АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР

АСТРОФИЗИКА

TOM 7

НОЯБРЬ, 1971

выпуск 4

ОБРАЗОВАНИЕ ЛИНИЙ ПРИ НАЛИЧИИ МАГНИТНОГО ПОЛЯ. III. ОБРАЗОВАНИЕ ЗЕЕМАНОВСКОГО ТРИПЛЕТА С НЕРАСЩЕПЛЕННЫМ ВЕРХНИМ УРОВНЕМ. ОЦЕНКА ВЛИЯНИЯ МАГНИТНОГО ПОЛЯ

Х. ДОМКЕ

Поступила 9 июня 1971

Рассматривается точное решение задачи об образовании зеемановского триплета в изотермической атмосфере без учета поглощения в непрерывном спектре. Изучается изменение H-функций в зависимости от напряженности магнитного ноля при допплеровском и лоренцовском частотных профилях переходов. Показывается, что при любых профилях магнитное поле мало влияет на H-функции ($20-25^{0}/_{0}$), причем зависимость от направления магнитного поля и от учета эффекта Фарадея гораздо слабее ($< 2-5^{0}/_{0}$), чем от величины напряженности. Предлагаются два приближенных метода решения задач об образовании линий при наличии магнитного поля: а) приближение конечного поля, б) приближение нулевого поля.

1. Введение. В предыдущей работе настоящей серии [1] было дано общее рассмотрение переноса излучения в полубесконечной атмосфере при многократном рассеянии расщепленных под влиянием однородного магнитного поля спектральных линиях. При этом было показано, что задача об образовании спектральных линий сводится к нахождению скалярных функций источников, связанных непосредственно с населенностями энергетических уровней или зеемановских подуровней атомов. Было отмечено, что в частных случаях достаточно рассматривать одну такую функцию и можно получить решение в явном виде.

В настоящей заключительной статье этой серии подробно рассматриваются точные решения для изотермической атмосферы в случае, когда верхний уровень атомов в магнитном поле не расщепляется ($j_* = 0, j_* = 1$). Считается, что при рассеянии происходит полное лерераспределение энергии по частотам. Основная цель этой статьи состоит в том, чтобы на этом простом примере оценить влияние магнитного поля при образовании линий поглощения.

Отметим, что недавно Д. Е. Рис [2] изучал путем решения уравнения переноса методом дискретных ординат влияние магнитного поля на функции источников зеемановского триплета при учете непрерывного поглощения и допплеровском профиле отдельных переходов в атомах. Оказалось, что под действием магнитного поля возбуждение атомов изменяется сравнительно мало ($\leq 20-25^{\circ}/_{0}$). Эффект Фарадея во внимание не принимался.

Мы будем рассматривать не функции источников, а *H*-функции, которые являются преобразованиями Лапласа от функций источников для изотермической атмосферы. Изучаются случаи допплеровского и лоренцовского частотных профилей переходов. Вначале эффект Фарадея не учитывается. При этом, в частности, подтверждаются выводы Риса независимо от профиля. Учет эффекта Фарадея довольно сильно усложняет картину переноса излучения, но мало меняет *H*-функции.

В заключении предлагаются различные приближенные методы решения задач об образовании линий при действии магнитного поля.

2. Основные формулы. Приведем основные формулы, полученные в [1] применительно к рассматриваемому нами сейчас случаю. При указанных условиях с учетом эффекта Фарадея вектор Стокса $I(0, x, \mu, \varphi)$ излучения безразмерной частоты $x = (\nu - \nu_0)/\Delta \nu$, выходящего из изотермической однородной атмосферы по направлению $s(\mu, \varphi)$ (рис. 1), имеет вид

$$\vec{I}(0, x, \mu, \gamma) = \frac{1}{2\mu} \sum_{i=1}^{4} \lambda_i(x, \gamma) R(z_i) \vec{\Psi}_i^{+ \tau}(x, \gamma) \vec{J} \vec{\Psi}_i(x, \gamma).$$
(1)

Здесь $\Psi_t(x, 1), \Psi_t^+(x, \gamma)$ — биортонормальная система собственных векторов матрицы поглощения $\hat{x}(x, \gamma)$ [1, 3] (см. приложение), $\lambda_i(x, \gamma)$ ее собственные значения, а $z_i = \mu/\lambda_i$. Вектор — оператор \hat{f}^{\dagger} выделяет при применении к вектору Стокса \hat{f} полную интенсивность излучения. Через v_0 обозначена центральная частота зеемановского мультиплета, а Δv — характеристическая ширина линии. Далее

$$R(z) = \int_{0}^{z} d\tau e^{-\tau/z} S(\tau), \qquad (2)$$

где $S(\tau)$ — функция источников и τ — оптическая глубина.

ОБРАЗОВАНИЕ ЛИНИИ ПРИ НАЛИЧИИ МАГНИТНОГО ПОЛЯ. III. 589

Если i — вероятность выживания кванта при элементарном акте рассеяния, а B — функция Планка, не зависящая в нашем случае от оптической глубины, то скалярная функция источников $S(\tau)$ удовлетворяет уравнению [1]

$$S(\tau) = \frac{\lambda}{2} \int_{0}^{\infty} dt K(|\tau - t|) S(t) + (1 - \lambda) B.$$
 (3)

Здесь

а

$$K(\tau) = 2C \int_{-\infty}^{\infty} dx \int_{0}^{2\pi} d\varphi \int_{0}^{1} \frac{d\mu}{\mu} \sum_{i=1}^{4} \vec{f}^{\top} \vec{\Psi}_{i}(x, \gamma) \vec{\Psi}_{i}^{+\top}(x, \gamma) \vec{f} h_{i}^{2}(x, \gamma) e^{-\tau/x_{i}(x, \varphi, \varphi)}$$

$$(4)$$

 $C = \left[\int_{-\infty}^{\infty} dx \int_{0}^{x} d\varphi \int_{-1}^{x} d\mu \vec{f}^{\dagger} \vec{a}(x, \gamma) \vec{f}\right]^{-1}.$ (5)

Рис. 1. Геометрические параметры.

