АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР

АСТРОФИЗИКА

TOM 8

АВГУСТ, 1972

выпуск з

КВАЗИРАДИАЛЬНЫЕ ПУЛЬСАЦИИ ВРАЩАЮЩИХСЯ РЕЛЯТИВИСТСКИХ ПОЛИТРОП

В. В. ПАПОЯН, Д. М. СЕДРАКЯН, Э. В. ЧУБАРЯН Поступила 23 ноября 1971 Пересмотрена 29 мая 1972

Найдены частоты квазирадиальных пульсаций вращающихся релятивистских политроп с n=1; 1.5; 2; 2.5; 3, а также критические в смысле нарушения устойчивости значения параметра релятивизма z. Показано, что для политропы n=3, кращающейся с максямально возможной без истечения вещества угловой скоростью, нестабильность наступает при $r_0 < 140 r_{w}$.

1. Одной из форм параметрических уравнений состояния звезд со сложным составом является политропное уравнение состояния

$$P = K \varrho^{1+1/\alpha} \,. \tag{1}$$

Линейная комбинация политроп с различными показателями n довольно корошо аппроксимирует состояние вещества "холодных" белых карликов и барионных звезд. При соответствующем подборе связанной с энтропией постоянной K уравнение (1) можно использовать для изучения "горячих" моделей, причем при фиксированном n полученное семейство будет семейством изоэнтропных конфигураций. Различным показателям политропы соответствуют разные звездные модели. Случаю n = 0 соответствует модель несжимаемой жидкости, случаю n = 1.5 - идеальный, невырожденный, нерелятивистский газ, случаю n = 3 — релятивистский газ или смесь газа с излучением, в котором преобладает давление излучения. Последний случай наиболее интересен в том смысле, что состояние вещества сверхмассивных звезд обычно отождествляют с политропой n = 3.

В рамках ньютоновской теории тяготения политропные конфигурации изучены достаточно подробно как в отсутствие вращения (см., например, [1]), так и при наличии его [2-5]. Внутренняя структура и интегральные характеристики невращающихся релятивистских политропных моделей получены Тупером [6]. В работах [7, 8] рассматривались медленно вращающиеся релятивистские политропные конфигурации и предпринята попытка связать часть наблюдательных данных о квазарах с вращающейся политропой n = 3. Однако любые заключения о свойствах изучаемой последовательности моделей имеют смысл лишь в том случае, если решен вопрос их устойчивости.

Весьма удовлетворительным в смысле выяснения устойчивости звездных конфигураций является "энергетический" подход Фаулера, использованный им для политроп в после-ньютоновском приближенин и в отсутствие вращения [9]. Влияние вращения на стабильность политропы n = 3 тем же методом изучалось Роксбургом [10]. Довольно точный метод определения динамической устойчивости и частот радиальных пульсаций релятивистских моделей разработан Цандрасекаром [11], который применил его для невращающихся политроп. В случае вращающихся белых карликов и релятивистской политропы п = 3 аналогичная задача решена в работах [12, 13], причем вклад вращения учтен лишь ньютоновским членом, тогда как величина связанных с вращением релятивистских поправок на расстояниях порядка радиуса изучаемого объекта сравнима с релятивистскими поправками, обусловленными распределением масс. Эта непоследовательность устранена авторами настоящей статьи, которые недавно предложили метод рассмотрения адиабатических пульсаций малой амплитуды около равновесных состояний вращающихся релятивистских объектов [14]. В [14] учет вращения ограничен членами, пропорциональными Q², отклонения от сферической симметрии вследствие вращения считаются пренебрежимо малыми и, как было отмечено, в отличие от [12, 13], приняты во внимание связанные с вращением релятивистские эффекты. Хорошее совпадение результатов выполненной этим методом работы [15] с полученными другим методом результатами Мелтцера и Торка [16] = отсутствие вращения говорит в пользу его применимости.

