АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР

АСТРОФИЗИКА

TOM 7

ФЕВРАЛЬ, 1971

ВЫПУСК 1

ЭВОЛЮЦИЯ И РАДИАЛЬНЫЕ ПУЛЬСАЦИИ ИЗОТЕРМИЧЕСКИХ БЕЛЫХ КАРЛИКОВ С УЧЕТОМ ВРАЩЕНИЯ, ЭФФЕКТОВ НЕЙТРОНИЗАЦИИ И ОТО

Ю. Л. ВАРТАНЯН, А. В. ОВСЕПЯН Поступяла 5 февраля 1970

Рассматривается эволюция изотермических вращающихся белых карликов, совершающих радиальные пульсации. При этом учтены как эффекты иейтронизации (процесс обратного β-распада), так и поправки ОТО. Вычислены для различных масс эволюционные кривые—зависимость температуры от плотности, а также точки потери устойчивости. Найдены соответствующие значения периодов пульсаций.

1. Введение. В работе [1] были рассмотрены последние стадии вволюции белых карликов, масса которых больше чандрасекаровского предела. Для различных масс были вычислены эволюционные кривые (зависимость температуры от плотности), а также точки потери устойчивости. При этом были учтены поправки общей теории относительности, которые, как известно [2]. играют весьма важную роль при рассмотрении устойчивости белых карликов. В [3] та же задача была решена с учетом как нейтронизации (процесса обратного β-распада), так и поправок ОТО. Было показано, что для устойчивости белых карликов нейтронизация играет более значительную роль, нежели вффект ОТО. Независимо о роли нейтронизации было сказано также в [4].

Однако, как в [1], так и в [3], эздачэ решалась без учета вращения. В настоящей работе рассматривается предколлапсовая эволюция изотермических белых карликов, совершающих радиальные пульсации. Задача решена с учетом вращения, эффектов нейтронизации и ОТО. Рассмотрение ведется энергетическим методом [5], применимость которого обеспечивается тем, что для белых карликов, находящихся вблизи чандрасекаровского предела, в большей части конфигураций, где сконцентрирована доминирующая часть массы звезды, вырожденный влектронный газ ультрарелятивистский и, следовательно, для распределения плотности можно принять политропное распределение с показателем n = 3. Изотермичность же конфигураций обеспечивается весьма большой теплопроводностью вырожденных электронов.

2. Условия равновесия и устойчивости. В [6], используя метод, предложенный в [7], из закона сохранения внергии для белых карликов, совершающих радиальные пульсации, было получено

$$\left(\frac{\partial E}{\partial y_{e}}\right)_{S,M,K} = 0, \tag{1}$$

$$\left(y_c^2 / l_0 \right) \left(\partial^2 E / \partial y_c^2 \right)_{S, M, K} = \omega^2, \tag{2}$$

где E — полная энергия звезды, S — энтропия, M — масса, K — момент вращения, I_0 — момент инерции относительно центра звезды

$$I_0 = 4\pi \int_0^R \rho r^4 dr, \qquad (3)$$

 $y_c \equiv \rho_c^{1/3}$, ρ_c — значение плотности в центре конфигурации, ω — основная частота радиальных пульсаций. Условие (1) есть условие экстремума энергии (условие равновесия звезды), а (2)—условие минимума (условие устойчивости). Значению y_c , при котором $\omega^2 = 0$, соответствует критическое состояние, т. е. состояние потери устойчивости.

Для первой и второй производных энергии по у_с легко получить [6]

$$(\partial E / \partial y_{c})_{S, M, K} = 3y_{c}^{-4} M \int_{0}^{1} (P/\varphi(v)) dv - 0.639 GM^{5.3} -$$

$$-1.86 G^2 c^{-2} M^{7/3} y_c + 2.40 K^2 M^{-5/3} y_c,$$

$$(\partial^{2} E/\partial y_{c}^{2})_{S, M, K} = 9y_{c}^{-5} M \int_{0}^{1} (\gamma - 4/3) (P/\varphi (\nu)) d\nu - - 1.86 G^{2} c^{-2} M^{7/3} + 2.40 K^{3} M^{-5/3}.$$
(5)

Здесь P — давление, $\gamma = (\partial \ln P / \partial \ln \rho)_s$ — показатель адиабаты, $\varphi(\nu)$ — функция Эмдена с n = 3, ($\rho = \rho_c \varphi(\nu)$). Если приравнять K нулю, то мы придем к соответствующим уравнениям [1].

