АКАЛЕМИЯ НАУК АРМЯНСКОЙ ССР

АСТРОФИЗИКА

TOM 6

МАЙ, 1970

выпуск 2

ЧИСЛЕННО-ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ КВАЗИСТАЦИОНАРНОЙ СФЕРИЧЕСКОЙ СИСТЕМЫ СО ЗВЕЗДАМИ РАЗНЫХ МАСС

А. С. БАРАНОВ

Поступила 3 марта 1969 Пересмотрена 11 октября 1969

Рассматривается применимость эргодической теории в звездной динамике. Указывается на возможность непосредственного определения временных средних в системах не очень высокой кратности. Методом численного эксперимента построена модель квазистационарной сферической системы пяти тел разных масс. Построены распределения звездной плотности, потенциала, дисперсий остаточных скорозтей в раджальном и трансверсальном направлениях, а также некоторых других характеристик.

1. В работе [1] предложен численно-экспериментальный метод построения моделей звездных систем, основанный на эквивалентности пространственных средних и временных средних, вычисленных вдоль орбит системы. Гипотезы такого рода называются эргодическими гипотезами. Рассмотрим сущность эргодической проблемы в звездной динамике.

В теоретических исследованиях звездные системы полнее всего описываются с помощью физических величин, являющихся фазовыми функциями. Наблюдения дают физические величины в нехоторый момент времени. Желая сверить теорию с практикой, мы, как указывается в [2], должны были бы иметь возможность физическую величину, полученную из наблюдений, сравнивать с теоретическим значением соответствующей фазовой функции, отнесенным к моменту наблюдения. Последнее требование можно в принципе выполнить, лишь построив траекторию, что не осуществимо для интересующих нас систем, составленных из большого числа объектов. Допустим, однако, что траектория все-таки построена. Тогда, согласно вргодической теореме (см. [3], а также [4], [2]), фазовые функции вдоль траектории, вычисленные для достаточно больших интервалов времени, будут совпадать между собой с точностью до множества меры нуль. Эти временные средние и естественно сравнивать с наблюдениями. В общем случае мы можем найти лишь часть интегралов уравнений движения. Совокупность однозначных интегралов определяет в фазовом простраястве гиперповерхность, на которой находится искомая траектория. Эргодическая гипотеза утверждает равенство с точностью до множества меры нуль для фазовой функции ее фазовых средних на гиперповерхности однозначных интегралов уравнений движения и временных средних, вычисленных вдоль траектории системы. Это дает возможность заменять временные средние наиболее удобными в теоретических методах фазовыми средними. Но для систем малой кратности траектории могут быть построены, что позволяет определять непосредственно временные средние. Именно для таких систем в [1] был предложен метод численного эксперимента.

Из-за диссипации время существования каждой конкретной системы конечно, а совокупность состояний, в которых может находиться одна и та же система с фиксированными генеральными характеристиками, неограниченна. Это позволяет утверждать, что существует множество начальных состояний, для которых траектории всех тел могут быть продолжены сколь угодно долго. Однако найти эти начальные состояния нелегко. В действительности нам безразлично, рассматриваем ли мы одну систему в различных состояниях или большое число систем, обладающих одинаковыми значениями основных фиксированных параметров. В последнем случае временным средним функции f естественно назвать величину f,

$$\overline{f} = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} F_i, \qquad (1)$$

причем

$$F_{i} = \frac{1}{T_{i}} \int_{0}^{T_{i}} f(q, p, t) dt, \qquad (2)$$

где N — число рассмотренных систем, T_t — определяет время существования *i*-й системы на данной эволюционной стадии, q, p — совокупность переменных.

Важной составной частью эргодической проблемы в звездной динамике является вопрос о характере зависимости распределений

численно-экспериментальное исследование

физических параметров, определяемых регулярными силами, при фиксированных основных характеристиках от числа тел *n*, если такая зависимость существует вообще. Определив вид зависимости или доказав, что, напротив, ее не существует, можно полностью решить задачу построения моделей квазистационарных систем.

