аклаемия наук армянской сср АСТРОФИЗИКА

TOM 8

НОЯБРЬ, 1972

выпуск 4

СПЕКТРАЛЬНОЕ ИССЛЕДОВАНИЕ ГАЛАКТИКИ МАРКАРЯН 8

Э. Е. ХАЧИКЯН

Поступила 2 ноября 1972

Приводятся результаты детального спектрального исследования галактики Маркарян 8. Снимки получены на 84" телескопе обсерватории Кит-Пик (США) с помощью спектрографа Линдса с дисперсией около 120 А/мм. Получены семь спектров различных областей галактики паралельным перемещением щели спектрографа по прямому восхождению. Галактика имеет сложную морфологическую и динамическую структуру. Галактика содержит несколько сверхассоциаций, красные смещения которых заметно отличаются друг от друга. Исследовано поле скоростей в галактике, которое оказалось необычным.

Галактика Маркарян 8 (=IC $2184 = MCG \ 12-7-41 = VII Zw156$) содержится в списке галактик с сильным ультрафиолетовым континуумом [1]. Предварительные данные о спектре этой галактики были приведены в [2].

В настоящей работе приводятся результаты детального спектрального исследования этой галактики.

Маркарян 8 отличается очень интересной и сложной морфологической структурой. На оригинальных пластинках 48" телескопа системы Шмидта обсерваторий Хейл (любезно предоставленных автору дирекцией астрономического отдела Калифорнийского технологического института, за что, пользуясь случаем, автор выражает ей глубокую благодарность) в галактике отчетливо наблюдаются пять сгущений. На рис. 1 схематически представлены эти сгущения.

Галактика представляет собой как бы две слившиеся тесно галактики, ветви которых, почти сливаясь одним концом (сгущения III и V), образуют в проекции на плоскость перпендикулярно к лучу зрения острый угол, стороны которого на расстоянии 10" от вершины угла вновь приближаются друг к другу.

7^h 26^m

+72°13' ----

Рис. 1. Схематическая картина Маркарян 8. Стущения обозначены римскими цифрами. Параллельные линии показывают положение щели спектрографа. Цифры у линий соответствуют номеру снимка.

10

Восточная ветвь галактики состоит из трех сгущений (I, II, III), расположенных почти точно на одной прямой и имеет длину примерно 25", с позиционным углом 20°. Все три сгущения имеют почти сферическую форму и соединены между собой яркими диффузными перемычками. Самая яркая часть этой ветви — сгущение I, расположенное в северной части "галактики. Сгущения в западной части галактики (IV и V) несколько удлинены, причем южное из них (V) сильнее, чем северное (IV). Сгущение V вытянуто вдоль позиционного угла 155° и имеет длину примерно 12". Сгущение IV несколько вытянуто по направлению к самому яркому сгущению I, при этом оба эти сгущения соединены диффузной перемычкой. Два сгущения западной ветви образуют фигуру, которая по своему виду напоминает дугу, обращенную своей вогнутой стороной к восточной ветви. Как западная, так и восточная ветви погружены в диффузную оболочку, которая на голубых снимках Паломарского обозрения более яркая, чем на красных.

Согласно Цвикки [3], Маркарян 8 — "голубой послеэруптивный квартет, состоящий из двух перемычкообразных и двух сферических

компактных областей с видимой величиной m_{pg} = 13.8". По Б. Е. Маркаряну — это тнездо голубых объектов [1], а по Б. А. Воронцову-Вельяминову — две слившиеся линзовидные галактики [4].

Спектры исследуемой галактики были получены на 84" телескопе обсерватории Кит-Пик (США) с помощью спектрографа Линдса с дисперсией примерно 120 А/мм. Щель спектрографа, шириной около 2" и длиной примерно 2'5, была направлена вдоль линии Север—Юг. Получены семь спектров различных областей галактики параллельным перемещением щели спектрографа по прямому восхождению каждый раз на разные расстояния, заключенные в интервале 0*5—1*5. Сведения о снимках даны в табл. 1, в первом столбце которой приведены номера негативов, во втором—положение щели спектрографа согласно показанию шкалы прямого восхождения телескопа, в третьем время экспонирования и в последнем — сорт пластинки.

Таблица 1

Номер негатива	Положение щели	Время эксп. (мин)	Сорт пластинки		
550a	7 ^b 26 ^m 03 [*] 0	10	II a-O		
	02.0	н			
" C	00.5		11		
" d	00.0		11		
,, 6	25 58.7		**		
" f	57.5	11			
" g	56.8	я			

Все семь спектров получены на одной и той же пластинке, одна за другой, в течение полутора часов в ночь с 5 на 6 декабря 1967 года.