Как показано в [1], выходящее излучение при довольно общих предположениях о распределении источников прямо выражается через *H*-функцию. В частности, для изотермической атмосферы

$$R(z) = \sqrt{1-\lambda} BH(z) z, \qquad (6)$$

т. е. H(z) является преобразованием Лапласа функции источников $S(\tau)$ с точностью до постоянного множителя. Она удовлетворяет нелинейному интегральному уравнению

$$H(z) = 1 + \frac{\lambda}{2} H(z) 2 C \int_{-\infty}^{\infty} dx \int_{0}^{2\pi} d\varphi \int_{0}^{1} d\mu \sum_{i=1}^{1} \vec{J}^{\mathsf{T}} \vec{\Psi}_{i}(x, \gamma) \times \\ \times \vec{\Psi}_{i}^{\mathsf{T}}(x, \gamma) \vec{f}_{i}^{\lambda_{i}^{2}}(x, \gamma) \frac{H(z_{i}(x, \mu, \varphi))}{z^{-1} + z_{i}^{-1}(x, \mu, \varphi)}$$
(7)

и выражается через функцию

$$V(u) = \int_{0}^{\infty} d\tau \cos u\tau K(\tau)$$
 (8)

в замкнутом виде [1, 4 гл. 5]

$$H(z) = \exp\left\{-\frac{z}{\pi}\int_{0}^{\infty} du \frac{\ln\left[1-\lambda V(u)\right]}{1+z^{2}u^{2}}\right\}.$$
 (9)

Формулы (1), (6), (9) вместе с (4) и (8) дают точное решение задачи об образовании линий поглощения в изотермической полубесконечной атмосфере в явном виде.

Ввиду важной роли *Н*-функции интересно исследовать влияние на нее магнитного поля.

3. Функция V(u). Изучим сначала функцию V(u). Без учета эффекта Фарадея $\Psi_i = \Psi_i^+$, а $\Psi_{3,4}^{T} \cdot J = 0$ (см. приложение А). Подставляя (4) в (8), получим

$$V(u; x_{H}, \gamma_{0}) = 2C \int_{-\infty}^{+\infty} dx \int_{0}^{2\pi} d\varphi \int_{0}^{1} d\mu \sum_{t=1}^{2} \frac{\lambda_{t}^{3}(x, \gamma)}{\lambda_{t}^{2}(x, \gamma) + \mu^{2}u^{3}}, \quad (10)$$

где явно указана зависимость этой функции от магнитного расщепления x_H и угла наклона магнитного поля к внешней нормали γ_0 .

Принимая во внимание формулу (5), легко найти, что, $V(0; x_H, \gamma_0) = 1$, и (10) можно переписать в виде

$$V(0; x_{H}, \gamma_{0}) = 1 - u^{2} 2C \int_{-\infty}^{+\infty} dx \int_{0}^{2\pi} d\phi \int_{0}^{1} d\mu \sum_{i=1}^{2} \frac{\mu^{2} \lambda_{i}(x, \gamma)}{\lambda_{i}^{2}(x, \gamma) + \mu^{2} u^{2}}$$
(11)

Формула (11) более удобна для вычислений $V(u; x_H, \gamma_0)$ при малых u.

ОБРАЗОВАНИЕ ЛИНИИ ПРИ НАЛИЧИИ МАГНИТНОГО ПОЛЯ. III. 591

Подынтегральные выражения в (10) и (11) — четные функции частоты x и угла γ , а поскольку (рис. 1)

$$\cos\gamma = \mu \cos\gamma_0 + \sqrt{1-\mu^2} \sin\gamma_0 \cos\varphi,$$

они зависят только от соз φ . При "продольном" поле, т. е. при $\gamma_0 = 0$, эти выражения от φ не зависят, а при $\gamma_0 = \pi/2$ интегрирование по φ можно производить от 0 до $\pi/2$, умножая результат на 4.

В предельном случае нулевого магнитного поля функция V, т. е. $V(u; 0, 0) = V_0(u)$, подробно изучена [4]. Ее удается свести к однократному интегралу и получить асимптотические разложения для больших и малых u. Можно показать, что при наличии магнитного поля имеет место следующее асимптотическое соотношение: при $u \to 0$

 $[1 - V(u, x_{H}, \gamma_{0})]_{ss} = v(x_{H}, \gamma_{0}) [1 - V_{0}(u)]_{ss}, \quad v(0, \gamma_{0}) = 1.$ (12)

В частности, при допплеровском профиле [4, 5]

$$[1 - V_0^D(u)]_{as} = \frac{\sqrt{\pi}}{4} \frac{u}{\sqrt{\ln \frac{1}{u}}},$$
 (13)

а при лоренцовском

$$[1 - V_0^L(u)]_{ss} = \frac{\sqrt{2}}{3}\sqrt{u}.$$
 (14)

Сравнительно легко получить $v(x_H, \tilde{\gamma}_0)$ для бесконечно сильного поля при $\gamma_0 = 0$ (см. приложение Б). Для допплеровского профиля величина $v(\infty, 0) = 3/2$, а для лоренцовского $v(\infty, 0) = 1,200$.