108

В квазивырожденных белых карликах для давления и плотности соотнетственно имеем [8]

$$P = P_{*} + P_{s} = \frac{m_{*}c^{2}}{24\pi^{2}\lambda_{*}^{3}}f(x)\left(1 + \frac{4\pi^{2}t^{2}x\sqrt{x^{2}+1}}{f(x)}\right) + \frac{\rho kT}{Am_{\rho}}, \quad (6)$$

$$b = \frac{m_{p}}{3\pi^{2}h_{ez}^{3}} x^{3} \left(1 + \frac{\pi^{2}t^{2}(2x^{2}+1)}{2x^{4}}\right), \tag{7}$$

где

$$f(x) = (2x^2 - 3)x\sqrt{x^2 + 1} + 3\ln(x + \sqrt{x^2 + 1}),$$
(8)
$$t = t/m c + t = kT/m c^2 + z = O/4 + x = n/m c$$

$$T_{e} = \hbar/m_{e}c, \quad t = kT/m_{e}c^{2}, \quad z = Q/A, \quad x = p_{e}/m_{e}c,$$

 p_e — импульс Ферми вырожденных электронов, m_e и m_p — соответственно масса электрона и протона; Q — заряд, A — массовое число ядер. В дальнейшем мы предположим, что вещество состоит из ядер группы железа, т. е. A = 56.

Как будет показано в разделе 3, для белых карликов с $M \ge 1.5 M_{\odot}$ потеря устойчивости происходит при значениях t > 1. При этом в среде за счет рождения пар будут присутствовать в значительном количестве позитроны и казалось необходимо учесть их вклад в термодинамические величины. Однако легко показать [9], что условие квазивырожденности электронов приводит к тому, что концентрация позитронов n_{\pm} оказывается намного меньше, чем концентрация тепловых электронов (электронов, под "максвелловским хвостом" распределения Ферми) и поэтому их вкладом можно пренебречь.

Как известно, в условиях, имеющихся в недрах белых карликов, становится возможным соединение электронов с атомными ядрами процесс обратного β-распада (см., например, [5, 10]). В результате величина z зависит от граничного импульса электронов. Из условия минимума энергии, приходящей на один нуклон, для этой величины легко получить [9, 10].

$$z = z_0 (1 - \alpha \sqrt{x^2 + 1}); \quad z_0 = 26/56; \quad \alpha = 5.317 \cdot 10^{-3}.$$
 (9)

Подставляя (9) в (7) и (8) и воспользовавшись тем, что электронный газ ультрарелятивистский ($x \gg 1$) и квазивырожден ($t/x \ll 1$), для P и р окончательно получим

$$P = \frac{m_e c^2}{12 \pi^2 \lambda_e^3} x^4 (1 - 1/x^2 + 2\pi^2 t^2/x^2 + 4t/Qx), \qquad (10)$$

$$\rho = \frac{m_{\rho}}{3 \pi^2 \lambda_e^3 z_0} x^3 (1 + \pi^2 t^2 / x^2 + \alpha x). \tag{11}$$

В том же приближении для энтропии на грамм вещества легко получить

$$s = (k/Am_p) \left[\pi^2 Qt/x + (3/2) \ln(t/x^2) + \ln((2l+1) Q3\pi^2 (Am_p/2\pi m_e)^{3/2}) + \frac{5}{2} \right],$$
(12)

где I — спин ядра.

Перейдем теперь к вычислению величины (ү — 4/3) *P*, входящей в уравнение (2). Из определения ү имеем

$$(\gamma - 4/3) P = \rho \left(\frac{\partial P}{\partial \rho} \right)_s - (4/3)_s P. \tag{13}$$

Ho

$$(\partial P/\partial \rho)_{*} = \frac{\partial (P, s)/\partial (x, t)}{\partial (\rho, s)/\partial (x, t)} = \frac{(\partial P/\partial x)_{t} - (\partial P/\partial t)_{x}}{(\partial \rho/\partial x)_{t} - (\partial \rho/\partial t)_{x} (\partial s/\partial x)_{t}/(\partial s/\partial t)_{x}} \cdot (14)$$

Тогда, имея в виду (10)—(14), после вычислений получим

$$(\gamma - 4/3) P = \frac{m_* c^2}{9\pi^3 \pi_*^3} \left[x^2/2 - \alpha x^5/3 + t x^3/2 - (\pi^2 t^2 x^2/2Q) (3/2Q + \pi^2 t/x)^{-1} \right].$$
(15)