В настоящей статье на основе предложенного в [14] метода рассматривается вопрос динамической устойчивости вращающихся релятивистских политроп с n = 1; 1.5; 2; 2.5; 3 и найдены частоты квазирадиальных пульсаций этих моделей. преобальнет заплоние налучения. Последния случай излибелее инт

2. Как показано в [14], уравнение, определяющее частоты э и амплитуды у квазирадиальных пульсаций вращающихся релятивистских моделей, имеет вид

рации пучены достаточно подрабно как в отсутствие працения (см.,

ПУЛЬСАЦИИ ВРАЩАЮЩИХСЯ РЕЛЯТИВИСТСКИХ ПОЛИТРОП

$$\sigma^{2} \int_{0}^{\infty} S(r) \cdot f \cdot \frac{\gamma + P/c^{2}}{1 - \frac{2Gm}{c^{2}r}} \eta^{2} r^{2} dr = \int_{0}^{\infty} S(r) \cdot \left[\frac{4P'}{r} - \frac{P'^{2}/c^{2}}{\gamma + P/c^{2}} + \frac{8\pi GP \cdot (\gamma + P/c^{2})}{c^{2} \left(1 - \frac{2Gm}{c^{2}r}\right)} \right] \eta^{2} r^{2} dr + \int_{0}^{\infty} \gamma P S(r) \left[\frac{(r^{2} \eta)'}{r^{2}} + \frac{P' \eta/c^{2}}{\gamma + P/c^{2}} \right]^{2} r^{2} dr +$$
(2)

$$+\frac{c^{2}}{2}\int_{0}^{r_{0}}S(r)\left(p+P/c^{2}\right)\left[\eta'\left(r^{2}L_{0}\right)'-2L_{0}\eta\right]\eta\,dr+$$

$$+\frac{2}{3}\frac{\Omega^2}{c^2}\int_0^{r}S(r)\left[\gamma P\eta'^2+\left(P'+\frac{2\gamma P}{r}\right)\eta\eta'+\frac{4}{r}P'\eta^2\right]r^4dr.$$

Здесь

$$S(r) = \frac{1}{\sqrt{f\left(1 - \frac{2Gm}{c^2 r}\right)}}, \quad \gamma = \frac{p + P/c^2}{P} \frac{dP}{d\rho},$$
$$L = \frac{2}{3} \frac{\Omega^2 r^2}{c^2} \cdot f \cdot (1 + 2q),$$

*г*₀ — радиус, Ω — угловая скорость вращения, *f* и *q* — компоненты метрического тензора рассматриваемой конфигурации.

Выберем пробную функцию в виде $\eta = r + \lambda r^3$, перейдем к удобным в случае политропного уравнения состояния (1) безразмерным переменным

$$\xi = Ar, \qquad \upsilon(\xi) = \frac{A^{2}m(r)}{4\pi\rho_{c}}, \qquad \theta(\xi) = \left(\frac{\rho(r)}{\rho_{c}}\right)^{1/n},$$
$$A^{2} = \frac{4\pi G\rho_{c}^{\frac{n-1}{n}}}{K(n+1)}$$

и введем параметр релятивизма $a = P_c/\nu_c c^3$. Топда основное уравнение проблемы (2) перепишется в виде

$$\sigma^{2} = \frac{J_{4} + 2\lambda J_{5} + \lambda^{2} J_{6} + \frac{4}{3} \beta (J_{7} + 2\lambda J_{8} + \lambda^{2} J_{9})}{J_{1} + 2\lambda J_{2} + \lambda^{2} J_{3}}, \qquad (4)$$

(3)

где

$$J_{i} = \int_{0}^{t_{0}} \theta^{n} \cdot f^{2} \cdot S^{3}(\xi) (1 + \alpha \theta) \xi^{i+3} d\xi, \qquad i = 1, 2, 3; \qquad (5)$$

$$J_{j} = \int_{0}^{t_{0}} \theta^{n} (1 + \alpha \theta) S(\xi) \left\{ \frac{3(j-1) + \delta_{j\pi}}{n} \theta + 2\alpha \xi^{2} f \theta^{n+1} S^{2}(\xi) - \alpha f(n+1) \left(\frac{v}{\xi} + \alpha \xi^{2} \theta^{n+1} \right) \right] \left[\left(1 - \frac{n+1}{n} \alpha \theta \right) \left(\frac{v}{\xi} + \alpha \xi^{2} \theta^{n+1} \right) S^{2}(\xi) f + \frac{4}{\alpha (n+1)} + \frac{j+2}{n} \theta S^{2}(\xi) \right] \xi^{j-2} d\xi, \qquad j = 4, 5, 6.$$

