академия наук армянской сср А.СТРОФИЗИКА

TOM 9

ФЕВРАЛЬ, 1973

ВЫПУСК 1

ВОЛНЫ В ПЛАЗМЕ, НАХОДЯЩЕЙСЯ В МАГНИТНОМ И ГРАВИТАЦИОННОМ ПОЛЯХ

А. З. ДОЛГИНОВ, М. А. ЗЕЛИКМАН Поступила 21 ноября 1971 Пересмотрена 15 июня 1972

Определены дисперсионные соотношения и найдены ветви низкочастотных колебаний плазмы, находящейся в магнитном и гравитационном полях.

Показано, что такие колебания могут существовать в плазме Солнца и звезд.

Поведение плазмы в космических условиях, как правило, определяется как магнитными, так и гравитационными полями. Однако, перенося результаты лабораторных исследований на космическую плазму, гравитационным полем без достаточных оснований пренебрегают. Чтобы выяснить, какие колебания могут распространяться в плазме при наличии гравитационного и магнитного полей, надо прежде всего получить дисперсионные соотношения. Такие соотношения были получены Лайтхиллом [1] для случаев, когда достаточно учесть любые два из трех факторов: газового давления, магнитного поля, гравитационного поля. В данной работе мы получим дисперсионные соотношения для случая, когда все три фактора являются существенными. Будем исходить из уравнений магнитной гидродинамики для полностью ионизованной электронно-протонной плазмы [2—5].

$$\frac{\partial j}{\partial t} = \frac{e^2 n}{m} \left(E + \frac{u \times H}{c} \right) - \frac{e}{mc} j \times H + \frac{e}{2m} \nabla P,$$

$$\rho \frac{\partial u}{\partial t} = \frac{1}{c} j \times H - \nabla P + \rho g. \qquad (1)$$

$$\frac{\partial S}{\partial t} + u \nabla S = 0, \qquad \frac{\partial \rho}{\partial t} + \operatorname{div} (\rho u) = 0.$$

Здесь ρ — плотность, *n*—концентрация частиц, *S*— энтропия единицы объема, *и* — макроскопическая скорость, *j*— плотность тока, *P*— давление плазмы, *H*— магнитное и *E*— электрическое поле, *g*— ускорение силы тяжести, *m*— масса и *e*— заряд электрона.

Используя систему (1), мы тем самым ограничиваемся случаями, когда:

1) рассматриваемые частоты много меньше характерных частот плазмы, т. е. $\omega \ll \omega_{HP} = \frac{eH}{MC}$, $\omega \ll v_{ep}$ и $\omega \ll \omega_{LP} = \sqrt{\frac{4\pi n e^2}{M}}$, где v_{ep} – частота столкновений электронов с ионами. Кроме того, декремент джоулева затухания $\sim \omega v_{ep} \omega_e^{-2} \ll 1$, поэтому диссипативный член $v_{ep} f$ не включен в первое уравнение системы (1);

2) длины волн λ много больше дебаевского радиуса r_D ;

3) давление изотропно, а скорости достаточно малы, чтобы пренебречь членом $(u\nabla)u$ в уравнении движения;

4) теплопроводность за период колебаний пренебрежимо мала;

5) пренебрегаем также молекулярной и турбулентной вязкостью.

Рассматривая волны как малые возмущения, а также считая, что справедливо приближение геометрической оптики (ВКБ), т. е. длины волн λ много меньше характерных размеров рассматриваемой области *L*, линеаризуем систему (1) совместно с уравнениями Максвелла и переходим к системе уравнений для Фурье-компонент всех рассматриваемых величин. Полагая для определенности, что градиент внтропии ∇S_0 направлен вдоль вектора гравитационного ускорения *g*, что $\omega_H \ll \omega_L$, а фазовые скорости $\upsilon = \omega/k$ много меньше скорости света *C*, и последовательно исключая неизвестные, получим следующее условие разрешимости системы:

$$A_{1}x^{3} + A_{2}x^{2} + A_{1}x + A_{0} = 0, \qquad (2)$$

где

$$A_{1} = W \cos^{4}\beta, \qquad A_{0} = b (G - W),$$

$$A_{1} = W (b + 1) + b W \cos^{2}\beta - [1 + bG] \times$$

$$\times \sin^{2}\alpha - 2bG \cos\alpha \cos\beta \cos\gamma,$$

$$A_{2} = [bG \cos^{2}\gamma - W (b + 2) + \sin^{2}\alpha] \cos^{2}\beta.$$

Здесь $x = k^{2}k_{A}^{-2}, k_{A}^{2} = \omega^{2}V_{A}^{-2}, V_{A} = H_{0}/\sqrt{4\pi\rho_{0}}$ — альвеновская скорость, $b = V_{A}^{2}V_{S}^{-2}, V_{S}^{2} = (\partial P/\partial \rho)_{S}$ — квадрат скорости звука, $W = \omega^{2}N^{-2}, N^{2} = -(g/\rho_{0})(\partial \rho/\partial S)_{s}(\partial S_{0}/\partial Z)$ — квадрат частоты Вяйсяля — Брунта,

 $G = 1 + g^2 V_5^{-2} N^{-2}$. Ось Z системы координат выбираем противоположно направлению g при этом β — угол между волновым вектором k и магнитным полем H_0 , α — между k и g, γ между g и H_0 . Индексом 0 везде обозначаем невозмущенное значение.

Отметим, что при антипараллельности g и ∇S_0 частота Вяйсяля—Брунта становится мнимой, что свидетельствует о неустойчивости системы.

Поскольку всеми диссипативными процессами пренебрегаем, то затухание не влияет на распространение волн и не сказывается на дисперсионных кривых. Уравнение (2) перестает быть справедливым при $\cos\beta \leqslant \omega/\omega_H$, т. е. при $\beta \approx \pi/2$. В этом случае волновой вектор становится комплексным, а при $\beta = \pi/2$ — чисто мнимым, что соответствует полному внутреннему отражению. Однако в интересующей нас области частот величина (ω/ω_H) очень мала, так что все формулы справедливы почти вплоть до $\beta = \pi/2$. Полагая в дальнейшем $\beta \approx \pi/2$, мы будем иметь в виду допустимую область углов близ $\pi/2$.

Как видно из (2), существует симметрия решений относительно обращения направления любого из векторов k, g и H_0 . Кроме того, одной и той же величине углов σ , β , γ соответствуют два направления, симметричных относительно плоскости (g, H_0). Поэтому достаточно исследовать решения только в области $0 \ll \gamma \ll \pi/2$, $0 \ll \beta \ll \pi/2$, $0 \ll \alpha \ll \pi$.

Решение дисперсионного уравнения (2) аналитически можно записать так:

$$x = \frac{1}{3A_3} \left[2\sqrt{A_2^2 - 3A_1A_3} \cos \frac{\varphi}{2} - A_3 \right]$$
$$\cos \varphi = \frac{9A_1A_2A_3 - 2A_2^3 - 27A_0A_3^2}{2\sqrt{(A_2^2 - 3A_1A_3)^3}}.$$

Величину $\cos \varphi/3$ по заданной величине $\cos \varphi$ можно найти из графика рис. 1. Трем значениям $\cos \varphi/3$ соответствуют три значения x.

В отсутствие гравитационного поля в уравнении (2) исчезают члены, не содержащие W, и оно приобретает вид $(x \cos^2 \beta - 1) \times$ $\times [x^2 \cos^2 \beta - x (b+1) + b] = 0$. Решения в этом случае хорошо известны. Они соответствуют альвеновским волнам $V = V_A \cos \beta$ и быстрым и медленным магнитозвуковым волнам [2]

$$V^{3} = \frac{1}{2}(V_{S}^{2} + V_{A}^{2}) \pm \frac{1}{2}\sqrt{V_{S}^{4} + V_{A}^{4} - 2V_{S}^{2}V_{A}^{2}\cos 2\beta}.$$

В общем случае зависимость величины k от параметров W, b, G и от углов α , β , γ можно представить в виде семейств поверхно-

стей, описываемых в пространстве концом радиуса—вектора, длина которого равна $k/k_A = \sqrt{x}$. Эту пространственную картину можно представить, анализируя сечения ее различными плоскостями. Уравнение (2) для волн, распространяющихся в плоскости (g, H_0) или в плоскости, перпендикулярной H_0 , упрощается. Поэтому мы ограничимся рассмотрением сечения поверхностей именно этими плоскостями.