Как показывают расчеты, $V_0(u)$ и $V(u; \infty, 0)$, являются пределами, в которых заключена $V(u; x_H, 0)$. В частности, $1 \le v(x_H, 0) \le \le v(\infty, 0)$. От угла наклона γ_0 зависимость $V(u; x_H, \gamma_0)$ очень слабая (см. ниже).

Асимптотики (12)—(14) выражают дальнодействующие характеристики процесса многократного рассеяния. Поэтому предыдущие формулы показывают, что магнитное поле лишь очень мало действует на них.

Вычисления функций V были произведены по формулам (10) и (11) при использовании для интегралов по μ и x квадратурных формул Гаусса порядка от 10 до "16. При допплеровском контуре интегралы по частоте были обрезаны при x = 7. Для лоренцовского профиля интеграл по x состоял из интегралов по интервалам [0, 10] [10, 100], [100, ∞]. Интегрирование по азимуту ϕ было произведено при помощи квадратурной формулы Гаусса-Чебышева порядка 3. 6—280

Х. ДОМКЕ

4. *Н-функция. Н*-функция при заданном частотном профиле переходов зависит от параметров λ , x_H , γ_0 . Желая подчеркнуть зависимость от x_H и γ_0 , будем обозначать ее и через $H(z; x_H, \gamma_0)$. Из формулы (9) следует, что значения *Н*-функций находятся в пределах

$$H(0; x_{H}, \gamma_{0}) = 1, \quad H(\infty; x_{H}, \gamma_{0}) = \frac{1}{\sqrt{1-\lambda}},$$

при любых х_н и ү₀.

Для последующей оценки влияния магнитного поля найдем асимптотики при $z \to \infty$. При помощи (9) и (13) из (14), точно так же, как в работе [5] (см. также [4], гл. 5), получим для больших z

$$H(z; x_{H}, \gamma_{0}) = \frac{h(q)}{\sqrt{1-\lambda}},$$
 (15)

где

$$\ln h(q) = -\frac{1}{\pi} \int_{1}^{\infty} dt \, \frac{\ln (1+qt^*)}{1+t^2} \tag{16}$$

$$q = \frac{\lambda}{1-\lambda} \left[1 - V\left(\frac{1}{z}; x_{H}, \gamma_{0}\right) \right]_{as} = \frac{\lambda v \left(x_{H}, \gamma_{0}\right)}{1-\lambda} \left[1 - V_{0}\left(\frac{1}{z}\right) \right]_{as},$$

$$x^{D} = 1, \quad x^{L} = \frac{1}{2}.$$
(17)

Функции $h^{D}(q) = h^{L}(q)$ изучены и табулированы [4]. При малых q справедливы разложения

$$\ln h^{D}(q) = \frac{1}{\pi} q \ln q - \frac{q}{\pi} - \frac{1}{4} q^{2} + \dots, \qquad (18)$$

$$\ln h^{L}(q) = -\frac{q}{\sqrt{2}} - \frac{1}{\pi} q^{2} \ln q - \frac{q^{2}}{4} + \dots$$
 (19)

Кроме того

$$h\left(\frac{1}{q}\right) = \left| \begin{array}{c} \bar{q} & h(q) \end{array} \right|$$
(20)

При помощи (17)—(20) и (13), (14) из (16) получаем асимптотики H-функции при $z \gg 1$ в двух предельных случаях

ОБРАЗОВАНИЕ ЛИНИИ ПРИ НАЛИЧИИ МАГНИТНОГО ПОЛЯ. Ш. 593

(21)

$$H^{D}(z; x_{H}, \tau_{0}) = \frac{1}{\sqrt{1-\lambda}} \left[1 - v^{D}(x_{H}, \tau_{0}) \frac{\lambda \sqrt{\ln z}}{(1-\lambda)4\sqrt{\pi z}} \right],$$
$$\frac{v^{D} \lambda \sqrt{\pi}}{4z \sqrt{\ln z}} \ll 1 - \lambda,$$

$$H^{L}(z; x_{H^{*}} \gamma_{0}) = \frac{1}{\sqrt{1-\lambda}} \left[1 - v^{L}(x_{H^{*}} \gamma_{0}) \frac{\lambda}{3(1-\lambda)\sqrt{z}} - \frac{v^{L}\lambda\sqrt{2}}{3\sqrt{z}} \ll 1-\lambda \right]$$

если

если

$$H(z; x_{H^{\prime}}, \gamma_{0}) \sim \frac{1}{|v| v(x_{H^{\prime}}, \gamma_{0})} H(z; 0, 0) \sim \frac{1}{|v| v(x_{H^{\prime}}, \gamma_{0})} \frac{1}{|v| (|x_{H^{\prime}}, \gamma_{0})|} \frac{1}{|v| (|x_{H^{\prime}}, \gamma_{0})|},$$
$$\frac{vh}{1-h} \left|1 - V_{0}\left(\frac{1}{z}\right)\right|_{as} \gg 1 - h.$$

если

Значения функций $H(z; x_H, \tilde{\gamma}_0)$ были получены по формуле (9), где промежуток интегрирования по z разбивался на две части (0, 1), (1, ∞) и применялась формула Гаусса порядка 20.

Сравнение вычисленных таким способом *H*-функций в частном случае нулевого поля с содержащимися в таблицах в [5] и [6] показало, что при $1 - i = 10^{-2}$ различие не больше $0.1^{\circ}/_{0}$. Ошибка растет, если *i* ближе к единице.

