АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР

АСТРОФИЗИКА

TOM 8

АВГУСТ, 1972

выпуск 3

ПУЛЬСАЦИИ И УСТОЙЧИВОСТЬ СПЛЮСНУТЫХ ВРАЩАЮЩИХСЯ БЕЛЫХ КАРЛИКОВ

Ю. А. ВАРТАНЯН Поступнаа 23 марта 1972

Энергетическим методом исследуется влияние сплюснутости на параметры равновесия и устойчивости твердотельно вращающихся белых карликов. Показано, что для таких конфигураций эффект сплюснутости оказывается белее существенным для энергии вращения, чем для гравитационной энергии, что приводит при одной и той же центральной плотности к небольшому уменьшению массы и увеличению периода пульсации по сравиению со сферически-симметричными конфигурациями.

В [1—4] рассматривались вопросы устойчивости и пульсаций вращающихся белых карликов. Во всех этих работах исследование производилось в приближении сферически-симметрических конфигураций, Представляет интерес рассмотреть, как будет влиять отклонение формы вращающихся конфигураций от сферической на состояние равновесия и устойчивости. Именно такое исследование для вращающихся белых карликов производится ниже. Здесь, так же, как в [3], рассмотрение производится энергетическим методом. При этом учитываются как эффекты общей теории относительности, так и эффект нейтронизации ядер (обратный 3-захват).

В случае вращающихся белых карликов полная внергия E (за вычетом внергии покоя) определяется как

$$E = E_s + E_G + E_{OTO} + E_r, \tag{1}$$

где E_s — полная внергия вырожденного влектронного газа, E_G — гравитационная внергия, $E_{\rm OTO}$ — поправки к втой внергии общей теории относительности и E_r — внергия вращения. Если звезда совершает малые радиальные пульсации по подобному закону с частотой w, то из условия стационарности пульсаций имеем [3]

$$(\partial E/\partial x_c)_{S,M,K} = 0, \tag{2}$$

$$(\partial E/\partial x_c)_{S, M, K} = 0,$$

$$(x_c^2/I) (\partial^2 E/\partial x_c^2)_{S, M, K} = \omega^2,$$
(2)

где S- энтропия, M- масса эвезды, K- момент количества движения, I- момент инерции относительно центра $\left(I=\int r^2dm\right)$, $x_c\coloneqq$

 $=p_{e}(0)/m_{e}c, m_{e}$ и $p_{e}(0)$ -- соответственно, масса и импульс Ферми электронов в центре конфигураций. Укажем, что х. связано с плотностью в центре ρ_c соотношением $x_c = \text{const}\,\rho^{1/3}$. Условие (2) есть условие равновесия (экстремум энергии), а (3) — условие звезды устойчивости.

Обозначим параметр сплюснутости через λ ($\lambda < 1$, $\lambda = c/\sqrt{abc} =$ $=\left(c/a
ight) ^{2/3}$, так как a=b; a и b- соответственно, экваториальная и полярная полуоси эллипсоида вращения). Так как для белых карликов даже при предельном вращении, когда начинается истечение вещества с экватора, гравитационная энергия намного превосходит энергию вращения, λ мало отличается от единицы, то есть $\lambda = 1 - \xi$, $0 < \xi \ll 1$. Следуя [5, 6], примем, что плотность постоянна на подобных эллипсоидах вращения. При учете эффекта сплюснутости в первом порядке, когда отклонение от сферичности мало (; «11), это предположение физически справедливо. В этом случае распределение плотности, как функция массы, будет таким же, как и в сферической модели, и поэтому полная внутренняя энергия не изменится: $E_s = E_{0s}$ [6]. Здесь и в дальнейшем величины, обозначенные индексом нуль, относятся к сферическому случаю, а без этого индекса - к несферической задаче.

Так как эффекты общей теории относительности в случае белых карликов весьма малы $(\tau/c^2 \approx 10^{-3}, \phi$ — гравитационный потенциал), то в $E_{
m OTO}$ сплюснутость можно не учитывать и брать для этой величины соответствующее выражение сферической модели. Что же касается гравитационной энергии E_G и энергии вращения E_r , то для этих величин имеем [6, 7]

$$E_G = E_{0G}g(\lambda), \quad E_r = E_{0r}\lambda,$$

где

$$g(\lambda) = \lambda^{1/2} (1 - \lambda^3)^{-1/2} \arccos \lambda^{3/2}$$
.

B случае $\xi \ll 1$, $g(\lambda) = 1 - \xi^2/5$.