На рис. 2 приведена репродукция всех семи спектров галактики, причем первый спектр снизу соответствует тому положению щели, когда в нее попадал лишь восточный край наиболее яркой детали этого объекта — сгущение І. Затем щель перемещалась в сторону уменьшения прямого восхождения. На первых трех спектрах (на рис. 2 три нижних) на уровне спектра сравнения одновременно получен также спектр звезды (примерно 15^{тв} величины), расположенной почти точно к северу от сгущения I на расстоянии примерно 5″ от нее.

К сожалению, крупномасштабной фотографии этой галактики не имеется, А. Т. Каллоглян [5] получил снимки галактики на 2-х метровом универсальном телескопе Таутенбургской обсерватории. (ГДР) в его шмидтовском фокусе с масштабом 51.3 в одном миллиметре.

Как видно из рис. 2, на всех снимках, кроме первого, видны два спектра, которые отчетливо разделяются и принадлежат, естественно, разным областям галактики. В дальнейшем верхний из спектров (расположенный севернее) будем называть спектром "а", а нижний (южный) — спектром "в".

Благодаря тому обстоятельству, что спектр вышеупомянутой звезды получен одновременно с первыми тремя спектрами самой галактики, удалось определить какой из спектров принадлежит какому сгущению. Расстояния между спектром звезды и спектрами "а" и "в" для всех положений щели были измерены на микрофотометре ИЗА-2. Результаты этих измерений помещены в табл. 2, где в первом

Таблица, 2

РАССТОЯНИЕ СПЕКТРОВ СГУЩЕНИЙ МАРКАРЯН 8 ОТ СПЕКТРА ЗВЕЗДЫ ПО СКЛОНЕНИЮ (В СЕК. ДУГИ)

	Расстояние сп	ектра звезды					
№ снимка	от спектра "а"	от спектра "В"	ΔΙ	Примечания			
1	9	5"		спектр I			
2	94	103.5	9.5	спектры I и II			
3	95	110.2 эмнсс.	15.2	" I H III			
	1000	107.2 непр.	12.2	" І н диффузной обла- сти между II и III			
. 4	95.2	110	14.8	спектры I и III			
5	99	110	11	" IV H V			
6	99.7	110.5	10.8	" IV H V			
7	99	110	11	" IV R V			

столбце помещен номер снимка (считая снизу на рис. 2), во втором и третьем — расстояния от спектра звезды до спектров "а" и "в" в угловых секундах, в четвертом — относительное расстояние в секундах дуги между спектрами "а" и "в" по склонению и в последнем столбце, в примечаниях, указано, каким сгущениям принадлежат данные спектры. Средние расстояния же по склонению между сгущениями, измеренные по негативам галактики в лучах U и R, полученных А. Т. Каллогляном и любезно предоставленных автору, составляют: между сгущениями I и II — 9", II и III — 6", IV и V — 10", I и IV — 4". Расстояние между вышеупомянутой звездой и сгущением I, как уже отмечалось, составляет примерно 95".

Рассмотрение рис. 1 и 2 и табл. 2 приводит к следующим выводам:

1. Спектр сгущения I получен на первых четырех снимках, причем на снимках 2, 3 и 4 — это спектр "а". На четвертом снимке эмиссионные линии выглядят не как точки, как на первых трех снимках, а имеют диффузный вид и вытянуты вдоль направления Север — Юг настолько, что линии N_1 , H_3 и λ 3727 сливаются с точечными изображениями тех же линий спектра "в". Это указывает на то, что на четвертом снимке спектр "а" соответствует спектру диффузной массы, заключенной между сгущениями I и III, ибо спектр "в" на этом снимке является спектром сгущения III (см. ниже).

2. На снимках 5, 6 и 7 получен спектр сгущения IV (спектр "а"), т. к. его расстояние от спектра звезды составляет 99" и соответствует расстоянию от звезды до сгущения IV, и спектр сгущения V (спектр "в"), расстояние которого от звезды составляет 109—110", что соответствует расстоянию между спектром звезды и спектром "в" на этих снимках.

3. Идентичные измерения показывают, что спектры "в" на снимках 2 и 4 принадлежат, соответственно, сгущениям II и III.

4. На снимке 3 в спектре "в" эмиссионные линии находятся вне сильного непрерывного спектра, южнее от него. Эмиссионные линии принадлежат сгущению III. Что же касается компоненты с непрерывным спектром, то она принадлежит диффузной области, расположенной между сгущениями II и III на расстоянии примерно 2" к югу от сгущения II. Следует отметить, что слабые, но отчетливо выделяющиеся эмиссионные линии N₁, N₈ и H₃ сгущения II также видны на этом снимке. Они расположены несколько выше непрерывного спектра между спектрами сгущений I и III.