В уравнения (4) и (5) входит также величина К— момент количества движения, которую можно выразить через у. Действительно

$$K = \frac{2}{3} I_0 \Omega, \tag{16}$$

где Ω — угловая скорость твердотельного вращения, а I_0 — определяется соотношением (3). Выберем для K значение, при котором истечение вещества с экватора может наступать лишь на последней стадии вволюции. При этом из (16) легко показать

$$K^2 = 0.0133 \, M^{10/3} \, y_{\bullet}^{-1}. \tag{17}$$

Здесь у определится: а) для конфигураций, масса которых меньше чандрасекаровского предела и которые кончают эволюцию в состоянии устойчивых белых карликов с T = 0, из соответствующего значения центральной плотности; б) для конфигураций, масса которых больше чандрасекаровского предела, из эначения центральной плотности, при которой наступает потеря устойчивости (напомним, что $y_e = \rho_1^{(3)}$.

Наконец, воспользовавшись распределением $\rho = \rho_{e} \gamma$ (v), можнотакже найти распределение $x = x_{e} \psi$ (v). Из (11) легко получить

$$\psi = \varphi^{1/3} \left[1 - \frac{\alpha_{X_c}}{3} \left(\varphi^{1/3} - 1 \right) - \frac{\pi^2 t^2}{3x_c^2} \left(\varphi^{-2/3} - 1 \right) \right].$$
(18).

Подставляя (10), (11), (15) и (17) в (4) и (5) и имея в виду (18), после вычисления всех численных коэффициентов, окончательно получим

$$t^{2} (21.71 - 6.697 \ m^{2/3}) + 0.1538 \ tx_{c} + [x_{c}^{3} (0.001488 - 0.003608 \ m^{2/3} - 0.0002236 \ m^{4/3} + 0.02471 \ x_{c}^{*-1} \ m^{2/3}) + x_{c}^{2} (0.58 - 0.5089 \ m^{2/3}) - 2.14] = 0,$$
(19)

$$\omega^{2} = (1.227 x_{c} - 0.0007518 x_{c}^{4} - 0.00006381 x_{c}^{4} m^{4/3} + 0.02205 t x_{c}^{2} + 0.007279 x_{c}^{4} x_{c}^{\bullet -1} m^{2/3})/m^{2/3}.$$
(20)

Уравнение (19) соответствует. (1) и есть условие равновесия, а (20) соответствует (2); $m = (M/M_{\odot})$, M_{\odot} — масса Солнца. Члены, подчеркнутые сплошной линией, есть вклад вращения, волнистой линией — вклад ОТО, а пунктирной — вклад нейтронизации. Если в (19) и (20) подставить t = 0, то мы придем к соответствующим уравнениям работы [6].

3. Результаты расчетов. Рассмотрим вначале зависимость массы от центральной плотности для конфигураций, расположенных вдоль различных изотерм. Для этого придадим в (19) величине $t = k T/m_e c^3$ определенные значения и приравняем $x^* = x_c$. Тогда (19) сведется к квадратному уравнению относительно $m^{2/3}$. Каждому значению x_c будет соответствовать определенное значение т. На рис. 1 изображены кривые $m_{\tau}(x)$, соответствующие различным значениям температуры t, значения которых выписаны рядом с кривыми. Для выявления роли вращения приведены также кривые для тех же значений температуры при отсутствии вращения (пунктирные кривые). На кривых равновесия показаны точки потери устойчивости (точки, в которых $\omega^2 = 0$). Из рис. 1 видно, что лишь в случае низких температур ($t \approx 0.1$) вид кривых $m_{\tau}(x)$ такой же, как в случае холодных конфигураций. С увеличением температуры вид этих кривых меняется: они не имеют максимума. Учет вращения, хотя и не меняет общего характера кривых для определенного значения t, приводит к увелинению как массы, так и центральной плотности, при которой происходит потеря устойчивости. На рис. 2 приводится зависимость ω^{2} от центральной плотности для различных изотерм: а) в случае предельного вращения (когда наступает истечение) — сплошные кривые; б) в случае отсутствия вращения — пунктирные кривые. Мы замечаем, что увеличение температуры приводит к увеличению значения как критической плотности, так и максимума ω^{3} . Это происходит по той причине, что в условие стабильности (20) температурный член, который обусловлен "максвелловским хвостом" распределения Ферми вырожденных влектронов и ядрами, входит с положительным знаком, т. е. играет стабилизирующую роль.

