АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР

АСТРОФИЗИКА

TOM 7

ФЕВРАЛЬ, 1971

ВЫПУСК 1

НЬЮТОНОВСКАЯ ТЕОРИЯ БЫСТРО ВРАЩАЮЩИХСЯ БЕЛЫХ КАРЛИКОВ

В. В. ПАПОЯН, Д. М. СЕДРАКЯН, Э. В. ЧУБАРЯН Поступила 20 мая 1970

В приближении Ω^4 определены структура и интегральные параметры вращающихся как твердое тело с угловой скоростью Ω равновесных исевдосфероидальных моделей белых карликов. Полученные результаты незначительно отличаются от аналогичных в приближении Ω^2 , поэтому можно считать, что для конфигураций, находящихся в критическом относительно истечения вещества состоянии, приближение Ω^2 примению так же успешно, как и приближение Ω^4 . Сравнение найденных результатов с результатами более точного метода Джеймса дает хорошее совпадение.

1. В настоящее время имеется большое количество исследований, в которых рассмотрены связанные с вращением изменения в структуре самогравитирующих конфигураций в рамках теории тяготения Ньютона [1-8]. Значительная часть их выполнена в предположении о малости связанных с вращением изменений, что позволяет выбрать в качестве малого параметра используемой теории возмущений отношение внергии вращения к гравитационной внергии (в), и ограничиться первым по этому параметру приближением. Оценить эффективность такого подхода можно лишь, если удастся показать, что результаты, полученные более точными методами или, по крайней мере, в приближении ³², мало отличаются от аналогичных в приближении ^β. Сравнение рассчитанных в линейном по в приближении параметров простейших белых карликов [5, 8], а также конфигураций, вещество которых описывается политропным уравнением состояния [1, 2, 4, 6], с соответствующими результатами, полученными точным методом Джеймса [3], показывает что для таких моделей приближение в оказывается весьма удовлетворительным (отклонение не превышает 10°/0). Неплохое совпадение, но лишь для моделей с большим значением показателя политропы, получается и при сравнении с результатами Ананда [8], использовавшего приближение β^2 . Тем не менее, нет никаких оснований утверждать, что линейное по β приближение применимо также успешно при расчетах внутренней структуры и интегральных характеристик более реальных моделей белых карликов и барионных звезд. Поэтому представляется необходимым рассмотреть вращение белых карликов и барионных звезд в приближении β^2 .

Недавно предложен (метод расчета интегральных характеристик и внутренней структуры конфигураций, вещество которых описывается однопараметрическим уравнением состояния, в квадратичном по β приближении [9]. В настоящем сообщении на основе этого метода подсчитаны параметры как простейших моделей белых карликов, так и белых карликов с учетом вффектов нейтронизации. Полученные результаты мало отличаются от аналогичных в приближении β, что вместе с вышеизложенным позволяет заключить, что в используемом методе зависимость поправок второго порядка малости от уравнения состояния весьма слабая. Следовательно, можно ожидать, что подобные результаты будут получены также и в случае барионных звезд.

2. Структура равновесных псевдосфероидальных конфигураций, вращающихся как твердое тело с угловой скоростью Ω , определяется решением системы следующих уравнений:

$$\frac{1}{R^2}\frac{\partial}{\partial R}\left(R^2\frac{\partial\varphi}{\partial R}\right) + \frac{1}{R^2}\frac{\partial}{\partial\mu}\left[\left(1-\mu^2\right)\frac{\partial\varphi}{\partial\mu}\right] = G,\tag{1}$$

$$F = -\varphi + G_c \beta R^2 (1 - \mu^3) + C.$$
 (2)

Здесь

$$F = \int \frac{dP}{\rho}, \quad G = 4\pi k \rho, \quad \beta = \frac{\Omega^2}{8\pi k \rho_c}.$$
 (3)

P и ρ — давление и плотность вещества соответственно, k — гравитационная постоянная, индексом "с" снабжены значения рассматриваемых величин в центре конфигурации.