Таким образом

$$E_G = E_{0G} + \delta E_G, \quad E_r = E_{0r} + \delta E_r, \tag{4}$$

где

$$\delta E_G = -E_{0G}\xi^2/5, \quad \delta E_r = -E_{0r}\xi.$$

Имея в виду (4), для полной энергии Е имеем

$$E(M, K, x_c) = E_0(M, K, x_c) - (\xi^2/5) E_{0G} - \xi E_{0r}.$$
 (5)

Определим ξ из условия экстремума полной энергии (5) по параметру сплюснутости λ : $(\sigma E/\partial \lambda) = (\partial E/\partial \xi) = 0$. Из (5) для ξ получим

$$\xi = 5E_{0r}/2E_{0G}.$$
 (6)

Выражая E_{0r} и E_{0G} через массу звезды M, центральную плотность ρ_c и момент вращения $K(E_{0r}\!=\!1.20~K^2M^{-5.3}\,\rho_c^{2.3},\,E_{0G}\!=\!0.64~GM^{5.3}\rho_c^{1/3},\,G$ — гравитационная постоянная, [6, 3]), а также имея в виду, что в случае предельного вращения, когда наступает истечение вещества с экватора, $K^2=0.0133~G\rho_c^{-1.3}M^{10.5}$ [3], окончательно для ; найдем

$$\xi = 6.23 \cdot 10^{-2}.\tag{7}$$

Перейдем теперь к определению поправок к массе от и к квадрату частоты $\delta \omega^2$, обусловленных сплюснутостью. Обозначим: $m=m_0+$ $+\delta m$, $\omega^2=\omega_0^2+\delta \omega^2$, где $m=M/M_{\odot}$. Для m_0 и ω_0^2 для железных вращающихся белых карликов с учетом эффектов общей теории относительности и обратного 3-захвата из (2) и (3) в [3] было получено

$$F(m_0, x_c) = \underbrace{2.236 \cdot 10^{-4} x_c^3 m_0^{4/3} + (3.608 \cdot 10^{-3} x_c^3 + 0.5089 x_c^2 - 2.545 \cdot 10^{-2} x_c^2)}_{= 0} m_0^{2/3} + (2.14 - 0.58 x_c^2 - 1.488 \cdot 10^{-3} x_c^3) = 0$$
(8)

$$\omega_0^2 = (1.227 x_c - 7.518 \cdot 10^{-4} x_c^4 - 6.381 \cdot 10^{-5} x_c^4 m_0^{4/3} + +7.279 \cdot 10^{-3} x_c^3 m_0^{2/3}) / m_0^{2/3}.$$
(9)

Здесь члены, подчеркнутые волнистой линией, есть вклад ОТО, пунктирной линией — эффекта нейтронизации; сплошной линией — вращения. Подставляя (5) в (2), получим

$$F(m, x_c) - (0.1018\xi^2 - 0.02545\xi) x^2 m^{2/3} = 0, \tag{10}$$

где $F(m, x_c)$ определяется соотношением (8); члены, содержащие E_G и E_r . Имея в виду значение из (7), мы замечаем, что, несмотря на то, что для белых карликов,

как уже было отмечено выше, $|E_G|\gg |E_r|$, однако $|\partial E_G|<|\partial E_r|$. Это происходит по той причине, что $\partial E_r\sim \xi$, в то время как $\partial E_G\sim \xi$. Подставляя в (10) $m=m_0+\delta m$ и имея в виду, что $F(m_0, x_c)=0$ (см. (8)), для ∂m , получим

$$\delta m/m_0 = -3.695 \cdot 10^{-3}/(1 + 7.464 \cdot 10^{-3} x_c + 9.25 \cdot 10^{-4} x_c m_0^{23}).$$
 (11)

Отрицательность $\delta m/m_0$ обусловлена превалированием $|\delta E_r|$ над $|\delta E_G|$. Имея в виду, что в окрестностях точки потери устойчиности белых карликов $x_c \approx 10$, а $m_0 \approx 1$, из (11) замечаем, что относительное изменение массы $\delta m/m_0$ весьма слабо зависит от плотности и не превосходит $0.4\,^0/_0$.