При распространении в направлении, перпендикулярном $H_{\rm u}$, т. е. при $\beta \approx \pi/2$, единственное конечное решение (2) имеет вид

$$x = b (W - G) [W (b+1) - (1 + bG) \sin^2 \alpha]^{-1}.$$
 (3)

Если (b+1) $W < (1+bG) \cos^2 \gamma$, то в плоскости $\beta \approx \pi/2$ график k/k_A представляет собой эллипс, с ростом W длины его осей увеличиваются, причем большая ось увеличивается быстрее. При (b+1) $W = (1+bG) \cos^2 \gamma$ график принимает вид прямой, параллельной плоскости (g, H_0) . При дальнейшем росте W график трансформируется в гиперболу, все более удаляющуюся от плоскости (g, H_0) .

При G(b+1) > W(b+1) > 1 + bG конечных решений нет. При W > G появляется новая ветвь, имеющая вид эллипса, расширяющегося с дальнейшим ростом W. Соответствующие графики приведены на рис. 2.

Кроме этих конечных решений, при W(b+1) < 1 + bG существует одно бесконечное решение, а при W(b+1) > 1 + bG - два. При распространении волн в плоскости (g, H_0), т. е. когда $a = 13 \pm 7$, уравнение (2) разбивается на два:

$$\cos^2\beta = 1, \qquad (3)$$

 $W x^{2} \cos^{2}\beta + [bG \cos^{2}\gamma - W(b+1) + \sin^{2}\alpha]x + b(W - G) = 0.$ (4)

Ураннению (3) соответствуют волны с фазовой скоростью, определяемой выражением $V = V_A \cos \beta$. Это альвеновские волны.

Рис. 2. Сечение поверхности k/k_A плоскостью, перпендикулярной пло скости (g. H₀). Магнитное поле перпендикулярно чертежу.

Анал изируя выражение (4) и рассматривая соответствующие графики, приведенные на рис. 3—6, можно видеть, что:

1) При $W(b+1) < (1+bG) \cos^2 \gamma$ график представляет собой кривую с максимумом, причем с ростом W направление на этот максимум все более отклоняется от направления магнитного поля, а величина этого максимума растет. При $W(b+1) = (1+bG) \cos^2 \gamma$ максимум соответствует $\beta \approx \pi/2$, а его величина бесконечна. Дальнейшее увеличение W ведет к симметризации кривой относительно направления магнитного поля, поскольку влияние гравитации снижается. В пределе при $W \to \infty$ приходим к хорошо изученному случаю отсутствия гравитации. При W > G появляется еще одна ветвь, графий которой имеет вид эллипса.

2) Изменение угла γ влияет на вид графика двояко: а) за счет изменения угла наклона максимума; б) за счет изменения соотношения между W(b+1) и $(1+bG)\cos^2\gamma$, т. е. частоты, при которой происходит качественное видоизменение графика.

3) Увеличение параметра *b* также ведет к симметризации кривой относительно направления магнитного поля. Можно видеть, что на-

правления, соответствующие максимальному и минимальному значениям k/k_A , не зависят от b: ctg $2\beta_0 = \frac{W - \cos 2\gamma}{+\sin 2\gamma}$.

Рис. 3. Кривые соответствуют разным значениям $W: 1 \rightarrow W = 10^{-3}; 2 \rightarrow W = = 0.25; 3 \rightarrow W = 1; 4 \rightarrow W = 4; 5 \rightarrow W = \infty$. Для всех кривых $\gamma = \pi/4, G = 2, b = 10^{-3}$.

Отметим, что Лайтхилл в работе [1] исследовал распространение волн именно в плоскости (g, H_0). Предельные случаи нашего рассмотрения совпадают с результатами Лайтхилла, а именно: 1) случай $W \to \infty$ соответствует отсутствию гравитации; 2) случай $b = v_A^2 v_S^{-2} = 0$ соответствует либо несжимаемой плазме, либо отсутствию магнитного поля.

Рис. 4. Аналогичен рис. 3 для случая b=0.25.