Если искать решения системы (1)—(3) в виде разложений в ряд по степеням β и ограничиться приближением β^2 , то, согласно результатам работы [9], для гравитационного потенциала внутри ($\gamma^{(i)}$) и вне ($\gamma^{(i)}$) распределения масс получим

$$\varphi^{(l)} = c_0 - f(R) - \beta [f_0(R) + A_2 f_2(R) P_2(\mu) - G_c R^2 (1 - \mu^2) - c_1] -$$

$$- \beta^2 \left[\sum_{l=0}^4 f_l^{(1)}(R) P_l(\mu) + \sum_{l=2}^4 A_l^{(1)} \Phi_l(R) P_l(\mu) - c_2 \right], \tag{4}$$

$$\varphi^{(a)} = \frac{k_0}{R} + \beta \sum_{l=0}^{2} \frac{k_{1l}}{R^{l+1}} P_l(\mu) + \beta^2 \sum_{l=0}^{4} \frac{k_{2l}}{R^{l+1}} P_l(\mu), \qquad (5)$$

Для радиуса конфигурации в направлении и имеем.

$$R_{\mu} = R_0 + \beta \sum_{l=0}^{2} q_{e} P_{e}(\mu) + \beta^{2} \sum_{l=0}^{4} q_{l}^{(1)} P_{l}(\mu), \tag{6}$$

а для распределения плотности вдоль радиуса звезды

$$G(R, \mu) = g(R) + \beta \gamma \left[f_0(R) + A_2 f_2(R) P_2(\mu) \right] +$$

$$+ \beta^2 \left\{ \gamma \left[\sum_{l=0}^4 f_l^{(1)}(R) P_l(\mu) + \sum_{l=2}^4 A_l^{(1)} \Phi_l(R) P_l(\mu) \right] +$$

$$+ \frac{\gamma_1}{2} \left[f_0(R) + A_2 f_2(R) P_2(\mu) \right]^2 \right\}.$$
(7)

Радиальные функции $f_l(R)$ и $\Phi_l(R)$ являются решением системы уравнений

$$\Delta_{0} f = -g,$$

$$\Delta_{0} f_{0} + \gamma f_{0} = 4g_{e},$$

$$\Delta_{2} f_{2} + \gamma f_{2} = 0,$$

$$\Delta_{0} f_{0}^{(1)} + \gamma f_{0}^{(1)} = -\frac{\gamma_{1}}{2} \left(f_{0}^{2} + \frac{1}{5} A_{2}^{2} f_{2}^{2} \right),$$

$$\Delta_{3} f_{2}^{(1)} + \gamma f_{2}^{(1)} = -\gamma_{1} A_{3} f_{2} \left(f_{0} + \frac{1}{7} A_{3} f_{2} \right),$$

$$\Delta_{4} f_{4}^{(1)} + \gamma f_{4}^{(1)} = -\frac{9}{35} \gamma_{1} A_{2}^{2} f_{2}^{2},$$

$$\Delta_{l} \Phi_{l} + \gamma \Phi_{l} = 0, \qquad l = 2, 4,$$
(8)

где

$$\Delta_{l} = \frac{1}{R^{2}} \frac{d}{dR} \left(R^{2} \frac{d}{dR} \right) - \frac{l(l+1)}{R^{2}}, \quad \gamma = \frac{dg}{df}, \quad \gamma_{1} = \frac{d^{2}g}{df^{2}}. \quad (9)$$

Решения втой же системы в точке R_0 — границе соответствующей невращающейся конфигурации, позволяют найти значения постоянных c_0 , c_1 , c_2 , A_2 , $A_1^{(1)}$, k_0 , k_{1l} , k_{2l} , q_l , $q_l^{(1)}$, [9], фигурирующих в

равложениях (4)-(7), которые вместе с (5) и (6) дают возможность определить важнейшие интегральные характеристики звезды—массу M, квадрупольный момент Q, экваториальный R_s и полярный R_p радиусы. Действительно,

$$M = -\frac{k_0 + \beta k_{10} + \beta^2 k_{12}}{k},$$

$$Q = \beta k_{12} + \beta^2 k_{22},$$

$$R_0 = R_0 + \beta L_1 + \beta^2 L_2,$$

$$R_p = R_0 + \beta (q_0 + q_2) + \beta^2 (q_0^{(1)} + q_2^{(1)} + q_4^{(1)}).$$
(10)

Здесь введены обозначения

$$L_1 = q_0 - 0.5 q_2$$
, $L_2 = q_0^{(1)} - 0.5 q_2^{(1)} + 0.375 q_4^{(1)}$.