$$J_{k} = \int_{0}^{t} \theta^{n} \sqrt{f} S(\xi) \left[(k-2) \sqrt{f} + 2(k-2) q + \frac{k+3}{2} \chi \xi - \frac{(7)}{n} (k+1) \alpha (n+1) \frac{v}{\xi} + \frac{2n (2k-7) + 3(k-4) + (n+1) \delta_{k\theta}}{n} \alpha \theta \xi \right] \xi^{k-3} d\xi, \qquad (7)$$

$$S(\xi) = \frac{1}{\sqrt{f[1 - 2\alpha (n+1)v/\xi]}}; \qquad \beta - \frac{v(\xi_0)}{2\xi_0^3}, \qquad (8)$$

$$\frac{d\upsilon}{d\xi} = \theta^{n} \xi^{2} \left[1 + \frac{4}{3} \beta \alpha \left(n + 1 \right) \xi^{2} \right],$$

$$\frac{d\theta}{d\xi} = -\left(1 + \alpha \theta \right) f \left(\frac{\upsilon}{\xi^{2}} + \alpha \xi \theta^{n+1} \right) S^{2} \left(\xi \right) +$$

$$+ \frac{4}{3} \beta \xi \left[f + 2q + \gamma \xi + \alpha \theta - \alpha \left(n + 1 \right) \right], \qquad (9)$$

$$\frac{dq}{d\xi} = \gamma, \qquad \frac{d\gamma}{d\xi} = -\frac{4}{3} \gamma + 4\theta^{n} \alpha \left(n + 1 \right),$$

$$\frac{df}{d\xi} = -2\alpha \left(n + 1 \right) f^{2} \left(\frac{\upsilon}{\xi} + \alpha \xi \theta^{n+1} \right) S^{2} \left(\xi \right),$$

-408

с начальными условиями v(0) = 0, $\theta(0) = 1$, $q(0) = q_c$, $\chi(0) = 0$, $f(0) = f_c$. Постоянная q_c определяется условием непрерывности соотнетствующей компоненты метрического тензора и ее производной на границе конфигурации.

Согласно сформулированному Чандрасекаром [11] вариационному принципу (см. также [12, 13]) значения собственных частот и амплитуды τ_i пульсаций рассматриваемых моделей, удовлетворяющих основному уравнению (2), соответствуют тем значениям произвольного параметра ℓ , которые минимизируют выражение (4). Поэтому, если для каждого из *n* при заданных τ и β найти семейство решений системы (9), подсчитать интегралы (5), (6), (7), а также значения ℓ , соответствующие минимуму τ^2 (4), то задача будет решена.

3. Численное интегрирование системы (9) и интегралов (5)-(7) выполнено на ЭВМ "Наири-2". Интегрирование велось от ; = 0 до границы конфигурации ; = ;,, определенной как корень уравнения $\theta(z_0) = 0$. Результаты расчета представлены табл. 1 и рис. 1. В таблице для каждого из n = 1; 1.5; 2; 2.5; 3 можно найти величины 5. u (5) и частоты квазирадиальных пульсаций э, соответствующие различным значениям параметра релятивизма α, как при наличии вращения, так и в отсутствие его. Значения а, при которых z = 0, являются критическими в смысле нарушения устойчивости. Все конфигурации с σ² < 0 нестабильны относительно рассматриваемых квазирадиальных пульсаций, тем не менее для полноты в таблице приводятся и их характеристики. Отметим, что во всех случаях критическая в смысле нарушения устойчивости величина а остается меньше, чем максимально возможное при данном *n* значение $\alpha_{max} = n/n + 1$, полученное из условия, по которому скорость звука в среде не должна превышать скорости света в вакууме [6]. Для сравнения в таблице приводятся также найденные при α = 0 параметры нерелятивистских конфигураций.