•5. Все спектры сгущений Маркарян 8 содержат одни и те же эмиссионные линии водорода, запрещенные линии [O II], [O III] и [Ne III]: N₁, N₂, H_β, H_γ и H_δ, λ 3869, λ 3968 и λ 3727.

Весьма интересную картину показывают красные смещения втих сгущений. Более тонкие измерения показывают, что наблюдается различие, хотя и небольшое, в величинах красных смещений сгущений. С помощью всех наблюденных эмиссионных линий измерены средние значения красных смещений на всех семи снимках. Затем для каждого из шести снимков (кроме первого) определена разность красных смещений в спектрах "а" и "в". Результаты измерений этих разностей приведены в табл. З, в которой в первом столбце даны номера снимков, во втором—средее значение красного смещения (\bar{z}) и в последнем — разность красных смещений между спектрами "а" и "в" для одного и того же снимка. Как видно из этой таблицы, значения \bar{z} в 4—735 спектрах "а" и "в" для одного и того же снимка заметно отличаются друг от друга. При этом выявляется следующая интересная особенность: на снимках 2 и 3 величина z в спектрах "в" в среднем больше,

		Tuonagu
Номер спектра	z	<u>Гу</u> (км/сек)
1	0.0104	
2 ^a	.0104 .0107	- 90
3 a B	.0107	- 60
4 a	.0110	0
5 ^a _B	.0112	+ 90
6 a B	.0110	- <u>†</u> - 90
7 <mark>a</mark> B	.0112 .0108	+120

Таблица З

чем в спектрах "а", а после 4-го снимка наблюдается обратная картина. Для наглядности на рис. З в виде графика приведены данные

табл. З, где по горизонтальной оси отложены номера снимков, а по вертикальной — значения z в км/сек. Римскими цифрами на этом рисунке обозначены соответствующие сгущения, по спектрам которых определены значения красных сгущений.

Как видно из этого графика:

а) Значения красных смещений в спектрах "в" (сгущения II, III и V) мало отличаются друг от друга. Правда, сгущение II имеет несколько_меньшее значение \bar{z} , чем сгущение III.

б) Восточная и западная части сгущения І имеют различные скорости. Хотя эта разница порядка 150 км/сек, она отчетливо наблюдается. Западная часть этого сгущения, обозначенная на рис. З символом I*, имеет примерно такую же скорость, что и сгущения III и V.

в) Наиболее высокую скорость имеет сгущение IV, а наименьшую — восточный край сгущения I, причем разница их скоростей более 200 км. сек. Сгущение I имеет при этом отрицательную относительно группы сгущений II, III и V скорость, а сгущение IV—положительную.

Среднее значение красного смещения Маркарян 8, определенное по всем спектрам, равно $\bar{z} = 0.0108$. С учетом поправки на движение Солнца вокруг центра Галактики, равной $\Delta z = +0.0004$, окончательно имеем $\bar{z}_0 = 0.0112 \pm 0.0002$. Следует отметить, что величина z систематически уменьшается при переходе от длинноволновой области спектра к коротковолновой для всех спектров без исключения. Наибольшее красное сгущение имеет линия N₁, наименьшее — λ 3727. Возможно, что это является результатом искажения всей спектральной картины вследствие магнитой фокусировки ЭОП-а ("S"—дисторсия).

Обсуждение результатов. Маркарян 8 выделяется среди других исследованных галактик с ультрафиолетовым избытком своими необычными структурными и динамическими особенностями. Она состоит из пяти сгущений, заключенных в диффузную оболочку. Наши спектральные наблюдения подтверждают наличие ультрафиолетового континуума в ней. Как видно из рис. 2, сильный непрерывный спектр сгущений простирается далеко за линию λ 3727. Кроме того, сама линия λ 3727 имеет довольно большую интенсивность, превосходящую интенсивмость линии H₃, а в некоторых случаях и линию N₁. В табл. 4 и 5 приведены значения относительных интенсивностей и эквивалентных ширин для всех эмиссионных линий.