При фиксированной центральной плотности величина параметра β изменяется от 0 до некоторого максимального значения β_{max} , которое легко получить из условия отсутствия истечения вещества с экватора конфигурации, т. е. из равенства на экваторе центробежной и гравитационной сил

$$\left(\frac{\partial \varphi}{\partial R}\right)_{R=R_e} = 2G_e \beta_{\text{max}} R_e$$
.

Откуда, используя (5) и ограничиваясь в разложении по β членами, пропорциональными β^2 , получим

$$\beta_{\text{max}} = -\frac{P}{2N} \left(1 - \sqrt{1 - \frac{4M_0 N}{P^2 R_0^2}} \right). \tag{11}$$

3десь M_0 — масса конфигурации в отсутствие вращения,

$$P = -2G_{c}R_{0} - \frac{2M_{0}L_{1}}{R_{0}^{3}} - \frac{k_{10}}{R_{0}^{2}} + \frac{3k_{12}}{2R_{0}^{4}},$$

$$N = -2G_{c}L_{1} - \frac{M_{0}}{R_{0}^{4}}(2L_{2}R_{0} - 3L_{1}^{2}) - \frac{6k_{12}L_{1}}{R_{0}^{5}} + \frac{2k_{10}L_{1}}{R_{0}^{3}} - \frac{k_{20}}{R_{0}^{2}} + \frac{3k_{23}}{2R_{0}^{4}} - \frac{15k_{24}}{8R_{0}^{6}}.$$

Таким образом, все величины, определяющие структуру и интегральные параметры конфигурации, вещество которых определяется о днопараметрическим уравнением состояния, можно найти решением системы уравнений (8) на границе R_0 соответствующей невращающейся звезды.

3. Состояние вещества в белых карликах подробно изучалось в работах [10-12]. В интервале центральных плотностей $10^6 \ \imath/c_M^3 \ll \rho_c \ll 1.8 \cdot 10^{11} \imath/c_M^3$ вещество состоит преимущественно из голых ядер и свободного газа вырожденных влектронов. В таких условиях плотность вещества определяется ядрами, а давление влектронами. Поэтому, если ввести $x = p_e/m_e c$, то уравнение состояния белых карликов запишется в следующем виде:

$$\rho = \frac{32}{3} \left(\frac{m_e}{m_n}\right)^3 K_n \left(\frac{A}{Z}\right) x^2,$$

$$P = \frac{4}{3} \left(\frac{m_e}{m_n}\right)^4 K_n \left[x \left(2x^2 - 3\right) \sqrt{1 + x^2} + 3\ln\left(x + \sqrt{1 + x^2}\right)\right].$$
(12)

Здесь $K_n = m_n^4 c^5/32 \pi^2 h^3$, p_a — граничный импульс Ферми влектрона, A и Z — атомный вес и номер соответствующих ядер. Обычно принято считать, A/Z=2 [10], однако в условиях полного вырождения при заданном A заряд eZ зависит от граничной внергии влектронов и уменьшается с уменьшением их плотности [11], что приводит к "нейтронизации" ядер и достаточно точно аппроксимируется полиномом [12]:

$$\frac{A}{Z} = 2 + 1.255 \cdot 10^{-2} x + 1.755 \cdot 10^{-5} x^2 + 1.376 \cdot 10^{-6} x^3.$$
 (13)