2. В настоящей работе решалась более частная задача: построение модели квазистационарной сферической системы, состоящей из пяти тел, массы которых, выраженные в условных единицах, равны: m,=1. $m_2 = 2, m_3 = 3, m_4 = 4. m_5 = 5.$ Задача решалась методом численного эксперимента, изложенным в [1]: начальные координаты и скорости выбирались так, чтобы начало координат находилось в центре инерции системы, центр системы был неподвижен, полный кинетический момент равнялся нулю, а энергия - некоторому фиксированному значению. В нашей модели в качестве единицы расстояния было взято 3.08-10¹⁶ см. единицы массы — 2.10³³ 1, единицы времени — 1.07.10¹¹ сек. В соответствии с этим гравитационная постоянная G = 0.052. Энергия построенной системы E = -5.3 условных единиц. Кроме того, в начальный момент выполнялась общая теорема вириала, а индивидуальные отклонения каждого компонента от нее были невелики. После выбора начальных условий численно решались уравнения движения. Контролем служили интегралы уравнений движения. Вычисление звездной плотности D, дисперсий скоростей П⁸ и $\overline{\Theta}^2$ соответственно в радиальном и трансверсальном направлениях, а также потенциала Фо, согласно формулам статьи [1], начиналось по истечении утроенного среднего времени то пересечения компонентом системы, необходимого, чтобы система безусловно достигла квазистационарного состояния,

$$\tau_0 = \frac{2r_0}{w},\tag{3}$$

где r_0 — эффективный радиус системы, "w — средняя квадратичная -скорость компонентов системы.

Вычисления с каждой комбинацией начальных условий велись до тех пор, пока один из компонентов не удалялся от центра инерции на расстояние, превышающее удесятеренный эффективный радиус r_0 . Этот момент мы условно называем моментом распада. Всего было использовано 148 комбинаций начальных условий. В 92 случаях оторвался компонент с массой m_1 , в 33 — компонент с массой m_2 , в 9 компонент с массой m_3 . В 14 вариантах вычисления не были доведены до распада, так как накапливающаяся ошибка в энергии очень замедляла работу. 264

Проведем концентрические сферические поверхности так, чтобы радиус $r_{(i+1)}$ каждой сферы был связан с радиусом $r_{(i)}$ предыдущей сферы соотношением:

$$r_{(i+1)} = r_{(i)} + 0.1 \ (i = 1, 2, ..., 45; r_{(1)} = 0.1, r_{(42)} = 10, r_0 = 4.2).$$

Тогда пространство системы разобьется на 45 сферических слоев. Вычисления выполнялись до тех пор, пока во всей системе плотность не стала монотонно убывающей функцией расстояния. В этот момент стали заметно сглажены флуктуации, отвечающие данному разбиению пространства системы на сферические слои. Средние по использованным комбинациям начальных условий приведены в таблицах и на графиках. Графы табл. 1 дают D_t — звездную плотность звезд с массой m, и общую плотность

$$D = \frac{\sum_{i} m_{i} D_{i}}{\sum_{i} m_{i}}, \quad i = 1, 2, 3, 4, 5.$$
(4)

В табл. 2 приведены вычисленные последовательными приближениями сглаженные парциальные плотности \overline{D}_t и сглаженная общая плотность

$$\overline{D} = \frac{\sum_{i=1}^{5} m_i \overline{D}_i}{\sum_{i=1}^{5} m_i}.$$
(5)

Ход логарифмов плотностей изображен на рис. 1. Табл. 3 и 4 дают $\overline{\Pi_{l}^{2}}$ и $\overline{\Theta_{l}^{2}}$ — парциальные дисперсии скоростей соответственно в радиальном и трансверсальном направлениях, если $\overline{\Pi_{1}^{2}}$ в первом объеме принята равной единице. Здесь же приведены полные дисперсии скоростей в радиальном и трансверсальном направлениях, равные соответственно:

$$\overline{\Pi}^{2} = \frac{\sum_{i} m_{i} D_{i} \cdot \overline{\Pi}_{i}^{2}}{\sum_{i} m_{i} D_{i}}$$

$$\overline{\theta}^{2} = \frac{\sum_{i} m_{t} D_{i} \cdot \overline{\Theta}_{i}^{2}}{\sum_{i} m_{t} D_{t}}$$

$$i = 1, 2, 3, 4, 5.$$
(6)

ЧИСЛЕННО-ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ

	A REAL PROPERTY AND ADDRESS OF					
No	D1.10	D2.106	D3.10*	D4.10*	D ₅ .10*	D.10*
1	205400	374100	425800	483300	483300	438700
2	202700	264700	271800	275900	254800	261700
3	194200	144200	147300	114200	131900	136100
4	144300	92490	66260	47590	58210	67300
5	75920	57140	47410	34220	34690	42850
6	42480	28940	24750	23070	15930	23100
7	33950	12280	8910	9613	9181	11310
8	32020	6683	3302	5854	5760	7167
9	23570	4717	1760	4045	4658	5184
10	12390	3294	860.7	1417	1267	2238
2	5107	2046	235.4	78.25	52.74	698.8
4	3047	1146	136.3	30.67	36.12	403.5
6	1440	736.1	93.89			212.9
8	816.0	482.4	39.44	Jan V/ak	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	126.6
20	695.4	408.2	38.67			108.5
2	481.6	69.25	36.57			48.65
4	282.5	32.69	34.90			30.17
6	217.1	25.67	28.89		1.1.1.1.1.1.1	23.67
8	152.8	22.45	22.32			17.64
30	48.30	19.68	21.58		1.02.07	10.16
2	42.69	17.89	17.43		Caral States	8.718
4	37.20	15.08	12.13		1. 1. 2. 1. 1.	6.917
6	36.57	14.05	5.471	1.0.0	211.01	5.406
8	34.04	13.08	2.868			4.587
40	32.77	9,451	2.119	101-5-5	12 02	3.869
2	26.89	5.784	1.614			2.887
4	24.80	5.012	1.098			2.542