Рис. 1. Зависимость массы от центральной плотности для конфигураций, расположенных вдоль различных изотерм. Рядом с кривыми приводятся соответствующие им значения $t = k T/mc^2$. Пунитирные кривые относятся к невращающимся конфигурациям, а сплошные—к вращающимся с предельной угловой скоростью. Линия *аа'* соответствует точкам потери устойчивости невращающихся конфигураций, а *bb'* вращающихся.

Перейдем теперь к рассмотрению эволюционных кривых. Прежде всего необходимо найти значение х^{*}. Рассмотрим сперва случай, когда *m* меньше чандрасскаровского предела — значения максимальной массы холодных конфигураций. В этом случае звезда заканчивает эволюцию на устойчивой ветви холодных белых карликов. В [6] для холодных

конфигураций были вычислены кривые $m(x_c)$ для различных значений $n = \Omega/\Omega_{max}$ (Ω_{max} — угловая скорость, при которой начинается истечение), из которых для данного m мы можем определить x_c и отождествить его с x_c^* . В случае же, когда m больше предельной массы холодных конфигураций, звезда квазиравновесно переходит от устойчивой ветви одной изотермы на другую, пока не придет в состояние

Рис. 2. Зависямость ω^2 от параметра x_c для различных изотери. Пунктирные кривые относятся к случаю отсутствия вращения, а сплошные—к вращающимся конфигурациям. t=0.05 (для aa' и aa''); t=0.5 (для bb' и bb''); t=2.0 (для cc' и cc'').

потери устойчивости, после чего наступает коллапс. В этом случае x_{e}^{*} будет соответствовать плотности критического состояния—состояния потери устойчивости. Для нахождения этой величины зададим в (19) и (20) *m* и, приравнивая $\omega^{2} = 0$, решим совместно эти два урав-

8-21

нения. При втом мы найдем значения t и x_c, при которых наступает потеря устойчивости.

Имея значения x_{o}^{*} , для каждого m из (19), придавая значения x_{c} , мы можем найти соответствующие значения t, т. е. кривые $t_{M}(x_{c})$. Для различных масс эти кривые изображены на рис. З. Для этих же значений масс приводятся также эволюционные кривые и в случае

Рис. 3. Эволюционные кривые и точки потери устойчивости для различных. масс. a) m=1; b) m=1.2; c) m=1.5; d) m=2; e) m=3; f и g-линии потери устойчивости соответственно для вращающихся и невращающихся конфигураций.

отсутствия вращения — пунктирные кривые. На каждой кривой приводятся точки потери устойчивости, которые соединены линией потери устойчивости. Мы замечаем, что для невращающихся конфигураций значения плотностей потери устойчивости весьма слабо зависят от массы кривая почти горизонтальна. В работе [1], где не был учтен эффект обратного β -распада, уже при значениях $M = 3M_{\odot}$ эта кривая сворачивала вниз, т. е. для таких масс потеря устойчивости происходила при меньших плотностях, что было обусловлено учетом эффекта ОТО. При учете же нейтронизации вклад члена ОТО даже при таких относительно больших массах оказывается малым и поэтому этот эффект

не наблюдается. В случае же вращающихся конфигураций с увеличением массы увеличивается также значение критической плотностикривая f при увеличении массы идет наверх. Это обусловлено тем, что в условии устойчивости (20) с увеличением массы увеличивается также член вращения, который входит с положительным знаком.

Из рис. З видно, что почти для всех конфигураций, масса которых больше чандрасекаровского предела. подход к состоянию потери устойчивости происходит с отрицательной теплоемкостью. Для звезд же, которые заканчивают эволюцию в состоянии белых карликов, теплоемкость положительна. В обоих случаях учет вращения смещает вволюционные кривые налево, т. е. замедляет рост температуры с сжатием. Это наиболее наглядно видно на рис. 4, на котором отдельно

Рис. 4. Эволюционные кривые для масс: $M = 1.14 M_{\odot}$ (кривые, кыходящие из точки 1) и $M = 1 M_{\odot}$ (кривые, выходящие из точки 2).

