АСТРОФИЗИКА

TOM 7

МАЙ, 1971

ВЫПУСК 2

краткие сообщения

ПОЛЯРИМЕТРИЧЕСКИЕ И ФОТОМЕТРИЧЕСКИЕ НАБЛЮДЕНИЯ ВСПЫШЕК EV LAC

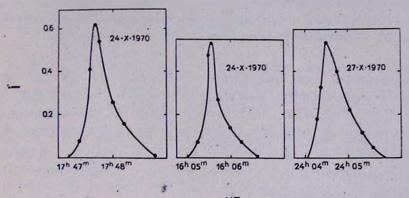
В Бюраканской обсерватории с 9 июня по 11 августа и с 21 сентября по 6 ноября 1970 г. с помощью влектрополяриметра с быстровращающимся поляризационным модулятором [1], установленного на 16" рефлекторе, наблюдалась звезда EV Lac.

В качестве фотоприемника использовался фотовлектронный умножитель типа ФЭУ-79 с мультищелочным фотокатодом.

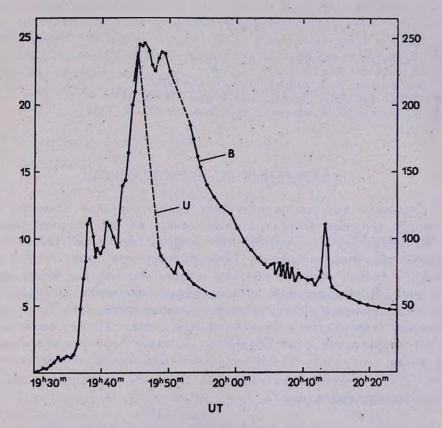
Всего звезда EV Lac наблюдалась в течение 95 часов. За это время было зарегистрировано четыре вспышки в синем участке спектра ($\lambda_{\rm opt} \sim 4500~{\rm \AA}$). При определении амплитуды этих вспышек дополнительный световой поток от компонента звезды EV Lac учитывался методом, описанным в [2].

Обработка поляриметрических наблюдений звезды EV Lac показала, что как в нормальном состоянии, так и во время трех вспышек с амплитудами $\Delta m = 0^{\rm m}45$, $0^{\rm m}47$, $0^{\rm m}5$ и вспышек c $\Delta m = 0^{\rm m}6$, $0^{\rm m}75$, которые наблюдались во время международной кампании (с 23 августа по 9 сентября 1970 г.) [3], степень поляризации находилась в пределах ошибок измерений ($\sigma_P = \pm 0.4$ %, $\sigma_Q = \pm 5$ °).

Кривые блеска новых вспышек приведены на рис. 1, где по оси абсцисс отложено мировое время, а по оси ординат — величина, $i=((n_{\rm uc}/n_{\rm nop})-1)$, представляющая собой поток избыточного излучения, выраженный в единицах потока звезды в нормальном состоянии.


1 октября 1970 г. звезда EV Lac вспыхнула на 3^m 55 с продолжительностью вспышки около 3.5 часов. Помимо наблюдений в синих лучах, охватывающих всю вспышку, нам удалось наблюдать вспышку также в ультрафиолетовых лучах ($I_{2\phi\phi} \sim 3700 \, \text{Å}$), около максимума со

стороны нисходящей ветви. Амплитуда вспышки в этих лучах достигла 4^m3 . После дополнения кривой блеска вспышки до предполагаемого максимума амплитуда вспышки в ультрафиолетовых лучах оценивается в 6^m0 (рис. 2), которая, по-видимому, может отличаться от реального значения максимальной амплитуды.


Такая большая по амплитуде и по продолжительности времени вспышка наблюдалась у звезды EV Lac впервые. Как видно из рис. 2, немонотонное возрастание и падение интенсивности и затем возникновение второй вспышки (на нисходящей ветви) являются весьма необычными для кривых блеска подобных звезд.

Результаты поляриметрических наблюдений этой вспышки приведены в табл. 1, где даны моменты наблюдения поляризации, значения i, соответствующие значения степени поляризации P и направления плоскости поляризации Θ . Из табл. 1 видно, что степень поляризации в интерввле 4.6 < i < 8.0 (во время быстрого подъема) значительна. При i > 8.0 до максимума, где возрастание интенсивности происходит сравнительно медленно, и после максимума, до i > 10, значение поляризации уменьшается почти в два раза. На нисходящей ветви, перед второй вспышкой в интервале 10.0 > i > 8.0 поляризация снова увеличивается.

Фильт	0	P	ı	UT	Ne
Син.	0°	2.6 %	4.6 : 8.0	19 ^h 35 ^m 00 ^s	1
.,	140	1.3	11 + 10	19 39 00	2
11	140	1.6	10 : 11	19 40 00	3
u	140	1.5		19 40 30	4
19	_	1.3		19 40 50	5
19	0	1.9	13÷24.7	19 43 00	6
17	0	1.2	24.7÷16.5	19 45 00	7
. 11	160	1.0		19 45 30	8
**	140	0.6		19 46 00	9
11	170	1.7	16.5÷13	19 52 00	10
91	165	1.0		19 53 00	11
"	0	2.0	9÷7	19 53 30	12
**	160	1.2	30 1	20 05 30	13
	0	4.7		20 07 00	14
УФ	0	1.0	88 : 82	19 48 00	15
**	86	0.6		19 49 00	16
10	26	1.2	1 11 24	19 49 30	17

UТ Рис. 1.

8

Рис. 2

Следует отметить, что как во время предыдущих вспышек EV Lac [4, 5], так и в данном случае поляризации наблюдаются при вспышках с большими амплитудами.

Polarimetric and photometric observations of EV Lac during flares. The photoelectric and electropolarimetric data on four flares $(\Delta m = 0^m 45, 0^m 47, 0^m 50, 3^m 55)$ of EV Lac in the blue region of spectrum are given. A noticable polarization have been measured during a flare with $\Delta m = 3^m 55$. (Table 1).

18 января 1971

Бюраканская астрофизическая обсерватория

К. А. ГРИГОРЯН М. А. ЕРИЦЯН

ЛИТЕРАТУРА

- 1. М. А. Ерицян, Сообщ. Бюр. обс., 43, 33, 1970.
- 2. П. Ф. Чугайнов, Изв. КрАО, 26, 171, 1961.
- .3. К. А. Григорян, М. А. Ерицян, IBVS, № 497, 1970.
- 4. К. А. Григорян, М. А. Ерицян, Астрон. цирк., № 570, 1970.
- 5. К. А. Григорян, М. А. Ерицян, Сообщ. Бюр. обс., 42, 41, 1970.

ОХЛАЖДЕНИЕ БЕЛЫХ КАРЛИКОВ

Основным источником излучения белых карликов является, повидимому, тепловая энергия атомных ядер, на что впервые указал С. А. Каплан [1]. Для оценки этой энергии необходимо знание внутренней температуры звезды. Рост температуры происходит, в основном, в тонкой лучистой оболочке белого карлика, где вырождения почти нет. В вырожденной области теплопроводность электронного газа очень велика и поэтому градиент температуры мал. При оценке градиента температуры в оболочке белого карлика для непрозрачности обычно принимается закон Крамерса. Но закон Крамерса верен лишь при малых плотностях. В общем случае коэффициент непрозрачности $K \sim \rho^2 T^{-3}$, и с ростом плотности ($\rho \gtrsim 10^2 \ \imath/cm^3$) коэффициент непрозрачности принимает вид [2, 3]

$$K = K_0 Z T^{-2}, \tag{1}$$

 x_{A} е Z— весовое содержание тяжелых элементов.