ)dλ = |sν(0)|2σ2

n+ν(f),

which, in view of (4.17), implies that

(4.20) lim inf
n→∞

σ2
n(ft)

σ2
n+v(f)

> |sν(0)|2 = G(t).

Now, taking into account (4.14) and (4.9), from (4.20) we obtain (4.15). �

Lemma 4.2. Let the sequence σn(f) satisfy (4.14), and let t(λ) be a nonnegative

trigonometric polynomial such that the function f(λ)/t(λ) ∈ A. Then the following

inequality holds:

(4.21) lim sup
n→∞

σ2
n(f/t)

σ2
n(f)

6 G(1/t).

Proof. Let the polynomial sν(z) be as in (4.16), and let p∗n(z, f/t) be the optimal

polynomial of degree n for f(λ)/t(λ) in the class Q∗n (see formula (2.6)). For n > ν

we set

rn(z) =
p∗n−ν(z, f)sν(z)

sν(0)
,
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and observe that rn(z) ∈ Q∗n. Therefore, we have

σ2
n(f/t) =

∫ π

−π
|p∗n(eiλ, f/t)|2f(λ)/t(λ)dλ ≤

∫ π

−π
|rn(eiλ)|2f(λ)/t(λ)dλ

=
1

|sν(0)|2

∫ π

−π
|p∗n−ν(eiλ, f)|2f(λ)dλ =

1

|sν(0)|2
σ2
n−ν(f),

which, in view of (4.17), implies that

(4.22) lim sup
n→∞

σ2
n(f/t)

σ2
n−ν(f)

6
1

|sν(0)|2
= G(1/t).

Finally, taking into account (4.14) and (4.9), from (4.22) we obtain (4.21). �

Lemma 4.3. Let h(λ) be a function from the class A−+. Then for any ε > 0 a

trigonometric polynomial t(λ) can be found to satisfy the following condition:

|h− t‖1 =

∫ π

−π
|h(λ)− t(λ)|dλ 6 ε.(4.23)

Moreover, ifm andM are the constants from the De�nition 4.2, then the polynomial

t(λ) can be chosen so that for all λ ∈ [−π, π] one of the following inequalities is

satis�ed:

m− ε < t(λ) < h(λ),(4.24)

h(λ) < t(λ) < M + ε.(4.25)

Proof.We �rst prove the inequalities (4.23) with (4.24). Without loss of generality,

we can assume that h(−π) = h(π). Otherwise by changing one of these values we

can make them equal as follows: h(−π) = h(π) = min{h(−π), h(π)}.
Let {λi} (−π = λ0 < λ1 < · · · < λk = π) be a partition of the segment [−π, π],

and let s be the Darboux lower sum corresponding to this partition:

s =

k∑
i=1

mi∆λi, mi = inf
λ∈∆i

h(λ), ∆i = [λi−1, λi], ∆λi = λi − λi−1, i = 1, . . . , k.

On the segment [−π, π] we de�ne a step-function ϕk(λ) corresponding to given

partition as follows:

ϕk(λ) =

 mi, if λ ∈ (λi−1, λi), i = 1, . . . , k − 1,
min{mi−1,mi}, if λ = λi,
m1(= mk), if λ = λ0 or λ = λk.

It is clear that such de�ned function ϕk(λ) satis�es the following conditions:

ϕk(λ) ≤ h(λ), λ ∈ [−π, π] and

∫ π

−π
ϕk(λ)dλ = s.(4.26)

Since the function h(λ) is integrable, for an arbitrary given ε > 0 a partition of

the segment [−π, π] can be found so that the corresponding Darboux lower sum
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satis�es the condition:∫ π

−π
h(λ)dλ− s =

∫ π

−π
[h(λ)− ϕk(λ)]dλ = ‖h− ϕk‖1 <

ε

3
.(4.27)

Now using the function ϕk(λ) we construct a new continuous function. To this

end, we connect all the adjacent segments of the graph of ϕk(λ) (the steps) by line

segments as follows: for each interior point of the partition λi, i = 1, . . . , k − 1, the

endpoint of the lower step with abscissa λi we connect with some interior point of

the adjacent (from the left or from the right) upper step, the abscissa λ∗i of which

satis�es the condition:

|λi − λ∗i | < ε/(3kM).(4.28)

Then, we remove the part of the upper step lying under the constructed slanting

segment. The obtained polygonal line is a graph of some continuous piecewise linear

function, denoted by hk(λ), satisfying the condition:

hk(λ) ≤ ϕk(λ) ≤ h(λ) ≤M, λ ∈ [−π, π].(4.29)

Taking into account that the functions hk(λ) and ϕk(λ) coincide outside the segments