В табл. 1 даются значения *H*-функций для допплеровского и лорендовского профилей при $\lambda = 0.9$ и $\gamma_0 = 0$ и нескольких x_H . Кроме того, на рис. 2 приведены графики *H*-функций при $\lambda = 0.99$.

5. Влияние магнитного поля. Используем теперь полученные асимптотики и таблицы *Н*-функций для оценки влияния магнитного поля на них. Введем величины

$$\Delta(z; x_{H}, \tilde{\gamma}_{0}) = \frac{|H(z; 0, 0) - H(z; x_{H}, \tilde{\gamma}_{0})|}{H(z; 0, 0)}, \quad (23)$$

характеризующие, это влияние. В табл. 2 приведена величина Δ для $\lambda = 0.99$. Она возрастает с ростом x_H и λ . При $\lambda = 1$ и $x_H = \infty$ эта

х. домке

Таблица 1

Н-ФУНКЦИИ ДЛЯ ДОППЛЕРОВСКОГО И ЛОРЕНЦОВСКОГО ПРОФИЛЕЙ ПРИ Д=0.9. 70=0 И ЗЕЕМАНОВСКИХ РАСЩЕПЛЕНИЯХ ***

						~ 1			
×	HD				H ^L .				
TH	0.0	1.0	2.5	00	0.0	3.0	10.0	80	
0.0	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	
0.1	1.122	1.104	1.095	1.094	1.081	1.068	1.065	1.063	
0.2	1.206	1.178	1,161	1.159	1.135	1.114	1.109	1.105	
0.3	1.276	1.241	1.218	1.215	1.178	1.152	1.145	1.141	
0.4	1.337	1.296	1.268	1.265	1.215 .	1.186	1.177	1.171	
0.5	1.392	1.347	1.314	1.310	1.248	1.217	1.205	1.199	
0.6	1.442	1.393	1.355	1.351	1.278	1.244	1.231	1.224	
0.8	1.530	1.475	1.431	1.425	1.330	1.294	1.277	1.269	
1.0	1.606	1.547	1.497	1.490	1.375	1.337	1.317	1.307	
1.5	1.761	1.695	. 1.636	1.626	1.464	1.425	1.399	1.387	
2.0	1.881	1.811	1.746	1.734	1.534	1.496	1.464	1.450	
3.0	2.058	1.988	1.916	1.901	1.640	1.604	1.566	1.548	
4.0	2.185	2.116	2.042	2.026	1.719	1.686	1.644	1.623	
5.0	2.283	2.216	2.141	2.124	1.782	1.752	1.707	1.683	
10	2.559	2.505	2.435	2.417 ·	1.981	1.961	1.913	1.878	
15	2.695	2.605	2.586	2.569	2.096	2.081	2.036	1.994	
20	2.777	2.739	2.680	2.665	2.175	2.165	2.122	2.075	
30	2.874	2.844	2.794	2.782	2.283	2.277	2.240	2.186	
50	2.966	2.946	2.906	2.898	2.411	2.408	2.380	2.322	
100	3.050	3.038	3.012	3.007	2.566	2.566	2.549	2.487	
150	3.082	3.073	3.054	3.050	2.646	2.647	2.635	2.575	
200	3.099	3.093	3.077	3.074	2.698	2.699	2.690	2.632	
300	3.118	3.113	3.102	3.099	2.765	2.765	2.760	2.702	
500	3.134	3.132	3.124	3.122	2.838	2.839	2.835	2.785	
1000	3.147	3.146	3.142	3.141	2.919	2.920	2.919	2.877	
00	3.162	3.162	3.162	3.162	3.162	3.162	3.162	3.162	
		1							

величина, по-видимому, наибольшая. Из формул (23) и (22) следует, что при $z \gg 1$, $\lambda = 1$

$$\Delta^{D}(z; \infty, 0) = 1 - \frac{1}{\sqrt{v^{D}(\infty, 0)}} = 0.1835,$$

$$\Delta^{L}(z; \infty, 0) = 1 - \frac{1}{\sqrt{v^{L}(\infty, 0)}} = 0.0873.$$
(24)

Как видно из табл. З, влияние угла наклона магнитного поля то го-

раздо меньше. Оно достигает $2^{9}/_{0}$ при $1-n = 10^{-2}$ и уменьшается при уменьшении л.

Таким образом, магнитное поле сравнительно мало влияет на H-функции и, по-видимому, на функцию источников $S(\tau)$. Максимальное отклонение $H(z; x_H, \tilde{\tau}_0)$ от H(z; 0, 0) не больше $20-25 \, \sqrt[6]{0}$ для допплеровского профиля и немного меньше для лоренцовского. Эта оценка хорошо согласуется с результатами Риса [2], о которых говорилось выше.

Таблица 2

величины	$\left \frac{H(z; 0, 0) - H(z; x_{H}, 0)}{H(z; 0, 0)}\right \mathcal{A}\Lambda \mathcal{A} = 0.99 \text{ (s}$				
x _H	0.1	1	10	100	1000
D_{∞}^{1}	1.93 3.16	5.31 10.68	4.79 13.51	1.57 6.29	0.21
L_{∞}^{3}	1.46 1.98	3.30 6.17	1.26 8.09	0.15 7.24	0.12 5.56

Применим полученные таблицы *Н*-функций для построения контуров линий поглощения, образующихся в изотермической атмосфере. При помощи (1), (6) и (А1) найдем параметры Стокса выходящего излучения в виде

$$\begin{pmatrix} Q(0, x, \mu, \varphi) \\ (V(0, x, \mu, \varphi) \\ V(0, x, \mu, \varphi) \end{pmatrix} = \frac{1}{2} B \sqrt{1-\lambda} \begin{pmatrix} \frac{(a-c)}{d} (H(z_1) - H(z_2)) \\ \frac{3 \sqrt{2} b}{d} (H(z_1) - H(z_2)) \\ \end{pmatrix},$$
(25)
$$U(0, x, \mu, \varphi) \qquad 0$$

где

 $I = I_1 + I_2, \quad Q = I_1 - I_2.$

На рис. З приведено несколько примеров контуров линий поглощения. Эти примеры подтверждают вывод о хорошей точности приближения нулевого поля. Учет континуума должен еще улучшить это приближение.