приведены эволюционные кривые для двух малых масс: $M^* = 1.142 \ M_{\odot}$ (кривые, выходящие из точки 1) и $M = 1 \ M_{\odot}$ (кривые выходящие из точки 2). Звезда с $M = 1.142 \ M_{\odot}$ соответствует состоянию потериустойчивости при $\Omega = \Omega_{max}$ и T = 0. Так как на кривой $m(x_c)$ эта точка лежит за максимумом [6], то для данной массы имеется также.другое состояние с меньшей центральной плотностью и соответственно большим моментом вращения (см. (17)), при котором хотя и начинается истечение, но состояние устойчиво. Поэтому для конфигурации с $M = 1.142 M_{\odot}$ мы приводим две эволюционные кривые, соответствующие различным значениям момента вращения. В обоих случаях истечение наступает при T = 0. Однако в случае большего момента вращения (кривая 1а) конфигурация кончает эволюцию в устойчивом состоянии, в то время как в состоянии 1b — в момент истечения теряет устойчивость. Масса $M = 1 M_{\odot}$ меньше предельной массы невращающихся холодных белых карликов и поэтому для нее не может наблюдаться аналогичная ситуация. Мы замечаем, что чем больше момент вращения, тем больше кривая смещается налево, т. е. стабильность увеличивается с увеличением момента вращения K (см. (5)).

Рис. 5. Зависныесть ω^2 от плотности в центре вдоль эволюционных кривых соответствующих массам $M=1M_{\odot}$, $2M_{\odot}$, $3M_{\odot}$, (эначения масс приводятся рядом с соответствующими им кривыми). Пунктирные кривые относятся к невращающимся ковфясурациям с теми же значениями масс.

На рис. 5 и 6 для различных масс приводится зависимость ш³ соответственно от центральной плотности и температуры. Пунктирные кривые относятся к невращающимся конфигурациям с теми же массами. Из этих рисунков видно, что лишь для конфигураций, которые заканчивают эволюцию на устойчивой ветви холодных белых карликов, кривые монотонны. В остальных случаях все кривые имеют максимум, который соответствует минимальному периоду пульсаций для дан-

ной массы. Наличие максимума " обусловленно следующим обстоятельством. Первоначально с ростом плотности для звезды определенной массы устойчивость увеличивается. Здесь сказывается стабилизирующая роль вращения (энергия вращения с увеличением плотности при постоянных массе и моменте вращения растет как $p^{2/3}$). При этом пока роль эффектов нейтронизации и ОТО мала. Однако, так как эти члены зависят от плотности сильнее, чем эффект вращения (см. (20)), то с увеличением плотности в некоторый момент они становятся больше эффекта вращения и так как они отрицательны, то стабильность начинает уменьшаться и " при определенном значении приравнивается нулю—конфигурация становится неустойчивой.

Рис. 6. Зависимость ω^2 от температуры вдоль эволюционных кривых. Пунктирные кривые относятся к невращающимся конфигурациям, а сплошные-к вращающимся. Для кривых a) m=1; b) m=1.2; c) m=1.5; d) m=2; e) m=3.

В табл. 1 для различных значений масс приводятся значения центральной плотности и им соответствующие значения температуры и периода пульсаций τ ($\tau = 2\pi/\omega$) в случае момента вращения, при котором истечение возможно только в конце эволюции. Для сравнения приводятся для тех же масс значения соответствующих величин при отсутствии вращения.

Таблица 1

ЗАВИСИМОСТЬ ТЕМПЕРАТУРЫ И ПЕРИОДА РАДИАЛЬНЫХ ПУЛЬСАЦИЙ ОТ ЦЕНТРАЛЬНОЙ ПЛОТНОСТИ ДЛЯ РАЗЛИЧНЫХ МАСС (Рс 19/см³; Т °К; т сек)