Подставляя (5) в (3) и учитывая, что момент инерции вллипсоида I и шара I_0 при сплюснутости ξ связаны соотношением $I = I_0/(1-\xi^2)$, а также что $\partial^2 E_{0C}/\partial x_*^2 = 0$, для ω^2 получим

$$\omega^2 = \omega_0^2 (1 - \xi^2) - \xi (x^2/I_0) (\partial^2 E_{0r}/\partial x^2).$$

Выражая I_0 и E_{0r} через x_c и m_0 (см. [3]), для $\delta \omega^2 = \omega^2 - \omega_0^2$, получим

$$\delta\omega^2/\omega_0^2 = -(\xi + 7.279 \cdot 10^{-3} x_e^3/\omega_0^2)\xi. \tag{12}$$

Из (12) видно, что в отличие от $(\delta m/m_0)$ величина $(\delta \omega^2/\omega^2_0)$ оказывается того же порядка, что и , то есть сплюснутость белых карликов более существенно влияет на параметры устойчивости, нежели равновесия.

В табл. 1 приводится зависимость от центральной плотности массы m_0 и квадрата частоты пульсаций ω_0^2 для сферических железных, вращающихся с предельной угловой скоростью белых карликов с учетом эффектов ОТО и нейтронизации. Здесь же, согласно (11) и (12), приводятся относительные поправки $(\delta m/m_0)$ и $(\delta \omega^2/\omega_0^2)$, обусловленные сплюснутостью.

Резюмируя, отметим, что приближение сферических конфигураций при рассмотрении проблемы устойчивости вращающихся белых карликов является хорошим. Небольшой эффект сплюснутости более всего влияет на энергию вращения и при одной и той же центральной плотности приводит к слабому уменьшению массы и увеличению периода пульсаций по сравнению со сферическими конфигурациями.

Таблица 1 ОТНОСИТЕЛЬНЫЕ ИЗМЕНЕНИЯ МАССЫ ($\delta m_1 m_0$) И КВАДРАТА ЧАСТОТЫ ($\delta m_2^2 m_0^2$) ВРАЩАЮЩИХСЯ БЕЛЫХ КАРЛИКОВ, ОБУСЛОВЛЕННЫЕ СПЛЮСНУТОСТЬЮ

x _e	ρ _c ·10 ⁻⁹	$m_0 - M, M_{\odot}$	ω ₀ ² ceκ ⁻²	-7m/m ₀ · 10 ³	$-\delta\omega^2/\omega_0^2\cdot 10^2$
3	, 0.0580	0.587	5.359	3.607	0.22848
4	0.138	0.863	5.651	3.576	0.51359
5	0.271	0.998	6.543	3.546	0.86635
6	0.471	1.069	7.596	3.517	1.28952
7	0.752	1.087	8.665	3.489	1.79508
8	1,129	1.132	9.646	3.461	2.40703
9	1.616	1.447	10.492	3.428	3.15085
10	2.227	1.152	10.903	3.406	4.15923
11	2.980	1.154	10.923	3.380	5.52580
12	3.888	1.155	10.336	3.354	7.58142
13	4.968	1.153	8.966	3.328	11.1119
14	6.236	1.150	6.621	3.303	18.7940
15	7.707	1.146	3.083	3.278	49.6432
16	9.400	1.142	неустойч.		

Примечание: $x_c = p_e(0)/m_e c$, $p_e(0)$ — выпульс Ферми влектронов в центре конфигураций; ρ_c — центральная плотиость; m_0 и ω_0^2 — соответственно масса и квадрат частоты пульсаций сферически-симметрических вращающихся белых карликов; δm и $\delta \omega^2$ — поправки к массе и квадрату частоты пульсаций, обусловленные сплюснутостью.

Выражаю благодарность академику В. А. Амбарцумяну и профессору Г. С. Саакяну за обсуждение.

Ереванский государственный университет Бюраканская астрофизическая обсерватория

PULSATION AND STABILITY OF FLATTENED OUT WHITE DWARFS

Yu. L. VARTANIAN

The effect of the flattening over parameters of equilibrium and the stability of the rotating white dwarfs are considered.

ЛИТЕРАТУРА

- 1. J. W. Roxburgh, B. R. Durney, Z. Astrophys., 64, 504, 1966.
- 2. В. С. Имшенник, З. Ф. Сендов, Астрофизика, 6, 301, 1970.
- 3. Ю. Л. Вартанян, А. В. Овсепян, Астрофизика, 6, 601, 1970.
- 4. J. Skilling, Nature, 218, 923, 1968.
- Л. Э. Гуревич, А. И. Лебединский, Труды четвертого совещания по вопросам космогонии, М., 1955, стр. 147.
- 6. Я. Б. Зельдович, И. Д. Новиков, Релятивистская астрофизика, Наука, М., 1967.
- 7. Л. Д. Ландау, Е. М. Лифшиц, Теория поля, Физматгиз, М., 1962.