величины		H(z; x _H	0) - H(z) $H(z; x_{H}, 0)$	для л	ДЛЯ Л =0.99 (в °/о)		
	x _H	0.1	1	10	100	1000	
	D 2.5	0.00	0.80	1.95	0.33	0.05	
	<i>L</i> 3	0.50	0.00	0.55	0.06	0.02	

6. Учет эффекта Фарадея. Эффект Фарадея, как уже говорилось выше, усложняет процесс многократного рассеяния, хотя, как мы увидим в дальнейшем, он незначительно меняет H-функции. Учет магнитного вращения приводит к тому, что некоторые из собственных значений полной матрицы поглощения становятся комплексными. При помощи (4) и приведенных в приложении В собственных значений и собственных векторов Ψ_e , Ψ^+ втой матрицы получаем для ядерной функции интегрального уравнения (3):

$$K(\tau; x_{H}, \gamma_{0}) = 4C \int_{0}^{\infty} dx \int_{0}^{2\pi} d\gamma \int_{0}^{1} \frac{d\mu}{\mu} \left\{ \frac{C_{1}^{2}(x,\gamma)}{N^{2}(x,\gamma)} \right[\sum_{e=1}^{2} e^{-\lambda_{e}(x,\gamma)\tau/\mu} \lambda_{e}^{2}(x,\gamma) \right] + \\ + 2\left(1 - \frac{C_{1}^{2}(x,\gamma)}{N^{2}(x,\gamma)}\right) e^{-L_{3}(x,\gamma)\tau/\mu} \left[(L_{3}^{2}(x,\gamma) - L_{4}^{2}(x,\gamma)) \cos\left(\frac{L_{4}(x,\gamma)\tau}{\mu}\right) + \\ + 2L_{3}(x,\gamma) L_{4}(x,\gamma) \sin\left(\frac{L_{4}(x,\gamma)\tau}{\mu}\right) \right] \right\}.$$
(26)

Отсюда видно, что эффект Фарадея приводит к появлению осциллирующего члена в вероятности передачи возбуждения на расстояние т. Подставляя в (26) формулу (8), найдем

$$V(u; x_{H}, \gamma_{0}) = 4C \int_{0}^{\infty} dx \int_{0}^{2\pi} d\varphi \int_{0}^{1} d\mu \left\{ \frac{C_{1}^{2}}{N^{2}} \sum_{e=1}^{2} \frac{\lambda_{e}^{2}}{\lambda_{e}^{2} + \mu^{2}u^{2}} + \left(1 - \frac{C_{1}^{2}}{N^{2}}\right) L_{3} \left[\frac{L_{3}^{2} + L_{4}^{2} + 2L_{4}\mu u}{(L_{4} + \mu u)^{2} + L_{3}^{2}} + \frac{L_{3}^{2} + L_{4}^{2} - 2L_{4}\mu u}{(L_{4} - \mu u)^{2} - L_{3}^{2}} \right] \right\}$$

$$(27)$$

или

$$V(u; x_{H}, \gamma_{0}) = 1 - u^{2} 4C \int_{0}^{\infty} dx \int_{0}^{2\pi} d\phi \int_{0}^{1} d\mu \left\{ \frac{C_{1}^{2}}{N^{2}} \sum_{l=1}^{2} \frac{\lambda_{e}}{\lambda_{e}^{2} + \mu^{2} u^{2}} + \left(1 - \frac{C_{1}^{2}}{N^{2}}\right) L_{3} \left[\frac{1}{(L_{4} + \mu u)^{2} + L_{3}^{2}} + \frac{1}{(L_{4} - \mu u)^{2} + L_{3}^{2}} \right] \right\}.$$
(28)

Нетрудно убедиться в том, что для нулевого $(x_{\mu} \rightarrow 0)$ и бесконечно сильного поля $(x_H \rightarrow \infty)$ формулы (27) и (28) переходят в (10) и (11) соответственно.

Н-функцию опять находим по формуле (9). Однако она имеет теперь в отличие от случая пренебрежения эффектом Фарадея особенности на комплексной плоскости z (в левой полуплоскости) не только на вещественной оси, но и вне ее. В выражение для выходящего излучения входит Н-функция и при комплексном аргументе. При помощи (1), (10) и (В1), (В5) получаем выражения для параметров Стокса в виде

$$\begin{pmatrix} I(0, x, \mu, \varphi) \\ Q(0, x, \mu, \varphi) \\ V(0, x, \mu, \varphi) \\ U(0, x, \mu, \varphi) \end{pmatrix} =$$