[λi, λ
∗
i ] (or [λ∗i , λi]), in view of (4.29) and (4.28), we can write

‖ϕk − hk‖1 =

∫ π

−π
[ϕk(λ)− hk(λ)]dλ =

k−1∑
i=1

∣∣∣∣∣
∫ λ∗i

λi

[ϕk(λ)− hk(λ)]dλ

∣∣∣∣∣ < ε

3
.(4.30)

Next, according to Weierstrass theorem (see, e.g., [18], Section 1.9), for function

hk(λ) a trigonometric polynomial t̃(λ) can be found so that uniformly for all λ ∈
[−π, π],

− ε

12π
< hk(λ)− t̃(λ) <

ε

12π
.(4.31)

Setting t(λ) = t̃(λ)− ε
12π , from (4.31) we get

0 < hk(λ)− t(λ) <
ε

6π
.(4.32)

Therefore

‖hk − t‖1 =

∫ π

−π
[hk(λ)− t(λ)]dλ <

ε

3
.(4.33)

Combining the inequalities (4.27), (4.30) and (4.33), we obtain

‖h− t‖1 ≤ ‖h− ϕk‖1 + ‖ϕk − hk‖1 + ‖hk − t‖1 ≤ ε,

and the inequality (4.23) follows.

Now we proceed to prove the inequality (4.24). Observe �rst that the second

inequality in (4.24) follows from (4.32) and (4.29). To prove the �rst inequality in

(4.24), observe that by construction of function hk(λ), we have

hk(λ) ≥ min{m1, . . . ,mk} ≥ m.(4.34)

29



N. M. BABAYAN, M. S. GINOVYAN

Next, in view of (4.32), we get

t(λ) ≥ hk(λ)− ε

6π
> hk(λ)− ε.(4.35)

Combining (4.34) and (4.35), we obtain the �rst inequality in (4.24).

The proof of inequalities (4.23) with (4.25) is completely similar to that of (4.23)

with (4.24). The only di�erence is that now instead of Darboux lower sum should

be used the upper sum and in the construction of function hk(λ), the endpoints of

the upper steps of the function ϕk(λ) should be connected with the interior points

of the adjacent lower steps. �

Lemma 4.4. Let h(λ) ∈ A−+ and let the sequence σn(f) satisfy (4.14). Then the

following asymptotic relation holds:

(4.36) lim
n→∞

σ2
n(fh)

σ2
n(f)

= G(h).

Proof. Observe �rst that together with h(λ) the function 1/h(λ) also belongs to

the class A−+:

(4.37) m ≤ h(λ) ≤M and 1/M ≤ 1/h(λ) ≤ 1/m.

By Lemma 4.3, for a given small enough ε > 0, we can �nd two trigonometric

polynomials t1(λ) and t2(λ) to satisfy the following conditions:

‖h− t1‖1 < ε,
m

2
< t1(λ) < h(λ),(4.38)

‖1/h− t2‖1 < ε,
1

2M
< t2(λ) <

1

h(λ)
.(4.39)

Now in view of (2.7) and Lemmas 4.1, 4.2, to obtain

(4.40) lim inf
n→∞

σ2
n(fh)

σ2
n(f)

≥ lim inf
n→∞

σ2
n(ft1)

σ2
n(f)

≥ G(t1),

and

(4.41) lim sup
n→∞

σ2
n(fh)

σ2
n(f)

≤ lim sup
n→∞

σ2
n(f/t2)

σ2
n(f)

≤ G(1/t2).

Next, it follows from (4.37) � (4.39) that

‖h− 1/t2‖1 = ‖h/t2(t2 − 1/h)‖1 6 2M2ε,

‖t1 − 1/t2‖1 6 ‖t1 − h‖1 + ‖h− 1/t2‖1 6 ε(1 + 2M2).

Hence, in view of (4.37) and (4.39), we can write∣∣∣∣ln G(t1)

G(1/t2)

∣∣∣∣ = |ln[G(t1)G(t2)]| =
∣∣∣∣∫ π

−π
ln[t1(λ)t2(λ)]dλ

∣∣∣∣ 6 ∫ π

−π
|t1(λ)t2(λ)− 1|dλ

= ‖t2(t1 − 1/t2)‖1 6
1

m
‖t1 − 1/t2‖1 6

ε

m
(1 + 2M2).
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Thus, the quantities G(t1) and G(1/t2) can be made arbitrarily close. Hence, taking

into account that G(t1) 6 G(h) 6 G(1/t2), from (4.40) and (4.41) we obtain

(4.36). �

Taking into account thatG(h) > 0, from (4.10) and (4.36) we obtain the following

result.