Таблица 1

No	$\overline{D}_1 \cdot 10^6$	D ₁ .104	D ₃ -10*	D ₄ -10 ⁶	D ₅ ⋅ 10*	<i>D</i> − 10 ⁶
1	205700	367400	433300	488000	514400	451000
2	200400 <u>-</u>	250600	267000	258400	261500	256300
S	177100	160100	144100	125300	118500	134900
4	131400	91380	68520	60590	56440	69610
5	97610	54640	42320	33550	27080	40230
6	61740	2826 0	23680	17040	12200	21230
7	36970	17430	10180	8798	5194	10900
8	26260	10830	4534	4417	2586	6142
9	17490	5652	2418	2075	1245	3372
10	12480	3768	1310	1010	491.4	2029
2	6031	1743	493.7	200.2	85.10	814.9
.4	3237	962.8	241.8	35.01	16.27	407.3
6	1868	562.8	133.0	1.0-		226.2
8	1055	345.1	74.56			131.3
20	622.5	198.5	-42.32	11111		76.43
2	375.4	116.3	31.34			46.80
- 4	226.9	74.49	.22.17	11		26.49
6	143.7	51,74	16.02	- C .	A Robert Barrier	19.68
8	101.9	37.48	11.79			14.15
30	77.21	27.86	8.766	7 240 1	1.4.6	10.61
2	61.66	. 2180	6.348	1		8.287
4	48.63	116.64	4.837	" BALLE		6.428
6	40.34	13.67	3.829	and the second		5.278
8	34.37	10.97	.2.821	and the second	1. 1. 5	4.319
40	29.85	8.879	.2,096	C. HART	1.000	3.593
2	25.39	7.305	1.612		1. Oak	2.989
4	22.62	6.130	J.270	Call-		2.579

численно-экспериментальное исследование

Таблица З

No	II12 · 106	112-10 ^s	$\overline{\Pi_3^2} \cdot 10^6$	Π ² · 10 ⁶	Π ² / ₅ .10 ^s	$\overline{\Pi^2} \cdot 10^6$
1	1000000	572500	455100	228000	232500	337000
2	852500	413300	222700	110900	107500	222100
3	389400	103100	89020	55140	35020	94550
4	223800	46000	38210	29220	16630	58250
5	103800	26030	24220	14020	8888	27630
6	60300	11990	10560	10460	4596	15500
7	37200	4510	4007	4260	2393	10340
8	22090	3038	1278	2404	1417	7978
9	16530	1870	539.7	2256	1299	6134
10	9298	1230	.380.7	724.9	354.7	3893
2	3596	499.1	138.6	92.00	48.78	1960
4	2112	256.8	68.76	43.41	12.66	1166
6	901.4	152.2	44.62		and the	480.5
8	547.6	96.41	29.69			286.1
20	489.1	54.81	20.12	1 2 2 3 3	5233	237.9
2	305.5	37.46	16.72		200	211.2
4	192.9	29.12	13.86	3 7- 2		127.8
6	144.6	18.32	8.825	1 2	131 212	93.19
8	91.44	14.85	6.758	- 1 -		57.02
30	73.80	13.36	4.465	14 A 15 A 15		28.74
2	69.07	10.77	2.834		200 2 2	26.63
4	60.82	9.416	2.503			25.42
6	50.11	6.756	2.087	-	1.1.2	25.37
8	45.07	6.067	1.659	El an		24.81
40	40.00	5.090	1.326	3.13		24.39
2	35.66	4.104	1.148		un te	23.37
4	31.87	3.346	0.9968			21.70