При определении интенсивностей линий не учтена спектральная чувствительность прибора, которая должна быть меньше на концах спектра в области N_1 и λ 3727. Но так как спектральная чувствительность для всех снимков может считаться одинаковой, относительные интенсивности линий на разных снимках могут быть сравнены друг с другом. Как видно из табл. 4, наблюдается некоторое различие в ин-

Э. Е. ХАЧИКЯН

тенсивностях линий N₁, N₂ и H_β между восточной и западной ветвями галактики: в восточной части (сгущения I, II, III) интенсивности линий N₁, N₂ больше по сравнению с H_β ($\overline{N}_1: \overline{N}_2: H_\beta = 2.15: 1.56: 1$), чем в западной ($\overline{N}_1: \overline{N}_2: H_\beta = 1.07: 0.69: 1$) (сгущения IV и V).

Таблица 4

ОТНОСИТЕЛЬНЫЕ ИНТЕНСИВНОСТИ ЭМИССИОННЫХ ЛИНИЙ В МАРКАРЯН 8

	N	N ₁	N ₂	Нβ	Η _γ	Hō	He	H;	λ 3869 [No III]	λ 3727 [O II]	$\frac{I_{N_1+N_2}}{I_{H_3}}$
1	1	1.82	1.23	1.00	0.56	0.17	0.10	0.06	0.23	1.09	3.05
-	2а 2в	1.78 2.08	1.18 1.00	1.00	0.37 0.27	0.21	0.12	0.08	0.37 0,62	1.33 2.32	2.96 3.08
	За Зв	2.21 2.62	1.00	1.00	0.43 0.46	0.27	0.27		0.39	1.88 2.20	3.21 3.71
4	la 18	2.12 2.34	1.03 0.97	1.00	0.33 0.33	2			1.79?	1.97 1.20	3.15 3.31
	5а 5в	1.94 1.40	0.78 0.73	1.00	0.34 0.18	0.17			0.39	1.94	2.72 2.13
	ба бв	1.36 2.06	0.70 0.95	1.00	0.25 0.73	0.20 0.25	0.18		0.47	1.59 2.75	2.06 3.01
•	7а 7в	1.52 1.13	0.58 0.39	$1.00 \\ 1.00$	0.49					1.92 1.19	2.10 1.52

Спектры сгущений в целом напоминают спектры планетарных туманностей, как это наблюдается у многих галактик Маркаряна. По аналогии с планетарными туманностями, спектры сгущений можно классифицировать в зависимости от степени возбуждения. По величине отношения I_{N₄+N₅/I_{H₆} и I₃₇₂₇/I_{H₆} (см. табл. 4) обе ветви можно отнести} к классу, среднему между 3 и 4 (по десятибалльной системе [6-8]), что указывает на сравнительно низкую степень возбуждения в сгущениях. Но, с другой стороны, в их спектрах отчетливо наблюдается линия дважды ионизованного неона [Ne III] / 3869, которая в свою очередь указывает на высокую степень возбуждения. Что же касается линий гелия, то они в спектрах сгущений как будто вообще отсутствуют. Сходство сгущений с планетарными туманностями ограничивается наличием лишь ряда эмиссионных линий, типичных для планетарных туманностей. Весьма вероятно, что в сгущениях основную роль играет тот же механизм флуоресценции, что и в планетарных туманностях. Однако сгущения в Маркарян 8 по своим структурным особенностям больше напоминают сверхассоциации, впервые описанные и исследованные В. А. Амбарцумяном и его сотрудниками [9, 10].

536

Таблица 5

Самая яркая из них — сгущение І — по грубым оценкам (по паломарским снимкам) имеет абсолютную фотографическую звездную величину порядка — 18 (оценка фотографической величины произведена сотрудницей Бюраканской обсерватории С. Г. Искударян). Остальные сгущения значительно слабее, но по яркости значительно превосходят яркость обычных звездных ассоциаций и также являются сверхассоциациями.

N₂	N1	N ₂	Нз	Η _ĭ	Hð	λ 3869 [Ne III]	λ 3727 [O II]
1	13	8	6	3	1.2	1.8	8
2а 2в	11 4.7	6.4 2.3	6.1 2.1	2 0.4	1	1.9	9.7 5.6
За Зв	9.5 6.6	4.1 3.1	4.1 2.4	1.6 1.2		2.1	9.2 6.1
4а 4в	6 7.7	2.4 3.2	3.2 3.1	0.7		3.6?	5 4.9
5а 5в	4.9 2	1.7	2.6 2	0.7		0.9	4.2
ба бв	7.1	3.6	4.3	1.2	1.1 0.5	1.2	8.4 7.8
7а 7в	3.8 3.7	2.3 1.2	1.5 3	1.7		1.2	4.9 4.2
			_		-		

ЭКВИВАЛЕНТНЫЕ ШИРИНЫ ЭМИССИОННЫХ ЛИНИЙ В МАРКАРЯН 8 (В АНГСТРЕМАХ)