Для указанных моделей белых карликов система уравнений (8) проинтегрирована в довольно широком диапазоне центральных плотностей — от $\rho_c = 1.014 \cdot 10^6 \ \imath/cm^3$ до $\rho_c = 2.449 \cdot 10^{11} \ \imath/cm^3$. Часть уравнений системы (8) не позволяет вести интегрирование от центра конфигурации R=0. Поэтому интегрирование начато со значений $R=r_0$, причем величина r_0 выбиралась по возможности малой. При этом в качестве начальных условий приняты следующие: $R=r_0$, $g=g_c$, $f=f_c$, $(3/2g_c) f_0=f_2=f_2^{(1)}=r_0^2$, $f_0^{(1)}=0$; $f_1^{(1)}=\Phi_4=r_0^4$. Отметим, что $f_2=\Phi_2$. Все расчеты выполнены для конфигураций, находящихся в критическом относительно истечения вещества состоянии, т. е. для $\beta=\beta_{\max}$. Максимальное значение β и интегральные параметры (10) найдены как в линейном, так и в квадратичном по β приближении. Результаты интегрирования представлены рис. 1, 2, а также таблицами 1 (модели белых карликов с учетом "нейтронизации"), и 2 (модели с A/Z=2).

На рис. 1 показана зависимость, измеренной в единицах массы Солнца, массы вращающихся (в приближении β^*) моделей белых карликов с переменным A/Z от большой полуоси R_* , измеренной в километрах (на оси абсцисс — $\ln R_*$). На рис. 2 — то же для моделей с

Рис. 1. Зависимость массы вращающихся моделей белых наранков с переменным A/Z от большой полуоси. На оси ординат — масса M в единицах массы Солица. На оси абсцисс — $\ln R_s$ (большая полуось R_s измерена в километрах). Пунктиром изображено семейство невращающихся моделей. Подробности в тексте.

A/Z=2. Для сравнения на обоих рисунках пунктиром приводится аналогичная кривая в отсутствие вращения. Стрелками соединены точки, соответствующие сферическим и вращающимся конфигурациям с одинаковой плотностью в центре. Стрелка начинается в точке,

определяющей массу и радиус сферического тела, и прочерчивает всезначения этих величин для белых карликов с той же центральной

Рис. 2. Зависимость массы вращающихся моделей белых керликов с A/Z=2 от большой полуоси. На оси ординат—масса M в единицах массы Солица. На оси абсцисс — $\ln R_\epsilon$ (большая полуось R_ϵ измерена в километрах). Пунктиром изображено семейство невращающихся моделей. Крестиками отмечены результаты Джеймса [3]. Подробности в тексте.

плотностью и с Ω , увеличивающейся от 0 до Ω_{max} . По длине стрелки от ее начала до любой точки можно найти параметры "промежуточ-

ной" коифигурации, вращающейся с интересующей нас угловой скоростью $\Omega \ll \Omega_{\rm max}$, если учесть, что полная длина стрелки соответствует $\Omega_{\rm max}$. Цифры у пунктирной кривой—центральная плотность. Цифры у сплошной— значения $\Omega_{\rm max}$.

Если сравнить критические значения Ω_{max} , полученные в линейном и квадратичном приближениях по β , то оказывается, что для обеих из рассмотренных моделей в приближении β^3 , Ω_{max} в среднем на $13\,^0/_0$ меньше, чем в приближении β .

Поправки к массе в приближении β^2 по сравнению с приближением β не превышают $0.5\,^0/_0$, причем они меньше у более плотных конфигураций. Масса вращающихся белых карликов примерно в 1.1 раз превосходит массу соответствующих сферических.

Сравнение поправок к экваториальному и полярному радиусам дает в среднем $4^{\,0}/_{\!0}$ и $2^{\,0}/_{\!0}$ соответственно, причем у звезд с небольшими плотностями они меньше, чем у более плотных. Отметим, что в приближении $\beta^{\,8}$ экваториальный радиус растет, а полярный уменьшается не более чем на $5^{\,0}/_{\!0}$ и $3^{\,0}/_{\!0}$ соответственно.

Заметим, что расчет интегральных параметров как в приближении β , так и в приближении β^8 выполнен для β_{max} , которые вычислены отдельно в каждом из этих приближений.

Для оценки эффективности предложенного метода при $\beta=\beta_{\text{max}}$, полученные результаты сравнивались с результатами Джеймса [3], который весьма точным, но связанным с большими трудностями методом нашел интегральные характеристики простейших моделей белых карликов. Максимальное отклонение в массе составляет $4^{\circ}/_{0}$, а экваториальный и полярный радиусы отличаются от джеймсовских всего на $1^{\circ}/_{0}$. Результаты Джеймса изображены крестиками на рис. 2.