У нас случай малых *b* описывается одним графиком, в то время как в работе [1] рассматриваются по отдельности случаи $v_A = 0$ и $v_s = \infty$, и эти графики не сопрягаются.

Как уже было отмечено, условнем применимости наших результатов является требование $\lambda \ll L$, или иначе $\omega Lk \gg v_A k_A$ [5]. В каждом конкретном случае надо проверять выполнение этого условия.

Рассмотрим, для примера, возможные типы волн в плазме солнечной короны. В этом случае [6]: $n \sim 10^8 \ cm^{-3}$, $v \sim 10 \ ce\kappa^{-1}$, $g \sim 10^4 \ cm \ ce\kappa^{-2}$, $T^{\circ} \sim 10^8$, $r_D \sim 1 \ cm$, $L \sim 10^{11} \ cm$, $N \sim (g/L)^{1/2} \sim \sim 10^{-4} \sim 10^{-3} \ ce\kappa^{-1}$.

Рис. 5. Аналогичен рис. 3 для случая b=1.

Поскольку интересующие нас частоты малы $\omega \sim N \sim (g/L)^{1/2}$, то условие $\lambda \ll L$ можно записать в виде $k/k_A \gg v_A/V gL$. Учитывая, что в короне $v_S^2 \sim gL/10$, получаем, что величины k/k_A , для которых справедливо наше рассмотрение, должны удовлетворять соотношению:

 $(k/k_A) \gg (v_A^2/10 v_S^2)^{1/2} = (b/10)^{1/2}.$

Рис. 6. Аналогичен рис. 3 для случая b=4.

Мы видим, что для графика рис. 3, где $b = 10^{-3}$, теория справедлива при $k/k_A \gg 10^{-2}$. Такое значение *b* при указанных значениях параметров соответствует магнитному полю 10^{-2} *с*. Аналогично, при b = 0.25 (рис. 4) должно быть $k/k_A \gg 0.16$. Это значение *b* соответствует $H_0 \sim 0.16$ *г*. Очевидно, что при b = 4, т. е. $H_0 \sim 0.6$ *г*, (рис. 6) $k/k_A^- \gg 1$, и ход кривой можно проследить лишь качественно с большой вероятностью ошибки. В качестве другого примера возьмем хромосферу Солнца. В этом случае $\rho \sim 10^{-10}$ гсм⁻³, $g \sim 10^4$ см сек⁻², $L \sim 10^9$ см, $T^{\circ} \sim 10^4$, $N \sim 10^{-3} + 10^{-2}$ сек⁻¹, $V_s^2 \sim 3$ KT/M $\sim 10^{12} \sim gL/10$.

Таким образом, и здесь должно выполняться то же условие $k/k_A \gg \sqrt{b/10}$, но значению $b = 10^{-3}$ соответствуют магнитные поля $H_0 \sim 1$ ис, $b = 0.25 - H_0 \sim 16$ ис, $b = 4 - H_0 \sim 60$ ис.

Рассмотренные колебания могут существовать также в недрах Солнца и звезд. Если взять среднюю плотность $\rho \sim 1 \ i c m^{-3}$, $H < 10^3 \ i c$, то легко видеть, что рис. 2— 6 правильно описывают ветви колебаний в широком интервале значений k/k_A .

Физико-технический институт им. А Ф. Иоффе АН СССР

OSCILLATIONS OF THE PLASMA IN MAGNETIC AND GRAVITATIONAL FIELDS

A. Z. DOLGINOV, M. A. ZELIKMAN

The dispersion relations are obtained for low frequency plasma oscillations in magnetic and gravitational fields. This kind of oscillations can exist in the solar and stellar plasma.

ЛИТЕРАТУРА

- 1. M. J. Lighthill, IAU Symposium No. 28, 429, 1967.
- 2. В. Л. Гинябург, Распространение электромагнитных волн в плазме, Физматгиз, М., 1960.
- 3. Л. Спитцер, Физика полностью конизованного газа, ИЛ, М., 1957.
- 4. С. Б. Пикельнер, Основы космической электродинамики, Наука, М., 1966.
- 5. В. Л. Гинзбург, А. А. Рухадзе, Волны в магнитоактивной плазме, Наука, М., 1970.
- 6. И. С. Шкловский. Физика солнечной короны, Физиатгиз, М., 1962.