N	$\theta_1^2 \cdot 10^6$	$\overline{\theta_2^2} \cdot 10^6$	θ ₃ ² . 10 ^s
1	2447000'	1081000	713700
2	991100	726800	537300
3	765900	215000	145200
4	412500	117300	51200
5	169600	53850	34140
6	70360	31020	15320
7	56720	7751	4542
8	37630	2755	1260
9	23190	1398	294.3
10	16400	1206	92.55
2	1870	415.0	32.16
4	884.7	115.0	3.136
6	510.4	87.89	2.066
8	327.2	48.36	1.810
20	288.5	6.148	1.492
2	89.70	2.237	1.289
4	16.49	1.449	0.9757
6	9.286	1.207	0.8293
8	5.700	0.8102	0.7690
30	3.949	0.6172	0.3707
2	3 781	0 4626	0 2313

				Таблица
$\overline{\theta_4^2} \cdot 10^6$	$\theta_5^2 \cdot 10^{\circ}$	0 ² · 10*	v3. 10ª	v.2. 10°
604800	416500	668400	1005000	1000000
228000	146500	372500	584600	554200
89860	52070	171600	266200	281700
53730	34990	110800	169000	148300
27670	14500	46970	74600	83240
16480	8306	23390	38890	44950
7915	3885	16040	26380	26400
5694	3134	13740	21720	17780
4555	2670	8968	15100	11490
1037	586,8	6586	10480	7763
178.4	84.65	1083	3043	3631
41.71	2.580	490.1	1656	1841
2.2		270.8	751.3	977.2
		165.3	451.4	549.7
		126.4	364.3	354.8
		59.82	271.0	218.8
		10.73	138.5	144.0
$S \in S$		6.053	99.24	93.33
		3.623	60.64	63.10
		1.568	30.31	44.77
		1.453	28.08	33.50
		1.365	26.78	28.18
		1.261	26.63	26.00

Две последних графы табл. 4 дают кинетическую температуру

$$\overline{v^2} = \overline{\Pi^2} + \overline{\theta^2} \tag{7}$$

и сглаженную кинетическую температуру v_{*}^2 . Ход логарифмов дисперсий скоростей изображен на рис. 2—3.

Рис. 1.

В процессе интегрирования уравнений движения в каждый момент времени определялись средние расстояния звезд от центра инерции и геометрического центра. Последний не совпадает с центром инерции исходной системы пяти тел из-за дисперсии масс. Средние расстояния звезд каждой массы от центра инерции и от геометрического центра системы пяти тел, а также сглаженные соответствующие расстояния представлены в табл. 5. Графы табл. 6 дают: Ф — потенциал, полученный решением уравнения Пуассона для звездной плотности D, Ф — решение урав-

невия Пуассона для сглаженной звездной плотности \overline{D} , Φ_0 — непосредственно вычисленный потенциал регулярного поля, $(\Phi^a)_0$ — дисперсию регулярного потенциала, $(d\Phi/dt)_0$ — непосредственно определенную производную потенциала Φ_0 по времеви. Логарифы вычисленного различными способами потенциала регулярного поля изображен на рис. 4. Как показывают табл. 6 и рис. 4, непосред-

сттенно вычислевный потенциал согласуется со значением потенциала, найденным из решения уравнения Пуассона, однако это согласие не вполне удовлетворительное, что должно объясняться недостаточным временем вычисления. В табл. 6 приведена также корреляционная функция иррегулярного потенциала в нуле

$$\chi = [(\Phi^{2})_{0} - (\Phi_{0})^{2}]^{1/2}.$$
(8)

Таблица 5

m	Расстоявие г _и от центра янерция	Сглаженное расстоя- ние г _и от центра янердин	Расстояние г _г от геометрического центра	Сглаженное рас- стоянне r _r от гео- метрического центра
1	1.81	1.84	1.68	1.71
2	1.68	1.63	1.64	1.60
3	1.26	1.23	1.47	1.40
4	0.582	0.691	0.779	0.984
5	0.578	0.525	0.777	0.802