Таким образом, результаты расчета в квадратичном по β приближении лишь незначительно отличаются от аналогичных в приближении β . Повтому можно утверждать, что методы, использующие линейное по β приближение, могут успешно применяться для определения структуры и интегральных характеристик белых карликов и политропных конфигураций, находящихся в критическом относительно истечения вещества состоянии ($\beta = \beta_{max}$). Несмотря на то, что такое заключение удалось получить в рамках ньютоновской теории тяготения, нам кажется, что оно остается в силе и в релятивистской теории.

Авторы выражают глубокую благодарность профессору Г. С. Саакяну за многочисленные консультации.

Ереванский государственный университет Бюраканская астрофизическая обсерватория

ВАЖНЕЙШИЕ ИНТЕГРАЛЬНЫЕ ПАРАМЕТРЫ ВРАЩАЮЩИХСЯ БЕЛЫХ КАРЛИКОВ С ПЕРЕМЕННЫМ A/Z

р _с 1/см ³	M₀/M☉	R ₀	Приближение 3					Приближение 3					
			M/M _O	Re км	R _p кж	Q	wmax	M/M⊙	Re KM	Ry RM	Q	w _{imax}	
1.015.106	0.3923	1.083-104	0.4753	1.399.104	9.084 - 103	5.603-1049	0.1719	0.4730	1.433 - 104	9.204 - 103	5.834-1049	0.1459	
1.985.106	0.4993	9.574-103	0.6007	1.233 - 104	8.075-103	5.269 - 1049	0.2323	0.5985	1.265 104	8.163-103	5.399 - 1049	0.1976	
1.597.107	0.8694	6.369-103	1.0145	8.121.103	5.507-103	3.068-1049	0.5537	1.010	8.365·103	5.583 · 103	3.181.104	0.475	
5.425-107	1.053	4.907.103	1.202	6.205-10 ³	4.318.103	1.733 - 1049	0.8868	1.197	6.417 - 103	4.460 - 103	1.811-1049	0.766	
1.294-108	1.149	4.020-103	1.292	5.062 - 103	3.580 · 103	1.051-1049	1.230	1.287	5.248·103	3.687 · 103	1.103-1019	1.068	
7.064-108	1.250	2.680 - 103	1.369	3.350-103	2.438-103	3.365-1048	2.319	1.363	3.487 - 103	2.500 - 103	3.508-1018	2.029	
2.099·10°	1.264	2.029-103	1.366	2.529-103	1.867-103	1.491.1048	3.497	1.359	2.637 - 103	1.903 - 103	1.548-1048	3.073	
7.311·10°	1.241	1.458·10 ³	1.322	1.813.103	1.356-103	5.582 - 1047	5.626	1.316	1.895 10	1.378 - 103	5.787 - 1047	4.947	
3.614-1010	1.158	9.478-102	1.217	1.177 · 103	8.917-102	1.502-1047	10.23	1.212	1.232 - 103	9.048-102	1.536-1047	9,038	
6.465-1010	1.114	8.125-102	1.165	1.008-103	7.675-102	9.165-1048	12.57	1.160	1.056 - 10	7.778 - 102	8.896-1046	11.12	
1.652-1011	1.027	6.425-102	1.066	7.9/2-102	6.109-102	4.111.1046	17.04	1.063	8.360 - 10	6.176.102	4.199-1044	15.10	
2.449.1011	0.9838	5.866-103	1.019	7.352-103	5.709-102	2.925 - 1046	19.05	1.016	7.635 - 10	5.651 - 102	3.002.1046	16.90	