 $= \frac{B\sqrt{1-\lambda}}{2N^{4}(x,\gamma)} \begin{pmatrix} C_{1}^{2}(x,\gamma)[H(z_{1}) + H(z_{2})] - 2c_{3}^{2}(x,\gamma)H_{1}(z_{3}) \\ C_{1}(x,\gamma)D_{1}(x,\gamma)[H(z_{1}) - H(z_{2})] + 2c_{3}(x,\gamma)D_{2}(x,\gamma)H_{2}(z_{3}) \\ C_{1}(x,\gamma)D_{2}(x,\gamma)[H(z_{2}) - H(z_{1})] + 2c_{3}(x,\gamma)D_{1}(x,\gamma)H_{2}(z_{3}) \\ - C_{1}(x,\gamma)c_{3}(x,\gamma)[2H_{1}(z_{3}) - H(z_{1}) - H(z_{2})] \end{pmatrix},$

(29)

Рис. 3. Параметры Стокса выходящего в линиях излучения изотермической атмосферы (B = 1, $\gamma_0 = 0$) при допплеровском (α) и лоренцовском (δ) профилях. ---- приближение нулевого поля, — — без учета эффекта Фарадея, ···· — с учетом эффекта Фарадея. ОБРАЗОВАНИЕ ЛИНИИ ПРИ НАЛИЧИИ МАГНИТНОГО ПОЛЯ. 111. 599

Здесь z_1, z_2 — вещественны, а $z_3 = \mu/(L_3 + iL_4)$ — комплексно,

$$H_{1}(z_{3}) = \operatorname{Re} H(z_{3}), \quad H_{2}(z_{3}) = \operatorname{Im} H(z_{3}), \\ D_{1} = DD^{*} - BB^{*}, \quad D_{2} = D^{*}B + DB^{*}.$$
(30)

Все остальные величины определены в приложении В.

Расчеты показывают, что функция $V(u; x_H, \tau_0)$ почти не изменяется от учета эффекта Фарадея, а тем самым и *H*-функция изменяется при этом не больше чем на $1-2^{0}/_{0}$. По-видимому, и функция источников $S(\tau)$ довольно нечувствительна к этому эффекту. Следовательно, при вычислении функций V и H можно с хорошей точностью не учитывать эффекта Фарадея. В частности, для комплексных *z H*-функцию можно получить или по формуле (9) (с функцией V без учета эффекта Фарадея) или по формуле

$$H(z) = \left[1 - 2\lambda C \int_{0}^{\infty} dx \int_{0}^{2\pi} d\mu \int_{0}^{1} d\phi \sum_{e=1}^{2} \frac{i_e(x, \tau) H(z_e) z}{z + z_e}\right]^{-1},$$
 (31)

которая следует из (7). В нее входит H(z) только при вещественных значениях аргумента.

На рис. З изображены примеры контуров линий, построенных при точном учете эффекта Фарадея. Те же профили без такого учета совпадают с ними в пределах точности построения графика.

7. Заключение. Таким образом, мы показали, что в простейшем случае изотермической атмосферы *Н*-функции при разных частотных профилях переходов слабо зависят от магнитного поля, причем зависимость от угла наклона и от учета эффекта Фарадея гораздо слабее, чем от величины напряженности.

В более общих случаях (не изотермическая атмосфера, непрерывное поглощение) в выражения для параметров Стокса выходящего из атмосферы излучения входит не просто H(z), а функция R(z) (см. [1]). Она выражается во многих случаях через H(z). Поэтому можно предложить следующие приближения при решении задач об образовании линий поглощения при наличии магнитного поля и учета эффекта Фарадея: а) приближение конечного поля, когда H-функция вычисляется в пренебрежении эффектом Фарадея и наклоном магнитного поля (максимальная ошибка $\leq 2-5 \, {}^{0}_{0}$); б) приближение нулевого поля, при котором H(z) заменяется на соответствующую функцию для нулевого поля (максимальная ошибка $\leq 20-25 \, {}^{0}_{0}$). Подробные таблицы таких функций можно найти в [4-6]. Указанные погрешности уменьшаются при уменьшении λ . Специфическое влия-

ние магнитного поля на образование триплета тогда будет проявляться в аргументах функций R(z), при этом для комплексных аргументов ее можно находить при помощи формулы (31).

Автор выражает искреннюю благодарность Д. И. Нагирнеру и В. В. Иванову за многочисленные замечания и помощь при подготовке настоящей серии к печати.

Центральный институт астрофизики Потедам, ГДР

Приложения

А) Собственные значения и собственные векторы матрицы поглощения без учета эффекта Фарадея. В этом случае матрица поглощения α в представлении $(I_1, I_2, V/V2, U/V2)$ эрмитова [10,7]. Собственные векторы в системе линейных поляризаций параллельно к осям X и Y (рис. 1) имеют вид (см. 7)

$$\tilde{\Psi}_{1,2}(x,\gamma) = \frac{1}{2d} \begin{pmatrix} d \pm (a-c) \\ d \mp (a-c) \\ \pm 4b \\ 0 \end{pmatrix},$$
(A1)

$$\vec{\Psi}_{3}(x,\gamma) = \frac{1}{d} \begin{pmatrix} 2b \\ -2b \\ (c-a) \\ 0 \end{pmatrix}, \qquad \vec{\Psi}_{4}(x,\gamma) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \qquad \vec{\Psi}_{l}^{\top} \vec{\Psi}_{l} = \delta_{ll},$$

а собственные значения

$$\lambda_{1,2} = \frac{1}{2} (a + c \pm d), \quad \lambda_3 = \lambda_4 = \frac{1}{2} (a + c).$$
 (A2)