	T	аб	ли	14	a	6
--	---	----	----	----	---	---

No	Φ.10	Φ.10•	Φυ·10*	(Φ ²) ₀ ·10 ⁶	% · 10 ⁶	$(d\Phi/dt)_0 \cdot 10^6$
1	10000000	10000000	10000000	1530000	728200	1000000
.2	770900	767200	626300	600400	456200	413500
3	524400	517500	404900	260500	310800	328300
4	345500	336100	368700	239000	321000	253800
5	226800	218000	270600	120000	216200	204800
6	148100	140300	201700	101100	245700	118300
7	97220	90230	156000	79900	235700	60690
8	65260	59690	118300	68120	232600	43750
9	44960	40960	100800	50030	199700	26190
10	32090	29260	86200	24390	130200	20070
2	18500	16880	38870	16400	122000	13400
-4	12230	11110	18510	12460	110100	5546
-6	8779	7964	14680	3384	56290	2590
8	6616	6025	9722	1156	32580	1666
-20	4640	4195	. 8349	803.7	27090	1213
2	2752	2392	4365	370.6	18750	910.6
4	1910	1635	3455	124.9	10630	454.3
6	1421	1209	2877	71.83	7972	371.4
8	1095	929.1	2384	22.53	4104	200.7
: 30	855.8	726.3	1430	8.694	2579	123.2
2	671.3	569.7	1248	3.749	1480	77.93
.4	521.3	442.9	1014	1.483	674.8	43,96
6	397.8	338.4	926.0	1.078	470.0	33.64
8	293.9	250.1	726.0	0.6195	304.1	25.73
- 40	204.7	174.3	446.4	0.2479	220.0	17.38
2	127.4	108.5	171.8	0.07031	202.0	14.24
4	59.86	50.98	50,69	0.01997	131.9	7.28

Как показывает табл. 6, в центральной области системы регулярный потенциал больше иррегулярного. Начиная с расстояния, приблизительно равного эффективному радиусу, напротив, преобладает иррегулярный потенциал. На периферии оба потенциала примерно равим. Результат сравнения потенциалов требует объяснения. Нам кажется, что он не вызван естественными флуктуациями потенциала. Выводы. 1) Распределения физических характеристик в системе, построенной численно-экспериментальным методом, прослеживаются весьма уверенно. Относительно не очень малые флуктуации объясняются ограниченностью использованного времени вычисления.

2) Как и следовало ожидать, градиент парциальной плотности тем больше, чем больше соответствующая масса.

3) Градиент дисперсии скоростей в обоих направлениях возрастает с увеличением массы.

Распределение скоростей в самом центре в точности сферическое. По мере удаления от центра эллипсоид скоростей становится все более вытянутым в радиальном направлении, однако в центральной области полный трансверсальный компонент больше радиального. Размер этой области несколько возрастает с увеличением массы звезды (исключение составляет звезда m₃), однако эта зависимость выражена крайне слабо и, возможно, объясняется естественными флуктуациями. Расстояние от центра, на котором радиальный и трансверсальный компоненты равны между собой, составляет примерно утроенный эффективный радиус системы.

4) Сильное изменение кинетической температуры показывает, что система не изотермична. Поэтому модели, построенные на пред-7—135 положении сб изотермичности кеазистационарных скоплений, не мо-гут считаться обоснованными.

5) Представляет интерес сравнение полученной модели с другими моделями сферических систем, в частности с политропными. Можно найти индекс политропы, для которого решение уравнения Эмдена лучше всего соответствует полученным нами законам.

6) Как и следовало ожидать, "тяжелые" звезды располагаются ближе к центру инерции и к геометрическому центру, чем звезды с малыми массами. "Тяжелые" звезды располагаются ближе к центру инерции, чем к геометрическому центру, звезды с малыми массами в среднем ближе к геометрическому центру, чем к центру инерции.

7) Звезды с большими массами вносят основной вклад в общую звездную плотность в центральных областях и практически не оказывают влияния на плотность в периферийных областях.

8) Иррегулярное поле системы, построенной путем интегрирования уравнений движения исходной системы пяти тел, того же порядка, что и регулярное поле. Возможно, что иррегулярный потенциал финальной системы в сильной степени зависит от кратности исходной системы. По-видимому, иррегулярные силы в звездных скоплениях играют более существенную роль, чем это считается.

Автор искренне благодарен Т. А. Агекяну за руководство и помощь в работе.

Аснияградский государственный узиверситет

NUMERICAL-EXPERIMENTAL INVESTIGATION OF QUASI-STATIONARY SPHERICAL SYSTEM WITH STARS OF DIFFERENT MASSES

A. S. BARANOV

The application of the ergodic theory in stellar dynamics is considered. The possibility of the direct determination of time-averages in systems of not very high multiplicity is pointed out. By numerical experiment, quasi-stationary spherical system model of 5 bodies of different masses is constructed. Distributions of stellar density, potential, dispersions of peculiar velocities in radial and transversal directionsand some other characteristics are considered.

ЛИТЕРАТУРА

- 1. Т. А. Алекян, А. С. Баранов, Астрофизика, 5, 2, 1969.
- 2. А. Я. Химчин, Математические основания статистической медания, т. П. ГИТТА, 1943.
- 3. G. D. Birkhoff, Proc. Nat. Acad. Sci. USA, 17, 656, 1931.
- 4. А. Н. Колмогоров, УМН, вып. V, 52, 1938.