Таблица 2 ВАЖНЕЙШИЕ ИНТЕГРАЛЬНЫЕ ПАРАМЕТРЫ ВРАЩАЮЩИХСЯ БЕЛЫХ КАРЛИКОВ С A/Z=2

Р _с г/см ³	M ₀ /M⊙	R ₀	Приближение р						Приближение 32					
			MiM⊙	R. км	R _p ĸm	Q	musz	M/M _O	R _e KM	R _p	Q	ω _{max}		
1.0101.106	0.3955	1.086-104	0.4795	1.403-104	9.099.103	5.713-104	0.1720	0.4755	1.434 - 104	9.571 · 103	5.790 - 1049	0.1458		
1.972-106	0.5044	9.605.103	0.6073	1.237.104	8.097-103	5.395-1049	0.2324	0.6032	1.268 - 104	8.491 - 103	5.530-1049	0.1951		
1.578 - 107	0.8862	6.405-103	1.036	8.161.103	5.532 - 103	3.200.104	0.5548	1.030	8.408-103	5.620·103	3.330 - 1049	0.4762		
5.324-107	1.082	4.940-104	1.238	6.250-104	4.342-103	1.842-1049	0.8911	1.232	6.466-103	4.485-103	1.930-1049	0.7700		
1.262.10	1.191	4.062-103	1.342	5.116.103	3.613-103	1.1385 - 1049	1.240	1.337	5.302 - 103	3.718·10 ³	1.190-1049	1.076		
6.764.108	1.328	2.702·10 ³	1.459	3.380.103	2.451.103	3.839 - 1048	2.368	1.453	3.514-103	2.508 - 103	3.997-1048	2.070		
1.972-109	1.377	2.043-103	1.493	2.547 103	1.872-103	1.794-1048	3.628	1.486	2.655·10 ³	1.910 - 103	1.880-1048	3.207		
6.655·10°	1.407	1.460-103	1.509	1.817-103	1.350 - 103	7.333 - 1047	6.009	1.502	1.895 - 103	1.374 - 103	7.590.1047	5.288		
3.081.1010	1.426	9.348-102	1.513	1.161-103	8.711 - 103	2.354 - 1047	11.70	1.506	1.213-103	8.852 - 102	2.380-1047	10.32		
5.324 · 1010	1.430	7.925 - 103	1.512	9.832-102	7.403-102	1.562-1047	14.95	1.505	1.029 - 103	7.517-102	1.578-1047	13.22		
1.262-1011	1.433	6.080-102	1.511	7.544-102	5.694-103	8.316.1046	22.25	1.504	7.894 102	5. 7 79 · 10 ³	8.296 - 1046	19.66		
1.797-1011	1.435	5.446 - 102	1.511	6.755-103	5.105.103	6.403-1046	26.23	1.503	7.068-102	5.180 - 103	6.372 - 1046	23.31		

NEWTON THEORY OF RAPIDLY ROTATING WHITE DWARFS

V. V. PAPOYAN, D. M. SEDRAKIAN, E. V. CHUBARIAN;

The structure and integral parameters of uniformly rotating equilibrium models of white dwarfs are determined in Ω^4 -approximation. It is shown that the obtained results slightly differ from those obtained in Ω^2 -approximation. Consequently for a configuration in a critical state with respect to equatorial instability, the Ω^2 -approximation may be applied as well as the Ω^4 -approximation. Comparison of these results with the more exact results obtained by James shows that the proposed method is quite accurate.

ЛИТЕРАТУРА

- 1. S. Chandrasekhar, M. N., 93, 390, 1933.
- 2. S. Chandrasekhar, N. R. Lebovitz, Ap. J., 136, 1082, 1962.
- 3. R. A. James, Ap. J., 140, 552, 1964.
- 4. I. W. Roxburgh, M. N., 128, 157, 237, 1964.
- 5. I. W. Roxburgh, Z. Astrophys., 62, 1934, 1965.
- 6. J. J. Monaghan, I. W. Roxburgh, M. N., 131, 13, 1965.
- 7. S. P. S. Anand, Ap. J., 153, 135, 1968.
- 8. В. В. Папоян, Д. М. Седракян, Э. В. Чубарян, Сообщ. Бюр. обс., 39, 101, 1968; 40, 86, 1969.
- 9. В. В. Папоян, Д. М. Седракян, Э. В. Чубарян, ДАН АрыССР, 49, 237, 1969.
- 10. E. Schatzman, White Dwarfs, North Holland Publ. Comp., Amsterdam, 1958.
- 11. E. Schalpeter, Ap. J., 134, 669, 1961.
- 12. Г. С. Саакян, Э. В. Чубарян, Сообщ. Бюр. обс., 34, 99, 1963.