Здесь

$$a(x, \gamma) = \frac{1}{2} (k_{+1}(x) + k_{-1}(x)) \cos^2 \gamma + k_0 (x) \sin^2 \gamma,$$

$$b(x, \gamma) = -2^{-3/2} (k_{+1}(x) - k_{-1}(x)) \cos \gamma,$$
 (A3)

$$c(x) = \frac{1}{2} (k_{+1}(x) + k_{-1}(x)), \quad d = [(a - c)^2 + 8b^2]^{1/2},$$

ОБРАЗОВАНИЕ ЛИНИЙ ПРИ НАЛИЧИИ МАГНИТНОГО ПОЛЯ. Ш. 601

а $k_m(x)$ — частотный профиль переходов при изменении магнитного кнантового числа на m [11]. Для зеемановского триплета имеем $k_m(x) = k(x - mx_H), m = 0, \pm 1.$

Б) Функция V для бесконечно сильного поля. В случае $x_H \rightarrow \infty$ интеграл по частоте x в (10) и (11) распадается на сумму трех интегралов, соответствующих каждой из зеемановских компонент триплета. Собственные значения в диапазонах частот z- и π -компонент имеют вид

$$\lambda_1^{\pi}(x,\gamma) = rac{1}{2} k(x) (1 + \cos^2 \gamma), \quad \lambda_2^{\pi}(x,\gamma) = 0,$$

 $\lambda_1^{\pi}(x,\gamma) = k(x) (1 - \cos^2 \gamma), \quad \lambda_2^{\pi}(x,\gamma) = 0,$
(B1)

где х считается от центра каждой из компонент. Учитывая (Б1), из (10) и (11) получаем при ₁₀ = 0

$$V(u; \infty, 0) = 8\pi C \int_{0}^{\infty} dx \int_{0}^{1} d\mu k^{3}(x) \left\{ \frac{\frac{1}{4} (1 + \mu^{2})^{3}}{\frac{1}{4} k^{3}(x) (1 + \mu^{2})^{2} + \mu^{2} u^{2}} + \frac{1}{4} (52) \right\}$$

$$-\frac{(1-\mu^2)^3}{k^2(x)(1-\mu^2)^2+\mu^2u^2}$$

$$V(u; \infty, 0) = 1 - u^{2}8\pi C \int_{0}^{\infty} dx \int_{0}^{1} d\mu k(x) \mu^{2} \left\{ \frac{(1+\mu^{2})}{\frac{1}{4}k^{2}(x)(1+\mu^{2})^{2} + \mu^{2}u^{2}} + \frac{(1+\mu^{2})^{2}}{(1+\mu^{2})^{2} + \mu^{2}} + \frac{(1+\mu^{2})^{2}}{(1+\mu^{2})^$$

$$+\frac{(1-\mu^2)}{k^2(x)(1-\mu^2)^2+\mu^2u^2}$$

Постоянная С независима от магнитного поля. Легко получить из (5) при помощи формул приложения А, что

$$C = \frac{1}{8\pi} \left[\int_{-\infty}^{+\infty} dx k(x) \right]^{-1}$$
 (E4)

Устремляя и к нулю, из (БЗ) находим (12), где коэффициенты $v(\infty, 0)$ имеют вид

$$v^{D}(\infty, 0) = \frac{3}{2}, \quad v^{D}_{*}(\infty, 0) = v^{D}_{*}(\infty, 0) = v^{D}(\infty, 0),$$

$$v^{L}(\infty, 0) = \frac{1}{3}(v^{L}_{*}(\infty, 0) + v^{L}_{*}(\infty, 0)) = 1,2000.$$
(B5)

Здесь $v_{\pi,\sigma}$ относятся к функциям V, соответствующим рассеянию излучения в одной зеемановской компоненте. Для лоренцовского профиля получаем

$$v_{\pi}^{L}(\infty, 0) = \frac{9}{4} \int_{0}^{1} d\mu \sqrt{\mu(1-\mu^{3})} = \frac{9}{5} \frac{\sqrt{2} \pi^{3/2}}{\Gamma^{2}(1/4)} = 1.0784,$$

$$v_{\pi}^{L}(\infty, 0) = \frac{9}{4\sqrt{2}} \int_{0}^{1} d\mu \sqrt{\mu(1+\mu^{3})} = 1.2609.$$
(E6)

В) Собственные значения и собственные векторы матрицы поглощения при учете эффекта Фарадея. Магнитное вращение, обусловленное эффектом Фарадея, можно описывать антисимметричной матрицей a_F [8, 3], которая добавляется к симметричной матрице поглощения \hat{a}_{r} рассматриваемой в приложении А. Полученная таким образом полная матрица поглощения $\hat{a} + \hat{a}_{F}$ имеет следующую систему биортонормальных комплексных собственных векторов в указанном в приложении А представлении (см. [8, 3]):

$$\vec{\Psi}_{1} = \frac{1}{N} \begin{pmatrix} DD^{*} & BB^{*} \\ BB^{*} & DD^{*} \\ -\frac{1}{\sqrt{2}} (DB^{*} + D^{*}B) \\ \frac{i}{\sqrt{2}} (DB^{*} - D^{*}B) & \vec{\Psi}_{2} = \frac{1}{N} \begin{pmatrix} \frac{1}{\sqrt{2}} (DB^{*} + D^{*}B) \\ \frac{i}{\sqrt{2}} (DB^{*} - D^{*}B) \\ \frac{i}{\sqrt{2}} (DB^{*} - D^{*}B) & \frac{i}{\sqrt{2}} (DB^{*} - D^{*}B) \end{pmatrix},$$

$$\frac{DB}{\Psi_{3}} = \frac{1}{N} \begin{pmatrix} -D^{*}B \\ -D^{*}B \\ \frac{1}{\sqrt{2}} (DD^{*} - BB^{*}) \\ \frac{-i}{\sqrt{2}} (DD^{*} + BB^{*}) \end{pmatrix}, \quad \vec{\Psi}_{4} = \frac{1}{N} \begin{pmatrix} 1 \\ \sqrt{2} (DD^{*} - BB^{*}) \\ \frac{-i}{\sqrt{2}} (DD^{*} + BB^{*}) \end{pmatrix}, (B1)$$