На рис. 1 показана зависимость критических в смысле нарушения устойчивости значений $a_{\rm Kp}$. ($\sigma = 0$) от показателя политропы *п*. Пунктирная кривая относится к случаю отсутствия вращения, сплошная—случай с вращением. Легко видеть, что для одного и того же *n* при $n \leq 2.5$ значения $a_{\rm Kp}$ больше в отсутствие вращения, в то время, как при $n \geq 2.5$ большими становятся $a_{\rm Kp}$, соответствующие вращающимся конфигурациями. Это означает, что вращение для политропных конфигураций с $n \leq 2.5$ приводит к уменьшению устойчивости звезды, а при $n \geq 2.5$ — увеличивает устойчивость.

Качественно этот вывод следует также из формулы

410

Таблица У

Вращения нет					Свращением			
α	ŧa	v (‡0)	G	"	a	Şo	υ (ξα)	3
0	3.142	3.142	0.3595	1000	0	3.835	4.635	0.2262
0.01	3.119	2.935	0.3499		0.01	3.686	4.279	0.2125
0.05	2.850	2.315	0.2454		0.05	3.287	3.088	0.1979
0.1	2.599	1.751	0.1804	-	0.1	2.981	2.394	0.0797
0.2	2.277	1.143	0.0860	-	0,178	2.595	1.719	0
0.3	2.064	0.8191	0.0349	2	0.2	2.496	1.559	-0.01743
0.4	1.913	0.6249	0.00469	1	0.3	2.220	1.082	-0.0709
0.43	1.865	0.5751	0		0.4	2.066	0.8021	-0.1025
0.5	1.801	0.4981	-0.01432		0.5	1.813	0.6567	-0.1530 ·
0	3.70	2.715	0.1505	1	0	4.365	3.483	0.0988
0.01	3.60	2.525	0.1365	4.3	0.01	4.306	3.132	0.0906
0.05	3.30	1.949	0.0880	1.5	0.05	3.818	2.406	0.0512
0.1	3.088	1.481	0.0468	11	0.1	3.386	1.841	0.0117
0.2	2.699	0.9603	0	2	0.12	3.30	1.613	0
0.3	2.493	0.6882	-0.0233	20	0.2	3.005	1.138	-0.034
0	4.35	2.412	0.0606	0.00	0	5.181	2.751	0.0495
0.01	4.30	2.239	0.0518		0.01	5.064	2.551	0.0409
0.05	3.90	1.716	0.0235	5	0.05	4.604	1.912	0.016
0.1	3.697	1.298	0	5	0.083	4.423	1.552	0
0.2	3.398	0.8402	0.0266	1	0.1	4.345	1.423	-0.0073
0.3	3.271	0.6054	-0.0375		0.2	3.866	0.9154	-0.035
0	5.355	2.187	0.0198	1. 2. 10	0	6.265	2.360	0.0233
0.01	5.320	2.028	0.014	S	0.01	6.247	2.163	0.0163
0.038	5.068	1.678	0	5	0.045	5.931	1.686	0
0.05	4.98	1.548	-0.0046	R	0.05	5.898	1.63	-0.0043
0.1	4.782	1.169	-0.0189		0.1	5.515	1.235	-0.020
0	6.9	2.0182	0		0	8.158	2.0956	1.522.10-3
0.001	6.87	2.0024	-4.17 -10-4		0.001	8.140	2.0786	1.054.10-3
0.003	6.864	1.9716	$-1.258 \cdot 10^{-3}$	3	0.003	8.061	2.05	2.180.10-4
0.006	6.84	1.9267	$-2.482 \cdot 10^{-3}$		0.0035	8.049	2.043	0
0.01	6.83	1.8695	$-4.08 \cdot 10^{-8}$		0.006	8.0065	2.0038	$-1.09 \cdot 10^{-3}$
0.05	6.72	1.4245	-0.01721	-	0.01	7.905	1.9478	$-2.75 \cdot 10^{-3}$

ПУЛЬСАЦИИ ВРАЩАЮЩИХСЯ РЕЛЯТИВИСТСКИХ ПОЛИТРОП 411

$$\sigma^{2} = \left(\gamma - \frac{4}{3}\right) - 43\left(\gamma - \frac{5}{3}\right) - \frac{1}{42} \frac{r_{g}}{r_{0}} \left(54\gamma - 53\right) + \frac{2}{21} \frac{r_{g}}{r_{0}} \beta \left(81\gamma - 106\right),$$
(10)