Как это уже отмечалось выше, восточная и западная ветви Маркарян 8 несколько отличаются друг от друга как по значению отвосительных интенсивностей эмиссионных линий, так и по величине красного смещения. Из анализа поля скоростей можно заключить, что одним концом (сгущения I и IV) эти ветви расходятся со скоростью примерно 150—200 км/сек. Ясно, что это лишь компонента скорости вдоль луча зрения. Полная же скорость расхождения может быть значительно больше. Эти особенности галактики дают основание для предположения, что Маркарян 8 не является одиночным объектом и состоит из двух галактик (как это предполагалось в [4]). Галактики-компоненты могли возникнуть либо одновременно, либо в результате распада одной первоначальной галактики, вследствие большой активности ядра.

Во всех случаях имеется основание предположить, что Маркарян 8 является молодым объектом, поскольку сверхассоциации, определяющие, по-видимому, его морфологическую и динамическую структуру, сами являются молодыми образованиями [9]. По своей морфологической структуре и по необычному полю скоростей Маркарян 8 не является единственной. Галактика Маркарян 7, например, по внешней структуре почти идентична Маркарян 8. К сожалению, детального спектрального исследования этой галактики никем не выполнено. Известная пара галактик NGC 4038—39, подробно исследованная Е. М. и Дж. Р. Бербиджами [11], также имеет необычную морфологическую структуру и необычное поле скоростей, в некоторой степени напоминающие Маркарян 8. Другой галактикой подобного типа, возможно, является NGC 1741, исследованная Ж. де Вокулером [12]. Компонента "А" этой галактики имеет ряд сгущений, образующих острый угол, подобно Маркарян 8. Спектр ее очень похож на спектр Маркарян 8, причем сильный непрерывный спектр у нее также простирается далеко за линию λ 3727. Однако поле скоростей этой галактики им не исследовано.

В заключение считаю своим долгом выразить глубокую благодарность дирекции обсерватории Кит-Пик за предоставление возможности наблюдать на 84" телескопе и д-ру Р. Линдсу за большую помощь при наблюдениях на его спектрографе.

Выражаю также глубокую благодарность акад. В. А. Амбарцумяну за дисскусию и ценные замечения, Г. Паносяну за помощь при обработке спектров, С. Г. Искударян за оценку фотографической величины сгущения I и А. Т. Каллогляну за предоставление негатива снимка Маркарян 8.

Бюраканская астрофизическая обсерватория

THE SPECTRAL INVESTIGATION OF THE GALAXY MARKARIAN 8

E. Yo. KHACHIKIAN

The results of detailed spectral investigation of the galaxy Markarian 8 are presented. The spectra have been obtained with 84" telescope of Kitt Peak National Observatory (USA) and Lynd's spectrograph (dispersion about 120 A/mm). By parallel moving of the spectrograph's slit along right ascension seven spectra of the different parts of galaxy have been taken. The galaxy has a complicated morphological and dynamical structure. It contained five Superassociations with different redshifts. The unusual velocity field in the galaxy is discussed.

СПЕКТРАЛЬНОЕ ИССЛЕДОВАНИЕ ГАЛАКТИКИ МАРКАРЯН 8 539

ЛИТЕРАТУРА

1. Б. Е. Маркарян, Астрофизика, 3, 55, 1967.

2. Д. В. Видман, Э. Е. Хачикян, Астрофизика, 4, 587, 1968.

3. F. Zwicky, Catalogue of Galaxies and Clusters of Galaxies VII, California Institute of Technology, Pasadena, 1968.

- 4. Б. А. Воронцов-Вельяминов и др. Морфологический каталог галактик, т. І, Изд. МГУ, М., 1962.
- 5. А. Т. Каллоглян, Астрофизика, 7, 521, 1971.

6. T. Page, Ap. J., 96, 78, 1942.

7. L. H. Aller, Gaseous Nebulae, London, 1956, p. 66.

8. Г. А. Гурзадян, Планстарные туманности, М., 1962.

9. В. А. Амбарцумян и др., Сообщ. Бюраканской обс., 33, 3, 1963.

10. Р. К. Шахбазян, Астрофизика, 4, 273, 1968.

- 11. Е. М. Бэрбидж, Дж. Р. Бэрбидж, Нестационарные явления в галактиках, Симпозиум МАС № 29, Ереван, 1968, стр. 415.
- Ж. де Вокулёр, Нестационарные явления в галактиках, Симпозиум МАС № 29, Ереван, 1968, стр. 421.