		Вращающиеся конфигурации (Ω=Ωmax)													
xc	M/M_=1			M/M _O =1.2			$M/M_{\odot}=1.5$			M/M_=2			M/M _O =3		
1	Pc/109	T/10	τ	$\rho_c/10^{\circ}$	T/10*	τ	$\rho_c/10^9$	T/10	5	$\rho_e/10^{\circ}$	T/10	1	Pc/10°	T,10•	:
3	0.0634	1.731	3.227	0.0665	2.191	3.458	0.07136	2.724	3.716	0.0805	3.539	4.075	0.1076	5.252	4.631
4	0.1421	1.272	2.770	_		-		-	_	_	- 1	-	_	-	_
5	0.2714	0.138	2.457	0.2852	2.143	2.696	0.3045	3.322	2.879	0.3424	4.869	3.133	0.4547	7.822	3.517
7		-		0.7717	2.144	2.332	0.8231	4.104	2.459	0.9249	6.411	2.644	1.2266	10.63	2.915
9		-	-	1.6421	2.215	2.159	1.7506	5.002	2.231	1.9667	8.067	2.354	2.6084	13.57	2.536
11	-	-	-	3.0169	2.372	2.135	3.2156	5.981	2.132	3.6131	9.801	2.190	4.7944	16.59	2.287
13		-	-	5.0213	2.616	2.324	5.3523	7.023	2.169	6.0154	11.59	2.133	7.9876	19.69	2.134
15	-	-	_	7.7856	2.942	3.217	8.3001	8.117	2.457	9.3314	13.44	2.207	12.400	22.85	2.064
17	-	-	-	11.444	3.344	Im	12.203	9.256	3.919	13.724	15.33	2,550	18.253	26.07	2.093
19	_	-	-	-	-	-	17.213	10.43	Im	19.365	17.26	4.390	25.776	29.34	2.289
21			-	-	-	_	-	_	-	26.430	19.23	Im	35.209	32.67	2.998
23		-	-	1 -	-		-	-	-	-	-	_	46.799	36.05	Im
Невращающиеся конфигурация (Ω=0)															
3	0.0639	1.816	3 277	0.0668	2.217	3 477	0 0716	2 748	3.737	0.0808	3.563	4,100	0.1081	5.277	4.664
4	0.1438	1.519	2.871						_	_	-	-	_		_
5	0.2749	1.092	2.625	0.2867	2.258	2.766	0.3063	3.410	2.957	0.3447	4.946	3.224	0.4585	7,901	3,630
6	0.4717	0.305	2.494	_	-		_	_			- 1	-	-		_
7	-	-	_	0.7775	2.440	2.517	0.8299	4.297	2.661	0.9336	6.572	2.871	1.2410	10.79	3.185
9	-	-	_	1.6575	2.784	2.635	1.7691	5.335	2.717	1.9907	8.338	2.875	2.6479	13.83	3.111
11	_	_	-	3.0508	3.283	4.002	3.2570	6.485	3.681	3.6666	10.207	3.631	4.8824	16.98	3.661
19	_			5 0874	8 014	Im	5 4991	7 726	Im	6 1198	12 159	Im	8 1594	20 24	Im

Ю. Л. ВАРТАНЯН, А. В ОВСЕПЯН

118

Выражаем глубокую благодарность академику В. А. Амбарцумяну и профессору Г. С. Саакяну за полезные обсуждения.

Бюраканская астрофизическая обсерватория Ереванский государственный университет

EVOLUTION AND RADIAL PULSATIONS OF ISOTERMIC WHITE DWARFS WITH CONSIDERATION OF ROTATION, EFFECTS OF NEUTRONIZATION AND GENERAL RELATIVITY

Yu. L. VARTANIAN, A. V. HOVSEPIAN

Evolution and radial pulsations of rotating isotermic white dwarfs are studied by the energetic method. The effects of the general relativity and neutronization of atomic nucleus (process of the reverse β decay) are taken into account. The evolution curves (the dependence of temperature from density) and the points of the loss of stability for different masses are calculated. Values of the period of pulsations are found. The results of calculations are shown in the fig. 1-6 and Table 1.

ЛИТЕРАТУРА

1. Г. С. Бисноватый-Коган, Астров. ж., 43, 89, 1966.

2. С. А. Каплан, Уч. зап. Львовского ун-та, 15, 4, 1949.

3. Ю. Л. Вартанян, А. В. Овсепян, Астрофизика, 4, 643, 1968.

4. Г. С. Бисноватый-Коган, З. Ф. Свидов, Астрофизика, 5, 243, 1969.

5. Я. Б. Зельдович, И. Д. Новиков, Релятивистская астрофизика, Наука, М., 1967

6. Ю. Л. Вартанян, А. В. Овсепян, Астрофизика, 6, 601, 1970.

7. В. Ф. Дьяченко, Я. Б. Зельдович, В. С. Ижшенник, В. В. Палейчик, Астрофиэнка, 4, 189, 1968.

8. С. Чандрасскар, Введение в учение о строении звезд, ИЛ, М., 1950.

9. Ю. Л. Вартанян, Астрофизика, 4, 373, 1968.

10. E. Schatzman, White Dwarfs, North Holland Publ. Comp., Amsterdam, 1958.