полученной в работе [14] для модели жидкости с однородным распределением вещества. Действительно, при $\gamma \gtrsim \frac{5}{3}$ (малые *n*) релятивистские поправки несущественны, а второе слагаемое в (10), срязавное с ньютоновским членом, учитывающим вращение, отрицательно и приводит к неустойчивости. При $\frac{4}{3} \leqslant \gamma \ll \frac{5}{3}$ (*n* ~ 3) картина меняется: вращение играет стабилизирующую роль (второе и четвертое слагаемые в (10)), т. е. противодействует тенденции к сжатию.

Рис. 1. Зависимость критических в смысле нарушения устойчивости значений а_{кр} от показателя политропы *п*. Пунктирная кривая относится к случаю отсутствия вращения, сплошная—случай с вращенисм.

Стабилизирующая относительно холлапса роль вращения для политропных конфигураций с n = 3, которые обычно отождествляют со сверхмассивными звездами, выяснена еще в работах [10, 13]. Было показано [13], что для n=3 при вращении с максимально возможной без истечения вещества угловой скоростью нестабильность наступает при $r_0 \leq 208 r_s$. Этот результат нуждается в уточнении, так как в [13] вращение учтено лишь ньютоновским членом. Наше рассмотрение для n = 3 и $\beta = \beta_{max}$ дает $z_{\kappa p} = 0.00348$ и нестабильность в случае $r_0 < 140$ г., что наглядно свидетельствует о стабилизирующей роли связанных с вращением релятивистских поправок.

Авторы благодарны профессору Г. С. Саакяну за полезные обсуждения и Г. Г. Арутюнян за помощь в проведении численных расчетов.

Ереванский государственный университет

QUASIRADIAL PULSATION OF ROTATING **RELATIVISTIC POLYTROPES**

V. V. PAPOYAN, D. M. SEDRAKIAN, E. V. CHUBARIAN

The frequences of the quasiradial pulsations of rotating relativistic polytropes for n = 1; 1.5; 2; 2.5; 3 and the critical value of the relativistic parameter in the sense of dynamical unstability are calculated.

Unstability occurs for the rotating polytrope n = 3 when $r_0 \leq 140r_a$.

ЛИТЕРАТУРА

- 1. С. Чандрасскар, Введение в учение о строении звезд. ИА., М., 1950.
- 2. S. Chandrasekhar, N. R. Lebovitz, Ap. J., 136, 1082, 1962.
- 3. S. Chandrasekhar, P. H. Roberts, Ap. J., 138, 809, 1963.
- 4. R. A. James, Ap. J., 140, 434, 1964.
- 5. J. J. Monaghan, J. W. Roxburgh, M. N., 131, 13, 1965. 6. R. F. Tooper, Ap. J., 140, 434, 1964.
- 7. В. В. Папоян, Д. М. Седракян, Э. В. Чубарян, Астрофизика, 5, 95, 1969.
- 8. В. В. Папоян, Д. М. Седракян, Э. В. Чубарян, Сб. "Звезды, туманности, галактики", Ереван, 1969, стр. 273.
- 9. W. A. Fowler, Rev. Mod. Phys., 36, 545, 1104, 1964.
- 10. J. W. Roxburgh, Nature, 207, 363, 1965.
- 11. S. Chandrasskhar, Ap. J., 140, 417, 1964.
- 12. B. R. Durney, J. W. Roxburgh, Z. Astrophys., 64, 504, 1966.
- 13. B. R. Durney, J. W. Roxburgh, Proc. Roy. Soc., 296, 189, 1967.
- 14. В. В. Папоян, Д. М. Седракян, Э. В. Чубирян, Астрон. м. (в печати), 1971.
- 15. Г. Г. Арутюнян, Д. М. Седракян, Э. В. Чубарян, Астрон. ж. (в печати), 1972.
- 16. D. M. Meltzer, K. S. Thorne, Ap. J., 145, 514, 1966.

412