образование линия при наличии магнитного поля. 11. 603

$$\vec{\Psi}_{\bullet}^{+} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix} \vec{\Psi}_{\bullet},$$

где

$$D(x, \gamma) = \frac{1}{2} \sin^{2} \gamma (2s_{0}(x) - s_{\pm 1}(x) - s_{\pm 1}(x)) + p(x, \gamma),$$

$$B(x, \gamma) = (s_{\pm 1}(x) - s_{\pm 1}(x)) \cos \gamma,$$

$$N(x, \gamma) = |D^{2}(x, \gamma) + B^{2}(x, \gamma)|,$$

$$p(x, \gamma) = \left|\frac{1}{4} \sin^{4} \gamma (2s_{0}(x) - s_{\pm 1}(x) - s_{\pm 1}(x))^{2} + B^{2}(x, \gamma)\right|^{1/2},$$

$$s_{m}(x) = s(x - mx_{H}), \quad m = 0, \pm 1,$$

$$s(x) = k(x) + 2i\delta(x).$$

(B2)

Величины i(x) описывают изменение ковффициента преломления внутри зеемановской компоненты в зависимости от частоты. Они были введены Д. Н. Рачковским [8] и табулированы в [9]. Для рассматриваемых в настоящей работе профилей Допплера и Лоренца они имеют вид

$$\delta^{D}(x) = -\frac{1}{\sqrt{\pi}} e^{-x^{2}} \int_{0}^{x} dt e^{t^{2}}, \qquad \delta^{L}(x) = -\frac{1}{2} \frac{x}{x^{2}+1}.$$
(B3)

Собственные значения λ_e полной матрицы поглощения даются, согласно [8], формулами

$$\lambda_{1,2}(x,\gamma) = \frac{1}{2} \left[k_{+1}(x) + k_{-1}(x) + \frac{1}{2} \sin^2 \gamma \left(2k_0(x) - k_{+1}(x) - k_{-1}(x) \right) \pm \operatorname{Re} p(x,\gamma) \right],$$

$$(x,\gamma) = L(x,\gamma) + iL(x,\gamma)$$

 $\lambda_{3,4}(x,\gamma) = L_3(x,\gamma) \pm iL_4(x,\gamma),$ rge

$$L_{3}(x,\gamma) = \frac{1}{2} (\lambda_{1}(x,\gamma) + \lambda_{2}(x,\gamma)), \quad L_{4}(x,\gamma) = \operatorname{Im} p(x,\gamma).$$

Применяя оператор полной интенсивности \tilde{J}^{τ} к собственным векторам $\tilde{\Psi}_{l}$, получаем

$$NJ^{T}\Psi_{l} = C_{l}, \quad l = 1,..., 4,$$
 (B5)

(B4)

где

$$C_1 = C_2 = (DD^* + BB^*), \quad C_3 = C_4 = (DB^* - D^*B) = -ic_3,$$

Имеют место соотношения

$$\vec{J}^{\mathsf{T}}\vec{\Psi}_{e}^{+} = \vec{J}^{\mathsf{T}}\vec{\Psi}_{e}$$

(B6)

(B7)

И

$$\frac{1}{N^2}(C_1^2+C_2^2)=1,$$

которые используются в тексте.

LINE FORMATION IN MAGNETIC FIELD. III. FORMATION OF A ZEEMAN – TRIPLET WITH UNSPLITTED UPPER LEVEL. ESTIMATE OF THE INFLUENCE OF THE MAGNETIC FIELD

H. DOMKE

The exact solution of the problem of formation of a Zeeman – triplet in an isothermic atmosphere without absorbtion in the continuous spectrum is considered. The dependence of the H-functions on magnetic field is studied for Doppler and Lorentz frequency profiles of transitions. It is shown, that for any profile the magnetic field has only a small influence on the H-functions ($\leq 20-25^{\circ}/_{0}$). They are considerably less dependent on the Faraday effect and on the direction of the magnetic field ($\leq 2-5^{\circ}/_{0}$) than on its absolute magnitude. Two methods of approximate solution for problems of line formation in a magnetic field are proposed: a) finite field approximation, b) zero field approximation.

ЛИТЕРАТУРА

1. Х. Домке, Астрофизика, 7, 39, 1971.

- 2. D. E. Rees, Solar Physics, 10, 268, 1969.
- 3. Д. Н. Ричковский, Изв. КрАО, 37, 56, 1967.
- 4. В. В. Иванов, Теория переноса излучения и спектры небесных тел, М., 1969.
- 5. В. В. Иванов, Д. И. Нашрнер, Астрофизика, 1, 143, 1965.
- 6. R. F. Warming, Ap. J., 159, 593, 1970.
- 7. Д. Н. Рачковский, Изв. КрАО, 36, 3, 1967.
- 8. Д. Н. Ричковский, Изв. КрАО, 27, 148, 1962.
- 9. J. M. Beckers, Solar Physics, 9, 372, 1969.
- 10. W. Unno, P. A. S. Japan, 8, 108, 1957.
- 11. Х. Домке, Астрофизика. 5, 525, 1969.