Corollary 4.1. If the sequence σn(f) is slowly decreasing and h(λ) ∈ A−+, then the

sequence σn(fh) is also slowly decreasing.

Lemma 4.5. Let the sequence σn(f) be slowly decreasing, and let h(λ) ∈ A−. Then

(4.42) lim sup
n→∞

σ2
n(fh)

σ2
n(f)

6 G(h).

Proof. Observe that the function hε(λ) = h(λ) + ε belongs to the class A−+. Then

we have the asymptotic relation (see, [18], Section 3.1 (d)):

(4.43) lim
ε→0

G(hε) = G(h).

Hence, using (2.7) and Lemma 4.4, we obtain

lim sup
n→∞

σ2
n(fh)

σ2
n(f)

≤ lim
n→∞

σ2
n(fhε)

σ2
n(f)

= G(hε).

Passing to the limit as ε→ 0, and taking into account (4.43), we obtain the desired

inequality (4.42). �

As an immediate consequence of Lemma 4.5, we have the following result.

Corollary 4.2. Let the sequence σn(f) be slowly decreasing, and let g(λ) ∈ A−

with G(g) = 0. Then σn(fg) = o(σn(f)) as n→∞.

Lemma 4.6. Let the sequence σn(f) be slowly decreasing, and let h(λ) ∈ A+. Then

(4.44) lim inf
n→∞

σ2
n(fh)

σ2
n(f)

> G(h).

Proof. Let hl(λ) denote the truncation of h(λ) at the level l ∈ N:

hl(λ) =

{
h(λ), h(λ) 6 l
l, h(λ) > l.

Then by Monotone Convergence Theorem of Beppo Levi (see [6], Theorem 2.8.2),

we have

(4.45) lim
l→∞

G(hl) = G(h).

Next, by Lemma 4.4 we get

lim inf
n→∞

σ2
n(fh)

σ2
n(f)

> lim
n→∞

σ2
n(fhl)

σ2
n(f)

= G(hl).
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Hence passing to the limit as l→∞, and taking into account (4.45) we obtain the

desired inequality (4.44). �

As an immediate consequence of Lemma 4.6, we have the following result.

Corollary 4.3. Let the sequence σn(f) be slowly decreasing, g(λ) ∈ A+ with

G(g) =∞, and let fg ∈ A. Then σn(f) = o(σn(fg)) as n→∞.

4.4. Proof of main results. In this subsection we prove the main results of this

paper - Theorems 4.4 and 4.5.

Proof of Theorem 4.4. We have

(4.46)
σ2
n(fg)

σ2
n(f)

=
σ2
n(fht1/t2)

σ2
n(f)

=
σ2
n(fht1/t2)

σ2
n(fht1)

· σ
2
n(fht1)

σ2
n(fh)

· σ
2
n(fh)

σ2
n(f)

.

Next, by Lemma 4.4 we have

(4.47) lim
n→∞

σ2
n(fh)

σ2
n(f)

= G(h) > 0.

This, in view of Corollary 4.1, implies that the sequence σ2
n(fh) is also slowly

decreasing. Therefore, by Lemma 4.1, we have

lim inf
n→∞

σ2
n(fht1)

σ2
n(fh)

≥ G(t1).

On the other hand, since t1(λ) ∈ A−, then according to Lemma 4.5, we get

lim sup
n→∞

σ2
n(fht1)

σ2
n(fh)

≤ G(t1).

Therefore

(4.48) lim
n→∞

σ2
n(fht1)

σ2
n(fh)

= G(t1) > 0

This implies that the sequence σ2
n(fht1) is also slowly decreasing. Hence we can

apply Lemma 4.2, to obtain

lim sup
n→∞

σ2
n(fht1/t2)

σ2
n(fht1)

6 G(1/t2).

Next, it is easy to see that 1/t2 ∈ A+. Hence, according to Lemma 4.6, we obtain

lim inf
n→∞

σ2
n(fht1/t2)

σ2
n(fht1)

> G(1/t2).

Therefore

(4.49) lim
n→∞

σ2
n(fht1/t2)

σ2
n(fht1)

= G(1/t2).

Finally, combining the relations (4.46) - (4.49), we obtain

lim
n→∞

σ2
n(fg)

σ2
n(f)

= G(1/t2)G(t1)G(h) = G(ht1/t2) = G(g).

Theorem 4.4 is proved. �
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As an immediate consequence of Theorem 4.4, we have the following result.

Corollary 4.4. If the sequence σn(f) is slowly decreasing and g(λ) satis�es the

conditions of Theorem 4.4, then the sequence σn(fg) is also slowly decreasing.

The proof of Theorem 4.5 immediately follows from Theorems 4.3 and 4.4.
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